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We use quantum Monte Carlo simulations with the worm algorithm to study the phase

diagram of a two-dimensional Bose-Hubbard model with cavity-mediated long-range

interactions and uncorrelated disorder in the hard-core limit. Our study shows the system

is in a supersolid phase at weak disorder and a disordered solid phase at stronger

disorder. Due to long-range interactions, a large co-exist region of density-wave and

Mott insulator phases exists in both clean and disordered systems. By comparing the

phase diagrams for both clean and disordered systems, we find that disorder suppresses

superfluidity and narrows the co-exist region caused by first order phase transition. We

compare these results with the phase diagram of the extended Bose-Hubbard model

with nearest-neighbor interactions. Here, the supersolid phase does not exist even at

weak disorder. We identify two kinds of glassy phases: a Bose glass phase and a

disordered solid phase. The glassy phases intervene between the density-wave and

superfluid phases as the Griffiths phase of the Bose-Hubbard model. The disordered

solid phase intervenes between the density-wave and Bose glass phases since both

have a finite structure factor.

Keywords: quantum phase transition (QPT), Bose-Hubbard model, long-range interactions (LRI), quantum Monte

Carlo (QMC), optical lattices, cavity mediated interactions, superfluidity, supersolid

1. INTRODUCTION

The study of adding disorder to interacting many-body bosonic systems attracts significant
attention both experimentally and theoretically [1–14]. Experimentally, ultracold atoms in optical
lattices are a promising tool to study quantum phases and quantum phase transitions in strongly
correlated quantum many-body systems. It provides a unique possibility for engineering matter
with an unprecedented level of control over the parameters entering theHamiltonian. On one hand,
short-range interactions can be realized using Feshbach resonances, while long-range interactions
have been studied using ultracold gases of particles with large magnetic or electronic dipole
moments [15–17], polar molecules [18, 19], atoms in Rydberg states [20–22], or cavity-mediated
interactions [23, 24]. On the other hand, disordered potential can be introduced artificially into
the ultracold atomic gases in optical lattices. Speckle patterns are most commonly used to produce
the random potential [2, 25, 26]. Bichromatic lattices [27], the introduction of localized atomic
impurities [4], and holographic techniques that produce point-like disorder [28] are also used to
engineer disorder experimentally.
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The effect of disorder on the phases and phase transitions
of quantum many-body systems triggered many theoretical
studies [29–31]. The disordered Bose-Hubbard model (DBHM)
allows one to study the interplay between disorder and
interactions of ultracold bosons in optical lattices. In the phase
diagram of the DBHM, the gapless Bose glass (BG) phase,
characterized by a finite compressibility and absence of an
off-diagonal long-range order, always intervenes as a Griffiths
phase between the superfluid (SF) and Mott insulator (MI)
phases [32, 33]. The original DBHM focuses on short-range
on-site interactions [34]. Recently, long-range interactions have
started to attract the focus of theoretical research. In the absence
of disorder and with long-range interactions, the BHM exhibits
a richer phase diagram with additional density wave (DW)
and supersolid (SS) phases [35–38]. The ground state phase
diagram of the extended BHM with cavity-mediated long-range
interactions has been investigated extensively with the help
of mean-field theory [37, 39–42], Gutzwiller ansatz [38, 43],
quantum Monte Carlo [36, 38, 41], and Variational Monte-
Carlo [44] methods in 1D, 2D, and 3D. The addition of disorder
to the BHM with long-range interactions leads to additional
phases. In our recent study, we found that in the DBMH, long-
range interactions enhance the supersolid phase [45]. However, a
study of the DBHMwith cavity-mediated long-range interactions
in the hard-core limit is still lacking. In the hard-core limit
and without disorder, equilibrium phases of lattice bosons
with cavity-mediated long-range interactions were investigated
in Iglói et al. [46] and Bla et al. [47] in 1D; the result showed that
the checkerboard supersolid did not exist. In 2D with nearest-
neighbor interactions [48], however, the result showed that the
checkerboard supersolid was unstable. However, in the presence
of disorder and with a hard-core limit, whether the supersolid
phase exists or not is still unknown.

In this paper, we use quantum Monte Carlo simulations
with the worm algorithm [49] to study the phase diagram of
the two-dimensional disordered Bose-Hubbard model with a
cavity-mediated long-range interaction. To compare the effects of
cavity-mediated long-range interactions with nearest-neighbor
interactions, we also study the extended BHM with nearest-
neighbor interactions in the hard-core limit. The paper is
organized as follows: in section 2, we introduce the Hamiltonian
of the system of hard-core bosons with cavity-mediated long-
range and nearest-neighbor interactions in the presence of
disorder. In section 3.1, we present the phase diagrams of hard-
core bosons in the two-dimensional lattice with cavity-mediated
long-range interactions for both clean and disordered systems.
We also study the phase diagram of hard-core bosons in the two-
dimensional lattice with nearest-neighbor interactions for both
clean and disordered systems in section 3.2. Section 4 compares
phase diagrams of the BHM with cavity-mediated long-range
interactions with nearest-neighbor interactions and discusses
briefly the experimental realization of above models.

2. HAMILTONIAN

We consider bosons trapped in an optical lattice with both
short-range on-site and cavity-mediated long-range interactions

in the presence of disorder in the hard-core limit. The bosons
are trapped in a two-dimensional (2D) square lattice with linear
size L and periodic boundary conditions. The hard-core limit
corresponds to large on-site interactions where the occupation
of two bosons on the same lattice site is suppressed. The system
is described by the Hamiltonian [35–37]:

H = −t
∑

〈i,j〉

(a†
i aj + aia

†
j )

−
Ul

L2

(

∑

i∈e

ni −
∑

j∈o

nj

)2
+

∑

i

(εi − µ)ni . (1)

Here the first term is the kinetic energy characterized by the

hopping amplitude t. 〈· · · 〉 denotes nearest neighboring sites, a†
i

(ai) are the bosonic creation (annihilation) operators satisfying

the usual bosonic commutation relations, and ni = a†
i ai is

the particle number operator. The second term is the cavity-
mediated long-range interaction with interaction strengthUl, the
summations i ∈ e and j ∈ o denote summing over even and
odd lattice sites, respectively [37]. The third term is the chemical
potential term with chemical potential µ shifted by the on-site
random potential εi, where εi is uniformly distributed within
the range [−1,1]. 1 is the disorder strength. The hard-core

condition a†2
i = 0 implies that sites with more than one atom are

energetically suppressed due to a large on-site interaction energy
penalty. In this limit, the usual on-site interaction term of the
Bose-Hubbardmodel does not play any role. Themaximum atom
per site is one. The unit of energy and length are set to be the
hopping amplitude t. For each µ/Ul, t/Ul, and 1/t, we average
over 200–400 realizations of disorder.

We also consider the extended Bose-Hubbard model with
nearest-neighbor interactions in the presence of disorder in the
hard-core limit. The Hamiltonian is written as:

H = −t
∑

〈i,j〉

(a†
i aj + aia

†
j )

+ Unn

∑

〈i,j〉

ninj +
∑

i

(εi − µ)ni . (2)

Here, the first term is the kinetic energy with hopping amplitude
t. The second term is the repulsive interaction with interaction
strength Unn between bosons on the nearest neighboring sites.
The third term is the random potential term coupled with the
chemical potential term. For each µ/Unn, t/Unn, and 1/t, we
average over 1,000–3,000 realizations of disorder.

3. GROUND STATE PHASE DIAGRAMS

In this section, we present the ground state phase diagram of the
extended BHM with cavity-mediated long-range interactions Ul

(model 1) in section 3.1 and nearest-neighbor interactions Unn

(model 2) in section 3.2 in the hard-core limit for both clean and
disordered systems, respectively. To obtain the phase diagram for
cavity-mediated long-range interactions (Figure 1) and nearest-
neighbor interactions (Figure 4), we measure the superfluid
stiffness, compressibility, and structure factor to separate those
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FIGURE 1 | Ground state phase diagrams of model 1 as a function of t/Ul

and µ/Ul for clean system (A), and disordered system with disorder strength

1/t = 2 (B), 5 (C), and 10 (D), respectively. The gray shadowed region is the

co-exist region due to first-order phase transition.

TABLE 1 | Quantum phases and the corresponding parameters: superfluid

stiffness ρ, structure factor S(π ,π ), and compressibility κ.

Phase ρ κ S(π, π)

Superfluid (SF) 6= 0 6= 0 0

Density wave (DW) 0 0 6= 0

Supersolid (SS) 6= 0 6= 0 6= 0

Bose glass (BG) 0 6= 0 0

Disordered solid (DS) 0 6= 0 6= 0

Mott insulator (MI) 0 0 0

quantum phases. Different phases can be distinguished by the
different combinations of those order parameters. Table 1 shows
quantum phases and corresponding parameters associated to the
phase we find in phase diagrams Figures 1, 4.

The superfluid (SF) phase is characterized by a finite
superfluid stiffness, which is easily accessible in the
QMC simulations by calculating the winding number
ρ = 〈W2〉/dLd−2β [50]. Here, W is the winding number,
d = 2 is the dimension of the system, L is the linear size of
the system, and β is the inverse temperature. The density wave
(DW) phase has a finite structure factor that is defined as
S(k) =

∑

r,r′ exp [ik(r− r′)]〈nrnr′〉/N. Here, k is the reciprocal
lattice vector and k = (π ,π). The supersolid (SS) phase possesses
both the diagonal long-range order and off-diagonal long-range
order, and it is characterized by finite ρ and S(π ,π). Both the
disordered solid (DS) phase and the Bose glass (BG) phase
are characterized by a finite compressibility, the difference
between them is that DS phase has a finite structure factor.
The compressibility measures the density fluctuations and it
is defined as: κ = β(〈n2〉 − 〈n〉2). The Mott insulator (MI)

phase has zero superfluid stiffness, zero compressibility, and zero
structure factor.

3.1. Cavity-Mediated Long-Range
Interaction
Figure 1 shows the ground state phase diagram of hard-core
bosons trapped in a two-dimensional optical lattice with cavity-
mediated long-range interactions for both clean (Figure 1A) and
disordered systems (Figures 1B–D), respectively. The x-axis is
t/Ul and the y-axis isµ/Ul where t is the hopping amplitude,Ul is
the strength of cavity-mediated long-range interactions, and µ is
the chemical potential. Here we set the hopping amplitude t = 1.
The phase boundary is determined by considering cuts through
the x axis (t/Ul) and calculating the above three order parameters
as a function of µ/Ul. A finite-size scaling method is also used to
get accurate transition points on the phase boundary.

Figure 1A shows the ground state phase diagram of the clean
system. There are three phases in the phase diagram: the SF phase,
the MI phase, and the DW phase. The DW to MI or SF phase
transition is the first-order phase transition. Due to the hysteresis
behavior of first-order phase transition, we cannot determine the
phase in the gray shadowed region, and we label it as the co-exist
region. Figure 1A shows that the co-exist region surrounds the
DW phase for the clean system at a small value of t/Ul. The co-
exist region and DW persists until t/Ul = 0.32 ± 0.02. When
t/Ul > 0.32, the system stays in the SF phase at a lower filling and
MI at an integer filling n = 1. Here, the MI to SF phase transition
is the second-order phase transition.

Figure 1B shows the ground state phase diagram at disorder
strength1/t = 2. As disorder is added to the system, the co-exist
region shrinks. Disorder tends to localize bosons and narrowing
the co-exist region. Besides the SF, MI, and DW phases, there
are two new phases emerging: a BG phase and a supersolid (SS)
phase. The BG phase intervenes as a Griffiths phase between
the MI and SF phases, and it is explained by the theory of
inclusions [32, 33]. The SS phase has both diagonal long-range
order and off-diagonal long-range order and is characterized
by a finite superfluid stiffness ρ and a finite structure S(π ,π).
Figure 2A shows the structure factor S(π ,π) and superfluid
stiffness ρ as a function of µ/Ul for different system sizes L = 8,
10, 12, and 14 (red dots, blue rectangles, green up triangles, and
purple diamonds) at disorder strength 1/t = 2 and t/Ul =

0.2857. Between 0 < µ/Ul < 0.25, the system is in the SS phase
with both a finite superfluid stiffness and a finite structure factor.
Figure 2B shows the finite-size scaling of structure factor S(π ,π),
where we plot S(π ,π)L2β/ν as a function of µ/Ul for system sizes
L = 8, 10, 12, and 14 (the critical exponents 2β/ν = 1.0366(8)
correspond to the (2+1)-dimensional Ising universality
class [51]). The crossing of different curves marks the transition
point at µ/Ul = 0.2 ± 0.05. The insert shows the data collapse
result using ν = 0.67 and 1̄c = (µ/Ul)c = 0.2 corresponding to
the critical point extracted from the main plot. Here, the SS goes
to the SF phase via a second-order phase transition that belongs
to the (2+1)-dimensional Ising-type transition.

Figure 3 shows the finite-size scaling of superfluid stiffness ρ

and structure factor S(π ,π) as a function of µ/Ul for different
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FIGURE 2 | Model 1 (cavity-mediated long-range interactions): all of the

following results are at fixed disorder strength 1/t = 2 and t/Ul = 0.2857. (A)

The structure factor S(π ,π ) and superfluid stiffness ρ as a function of µ/Ul for

different system sizes L = 8, 10, 12, and 14 (red dots, blue rectangles, green

up triangles, and purple diamonds). (B) The finite size scaling result of

structure factor S(π ,π ) for above system sizes. The crossing of different

curves marks a transition point at µ/Ul = 0.2± 0.05. Insert shows the data

collapse result using ν = 0.67 and 1̄c = (t/Ul )c = 0.2 corresponding to the

critical point extracted from main plot.

system sizes at 1/t = 2 and t/Ul = 0.25. Dashed lines are the
finite-size scaling result of superfluid stiffness. We plot ρLd+z−2

as a function of µ/Ul at t/Ul = 0.25 for a variety of system sizes.
Here, z = 1 is the dynamic critical exponent and it is chosen from
the previous research [11]. The inverse temperature β = L. The
crossing of different curves marks the transition point at µ/Ul =

0.325±0.01. This shows that, at t/Ul = 0.25, the DW to SS phase
transition is the second-order phase transition and happens at
µ/Ul = 0.325 ± 0.01. Solid lines are the finite-size scaling result
of structure factor. The crossing shows that the SS to SF phase
transition happens at µ/Ul = 0.368 ± 0.02. At t/Ul = 0.25, the
system is in the SS phase at 0.325 < µ/Ul < 0.368.

Figure 1C shows the ground state phase diagram at disorder
strength 1/t = 5. As disorder increases, both the co-exist region
and SF phases shrink. This is due to the fact that disorder tends
to localize bosons and destroy superfluidity. Interestingly, we do
not find the SS phase but the DS phase. The DS is characterized
by a finite compressibility and a finite structure factor but no
superfluid stiffness.

Figure 1D shows the ground state phase diagram at disorder
strength 1/t = 10. At such a strong disorder, there is no SF
phase anymore. By comparing phase diagrams in Figure 4, we
can see that disorder tends to shrink the co-exist region and
destroy superfluidity. The BG phase intervenes as a Griffiths
phase between the MI and SF phases. The SS or DS intervenes
between the DW and SF phases depending on the strength
of disorder.

3.2. Nearest-Neighbor Interaction
In this subsection, we study the ground state phase diagram
of hard-core bosons trapped in an optical lattice with nearest-
neighbor interactions. The difference between cavity-mediated

FIGURE 3 | Model 1 (cavity-mediated long-range interactions): the scaling of

superfluid stiffness ρL and structure factor S(π ,π )L1.0366 as a function of µ/Ul

for different system sizes L = 8, 10, 12, and 14 (red dots, blue rectangles,

green up triangles, and purple diamonds) at 1/t = 2 and t/Ul = 0.25. Solid

lines represent the structure factor and dashed lines represent superfluid

stiffness. The crossing of different solid curves marks the transition point at

µ/Ul = 0.325± 0.01 for the density wave to supersolid phase transition, while

the crossing of different dashed curves marks the transition point at

µ/Ul = 0.368± 0.02 for the supersolid to superfluid phase transition.

FIGURE 4 | Ground state phase diagrams of model 2 as a function of t/Unn

and µ/Unn for clean system (A), and disordered system with disorder strength

1/t = 3 (B), 5 (C), and 10 (D), respectively.

long-range interactions and nearest-neighbor interactions is that
cavity-mediated long-range interactions are global interactions
and the interactions between two bosons do not decay with
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FIGURE 5 | Model 2 (nearest-neighbor repulsive interactions): all following

results are at fixed disorder strength 1/t = 3 and t/Unn = 0.2. (A) Main plot:

finite size scaling of S(π ,π ) for system sizes L = 12, 16, 20, and 24 (red

circles, blue rectangles, green up triangles, and orange diamonds,

respectively). The crossing of different curves marks the transition point at

µ/Unn = 3.275± 0.02 for the DS to BG phase transition. Insert shows the

data collapse result using ν = 0.67 and 1̄c = (µ/Unn)c = 3.275 corresponding

to the critical point extracted from main plot. (B) shows the scaling of

superfluid stiffness ρL as a function of µ/Unn for t/Unn = 0.2 for L = 12, 16,

20, and 24. The crossing of different curves marks the transition point at

µ/Unn = 3.652± 0.02 for the BG to SF phase transition.

the distance between them, while nearest-neighbor interactions
are the interactions between two bosons on nearest neighboring
sites. Figure 4 shows ground state phase diagrams for both
clean (Figure 4A) and disordered systems (Figures 4B–D),
respectively. The x-axis is t/Unn and the y-axis is µ/Unn, where t
is the hopping amplitude,Unn is the strength of nearest-neighbor
interactions, and µ is the chemical potential. The hopping
amplitude is set to t = 1. The phase boundary is determined by
using system size L = 16, and the finite size scalingmethod is also
used to get accurate transition points on the phase boundary.

Figure 4A shows the ground state phase diagram of the
extended BHM with nearest-neighbor interactions for the clean
system. There are three phases in the phase diagram: the SF
phase, the MI phase, and the DW phase. Here, the MI to SF
phase transition is the second-order phase transition at an integer
filling while the DW to SF phase transition is the first-order phase
transition at a half filling [48].

Figure 4B shows the ground state phase diagram at disorder
strength 1/t = 3. As disorder is added to the system, the
glassy phase (BG and DS) emerges. This can be explained by the
theory of inclusions [32, 33], which states that a compressible
glassy phase surrounds the incompressible phase. There are two
kinds of glassy phase, the BG phase and DS phase. The BG phase
is characterized by a finite compressibility κ but zero structure
factor S(π ,π), while the DS phase is characterized by both a finite
compressibility and a finite structure factor. The incompressible
phase here is the DW phase. As t/Unn increases, the system goes
from the DW to DS phase transition and then the DS to BG
phase transition. The DS phase intervenes between the DW and
BG phase since both have a finite structure factor. Finite-size

scaling method is used to determine all critical points on the
phase boundary. As shown in Figure 5, at fixed t/Unn = 0.2, as
µ/Unn increases, the DW phase goes to the DS phase first. The
main plot of Figure 5A shows the finite-size scaling of S(π ,π)
at fixed disorder strength 1/t = 3 and t/Unn = 0.2 for system
sizes L = 12, 16, 20, and 24 (red circles, blue rectangles, green
up triangles, and orange diamonds, respectively). The crossing of
different curves marks the transition point at µ/Unn = 3.275 ±
0.02. Insert shows the data collapse result using ν = 0.67 and
1̄c = (µ/Unn)c = 3.275 corresponding to the critical point
extracted from main plot, which shows the DS to BG phase
transition belongs to the (2+1)-dimensional Ising-type transition.
Figure 5B shows the scaling of superfluid stiffness ρLd+z−2 with
z = 1, as a function of µ/Unn for t/Unn = 0.2 and L = 12,
16, 20, and 24. Here, z is the dynamic critical exponent and the
inverse temperature β = L is used. The crossing of different
curves marks the transition point at µ/Unn = 3.652 ± 0.02,
which shows that, at t/Unn = 0.2, the BG to SF phase transition
is the second-order phase transition and happens at µ/Unn =

3.652± 0.02.
Figure 4C shows the ground state phase diagram at disorder

strength 1/t = 5. As disorder increases, the SF phase shrinks.
This is because disorder tends to localize bosons and destroy
superfluidity. The MI and DW phases also shrink, and we have
a large region of BG phase. Figure 6 shows the results at disorder
strength 1/t = 5 and µ/Unn = 2. At a fixed filling factor
n = 0.5, as t/Unn increases, the DW phase is unstable and the
system goes to the DS phase. Figure 6A shows the compressibility
κ as a function of t/Unn for different system sizes L = 16, 20,
24, and 30 (blue rectangles, green up triangles, orange diamonds,
and purple down triangles, respectively). Finite size scaling result
of compressibility is not obtained due to the exponentially small
values of κ around t/Unn = 0.018. However, transition points
can be determined by plotting the unscaled compressibility for
different system sizes and checking whether they stay zero or not.
The compressibility κ stays zero until t/Unn = 0.18 and then
becomes finite, which shows that the DW to DS phase transition
happens around t/Unn = 0.18 ± 0.01. As t/Unn increases
further, the DS becomes unstable, and the system enters the BG
phase. Figure 6B shows the finite-size scaling of S(π ,π) for above
system sizes. The crossing of different curves marks the transition
point at t/Unn = 0.212 ± 0.01. Insert shows the data collapse
result using ν = 0.67 and 1̄c = (t/Unn)c = 0.212 corresponding
to the critical point extracted from main plot. This shows the DS
goes to the BG phase via a second-order phase transition, which
belongs to the (2+1)-dimensional Ising type transition. Finally,
the BG goes to the SF as t/Unn increases further. Figure 6C shows
the finite-size scaling of superfluid stiffness ρL as a function of
t/Unn for above system sizes. The crossing of different curves
marks the transition point at t/Unn = 0.3241± 0.005.

Figure 4D shows the ground state phase diagram at disorder
strength1/t = 10. At such a strong disorder, there is no SF phase
anymore. By comparing phase diagrams in Figure 4, we can see
that disorder tends to localize bosons and destroy superfluidity.
Compared to the disordered BHM without nearest-neighbor
interactions [8], we find that the DW phase cannot go to the BG
phase directly as the DS phase intervenes between them.
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FIGURE 6 | Model 2 (nearest-neighbor repulsive interactions): all following results are at fixed disorder strength 1/t = 5 and µ/Unn = 2. (A) Compressibility κ as a

function of t/Unn for different system sizes L = 16, 20, 24, and 30 (blue rectangles, green up triangles, orange diamonds, and purple down triangles, respectively). The

DW to DS phase transition happens around t/Unn = 0.18± 0.01. (B) Finite size scaling result of S(π ,π ) for above system sizes. The crossing of different curves marks

the transition point at t/Unn = 0.212± 0.01 for the DS to BG phase transition. Insert shows the data collapse result using ν = 0.67 and 1̄c = (t/Unn)c = 0.212

corresponding to the critical point extracted from main plot. (C) Finite size scaling of superfluid stiffness ρL as a function of t/Unn for above system sizes. The crossing

of different curves marks the transition at t/Unn = 0.3241± 0.005 for the BG to SF phase transition.

4. CONCLUSION

In this paper, we use quantum Monte Carlo simulations with
the worm algorithm to study the phase diagram of a two-
dimensional Bose-Hubbard model with cavity-mediated long-
range interactions for both clean and disordered systems in the
hard-core limit. By comparing ground state phase diagrams in
Figures 1, 4, we can see that in the absence of disorder, both
ground state phase diagrams have SF, MI, and DW phases, while
with cavity-mediated long-range interactions, the ground state
phase diagram has a large co-exist region. As a disorder is added
to the two systems above, a compressible yet gapless Bose Glass
phase appearances. The BG phase is intervened between MI and
SF phases, which is explained by the theory of inclusions [32, 33].
The non-compressible DW phase cannot go through the SF
phase without going through a SS or DS phase with both finite
structure factor and finite compressibility. At a lower disorder, we
found the SS phase for cavity-mediated long-range interactions
and DS phase for nearest-neighbor interactions. Cavity-mediated
long-range interactions tend to stabilize the SS phase. A higher
disorder destroys ordered phases, and the system stays in the
BG phase.

In previous soft-core case [45], we observed a clear separation
at zUs/Unn on phase diagrams of the BHMwith nearest-neighbor
interactions. Here, z is the coordinate number, Us is the onsite
interaction, and Unn is the nearest-neighbor interaction. In the
hard-core limit, sites with more than one atom are energetically
suppressed due to a large onsite interaction, so the usual onsite
interaction term of the Bose-Hubbard model does not play
any role. In this case, a phase diagram with nearest-neighbor
interactions does not have a separation.

The system described in Equations (1) and (2) can be realized
experimentally. The BHM with cavity-mediated long-range
interactions can be realized by putting an atomic quantum

gas trapped in an optical lattice inside a high-finesse optical
cavity. Landig et al. [24] realized this model in the soft-core
regime. The strength of the short-range on-site interactions is
controlled by means of the optical lattice depth. The long-
range interaction potential is mediated by a vacuum mode
of the cavity and is independently controlled by tuning the
cavity resonance. However, rapid experimental advances will
allow for the realization of hard-core case in the future.
The extended Bose-Hubbard model with nearest-neighbor
interactions has been realized in the experiment using dipolar
interactions recently [52]. An ultracold gas of strongly magnetic
erbium atoms are trapped in a three-dimensional optical
lattice, and, in this case, nearest-neighbor interactions are
a genuine consequence of the long-range nature of dipolar
interactions. While the current experiments operate in the soft-
core regime [52], the existence of Feshbach resonances allow one
to tune the inter-species interactions to approach the hard-core
limit [53, 54].
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