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Abstract

With the help of a theoretical model the process in which a growing tumor

transforms a hierarchically organized arterio-venous blood vessel network into

a tumor specific vasculature is analyzed. The determinants of this remodeling

process involve the morphological and hydrodynamic properties of the initial

network, generation of new vessels (sprouting angiogenesis), vessel dilation

(circumferential growth), blood flow correlated vessel regression, tumor cell

proliferation and death, and the interdependence of these processes via

spatio-temporal changes of blood flow parameters, oxygen / nutrient supply

and growth factor concentration fields. The emerging tumor vasculature is

non-hierarchical, compartmentalized into well characterized zones, displays a

complex geometry with necrotic zones and “hot spots” of increased vascular

density and blood flow of varying size, and transports drug injections

efficiently. Implications for current theoretical views on tumor-induced

angiogenesis are discussed.
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1 Introduction

Tumor vasculature, the blood vessel network supplying a growing tumor with

nutrients like oxygen or glucose, is in many respects different from the hierarchi-

cally organized arterio-venous blood vessel network in normal tissues. In order

to grow beyond a size of approximately 1-2 mm3 the tumor has to switch to

an angiogenic phenotype and to induce the development of new blood vessels

mainly via sprouting angiogenesis, i.e. the formation of new vessels from pre-

existing vasculature (Carmeliet and Jain 2000). This process is regulated by a

variety of pro- and anti-angiogenic factors and as a consequence the anatomy

of a solid, vascularized tumor grown within in a vascularized tissue displays a

characteristic compartmentalization into essentially three regions (Holash et al.

1999a,b; Döme et al. 2002, 2007): i) The highly vascularized tumor perimeter

with a microvascular density (MVD) that is substantially higher than the MVD

of the surrounding normal tissue. ii) The well vascularized tumor periphery

with dilated blood vessels and a tortuous vessel network topology. iii) A poorly

vascularized tumor center with large necrotic regions threaded by only a few

very thick vessels that are surrounded by a cuff of viable tumor cells.

Several microscopic phenomena on the cellular level have been identified to

be involved in this remodeling process: 1) Angiogenic sprouting: Up-regulation

of pro-angiogenic factors in tumor-cells (like vascular endothelial growth factor,

VEGF, and other growth factors) can create additional vessels via sprouting

angiogenesis in some regions of the tumor, most frequently in its perimeter

(Carmeliet and Jain 2000). 2) Vessel regression: The maintenance of incorpo-

rated mature microvessels depends on the survival of endothelial cells (ECs) and

their survival is intimately tied to their local microenvironment and, in particu-

lar, to the presence of pericytes, survival promoting cytokines, and extracellular

matrix proteins. The major molecular players that control this process are

angiopoietins and VEGF (Holash et al. 1999a,b), and in coopted blood vessels

Ang-2 is up-regulated, causing the destabilization of their capillary walls, i.e the

detachment of pericytes from the endothelial tube (Holash et al. 1999a,b). Once
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ECs are separated from pericytes, they become particularly vulnerable resulting

in the regression of destabilized vessels. 3) Vessel dilation: The vascularization

program of the pro-angiogenic phenotype can be switched from sprouting an-

giogenesis to circumferential growth in the interior of the tumor. This switch

is mediated by the guidance molecules EphB4 (and its ligand ephrinB2), both

expressed by ECs of malignant brain tumors (Erber et al. 2006), which acts as

a negative regulator of blood vessel branching and vascular network formation,

and also reduces the permeability of the tumor vascular system via activation

of the Ang-1/Tie-2 systems at the endothelium/pericyte interface.

Besides pro- and anti-angiogenic molecular factors physical determinants

like mechanical, hydrodynamical and collective processes are involved in the

process that transforms or remodels the original arterio-venous blood vessel

network into a tumor specific vasculature. Theoretical modeling can help to

quantify the influence of the various factors determining this complex multiscale

phenomenon. For recent reviews see (Tracqui 2009; Lowengrub et al. 2010, and

references therein). Earlier work focusing on tumor induced angiogenesis can

roughly be divided into three categories: 1) continuum models without a proper

representation of a blood vessel network and blood flow (Balding and McElwain

1985; Chaplain and Stuart 1993; Chaplain et al. 1995; Byrne and Chaplain

1995; Holmes and Sleeman 2000), 2) hybrid models with a fixed vessel network

geometry and a dynamically evolving tumor (Alarcon, Byrne and Maini 2003;

Betteridge et al. 2006; Owen et al. 2008; Shirinifard et al. 2009), and 3) hybrid

models with a fixed tumor (as a source of a diffusing growth factor) and a

dynamically evolving tumor vasculature starting from a single parent vessel far

away from the growth factor source (Anderson and Chaplain 1998; McDougall et

al. 2002; Stephanou et al. 2005; McDougall, Anderson and Chaplain 2006). The

latter models are also denoted as vessel-ingrowth models since the whole tumor

vasculature grows from outside towards the tumor surface. Subsequent work was

still inspired by these vessel-in-growth models (Zheng, Wise and Cristini 2005;

Frieboes et al. 2007; Wise et al. 2008; Macklin et al. 2009): although in these

studies the tumor also evolved dynamically, focusing on a detailed analysis of the
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interactions between tumor and host tissue, all new vessels started to grow from

one or more parent vessels in a non-physiologically far distance from the tumor.

The remodeling process that transforms the original arterio-venous vasculature

of the host tissue into a tumor specific vessel network has not been addressed

with this Ansatz.

Bartha and Rieger (2006) hypothesized that the fundamental characteris-

tics of the remodeling process and the emerging tumor vasculature is predicted

by a model that comprises, besides the representation of a growing tumor, a

sufficiently dense initial vasculature and three basic dynamical mechanisms -

angiogenic sprouting, blood flow correlated vessel regression and vessel dilation.

Indeed, the compartmentalization of the tumor as well other global features,

like the time and radius dependencies of average MVD, tumor cell density,

vessel radius and blood flow characteristics were predicted in good agreement

with experimental data. These predictions were confirmed for varying grids in

two space dimensions (2d) (Welter, Bartha and Rieger 2008) and three space

dimensions (3d) (Lee, Bartha and Rieger 2006) as well as for arterio-venous ini-

tial vessel networks in 2d (Welter, Bartha and Rieger 2009) and 3d (Welter and

Rieger 2010). For arterio-venous initial networks even local characteristics like

the conditions for the formation of hot spots and spatial heterogeneities could

be identified. In this chapter we want to survey these results for the dynami-

cal evolution, final morphology and blood flow properties of tumor blood vessel

networks and present a critical comparison of the various model variants.

2 Model definition

A network which is distributed homogeneously over the system domain serves

as the initial vasculature for the model of remodeling by a growing tumor.

Configurations based on regular lattices (Bartha and Rieger 2006; Lee, Bartha

and Rieger 2006) akin to capillary beds as well as hierarchical organizations

(Welter, Bartha and Rieger 2009) which mimic arterio-venous vasculatures were

used. These networks are blood perfused and represent sources of oxygen.
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Depending on the local oxygen concentration tumor cells represent the sources

of the diffusion determined growth factor (GF) concentration field, which trig-

gers either the generation of tip cells for angiogenic sprouting from existing ves-

sels outside or at the periphery of the tumor, or circumferential growth within

the tumor (for potential molecular mechanisms for this switch in the angiogenic

program within the tumor see (Erber et al. 2006)). In contrast to vessel in-

growth models as in (Anderson and Chaplain 1998) tip-cells are not dominantly

generated by branching of existing tip-cells but by sprouting from vessels of the

original network. Lateral inhibition leads to a minimum spatial distance in a

vessel segment between individual tip cell generation events (Bentley, Gerhardt

and Bates 2008).

Tip cells migrate in the direction of a sufficiently large GF gradient (chemo-

taxis), otherwise randomly. The path they describe is supposed to be filled

with stalk cells forming a lumen and finally, once the tip cell hits another ves-

sel (anastomosis), a functional vessel carrying blood flow is formed. Due to

the pre-existing vasculature vessels typically migrate only 50-100 µm before the

filopodia of the tip-cell extending up to 20-30 µm into the surrounding tissue in

all directions (Gerhardt et al. 2003) touch another vessel. Therefore directional

cues are not as important here as in pure vessel in-growth models. Moreover,

tip cells which fail to make successful contact with another vessel migrate max-

imally 100-150 µm and retreat afterward (Nehls, Herrmann and Hünken 1998).

Inside the tumor, vessels destabilize and regress (for the potential molecular

determinants of this destabilization see (Holash et al. 1999a,b)). In our model

an increasing contact time of vessels with tumor cells, implying an increasing

residence time within the tumor, leads to a higher collapse probability of tumor

vessels. The collapse probability is also correlated with the origin of the vessel

(artery, vein or capillary) and the shear force exerted by the blood flow upon

the vessel walls (Dimmeler and Zeiher 2000).
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2.1 Configuration space

The state of the model is defined by the state of the discrete vessel network and

the continuum fields for a non-specific growth factor concentration g, oxygen

concentration o and tumor-cell density c.

The vessel network can be described as a graph where edges represent vessel

segments and nodes represent potential branching points, respectively. This

graph is embedded in a regular lattice with the lattice constant ∆l, which means

that the nodes are located at the lattice sites and edges are coincident with the

lattice edges. Edges and Nodes are dynamically created and destroyed over time.

In Addition they have attached dynamically varying biophysical properties

2.2 Blood flow

In order to determine blood flow, the edges of the network are regarded as ideal

pipes with radius r, wall shear stress f and blood flow rate q. Consequently, q is

determined by Poiseuille’s law q ∝ r4/η∆p, where ∆p is the hydrostatic pressure

difference between the end points. The viscosity η is radius dependent, follow-

ing Pries et al. (1994), for simplicity under the assumption of a homogeneous

hematocrit of 0.45. Conservation of mass holds, meaning that the sum of all

flow rates (with the appropriate sign) at each node must equal zero. With the

addition of boundary conditions which in our model consist of prescribing the

pressure p at some nodes, one obtains a well defined system of linear equations,

which is solved numerically. The selection of these boundary nodes depends on

the type of initial network. In arterio-venous networks the top-level root nodes

are used (Welter, Bartha and Rieger 2009). In regular networks the pressure is

prescribed at the system boundary to increase linearly from one corner of the

domain to the opposite corner (Bartha and Rieger 2006)

2.3 Tumor cell density

In previous work Bartha and Rieger (2006); Lee, Bartha and Rieger (2006); Wel-

ter, Bartha and Rieger (2009) used a discrete cellular automaton model. There
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individual tumor cells are represented as sites on a lattice and cell proliferation

and tumor expansion are akin to eden growth with the additional constraint

that sufficient oxygen must be available at proliferating sites. See the references

above for a complete description.

Here and in (Welter and Rieger 2010) the model for the tumor is defined

based on a continuum approach for the tumor cell density c(r, t). Under stress-

free conditions without cell proliferation and death the tumor cell density is

c(norm), which we assume to be 1/10 µm3 reflecting a typical lateral size of

tumor cells of 10 µm. The dynamical evolution of the tumor cell density in the

presence of cell proliferation and death is assumed to be given by a reaction-

diffusion equation

∂c/∂t = −∇ · J + c+ + c− , (1)

where J is the tumor cell flux and c+ and c− are source and sink terms describing

cell proliferation and death, respectively.

In the following c+,c− and J are defined: We assume that tumor cells need

sufficient oxygen to proliferate, which means that the local oxygen concentration

o must exceed the threshold o
(prol)
TC , else c+ = 0. Moreover we assume that a

maximum packing density c(max) exists where cells are compressed so that they

cannot proliferate further. We use the simplest expression to reflect that:

c+ = 1/t
(prol)
TC c(1− c

c(max)
) if o ≥ o

(prol)
TC else 0 , (2)

where t
(prol)
TC is the mean proliferation time of unconstrained cells. Furthermore

we assume cells undergo apoptosis with the constant death-rate 1/t
(death)
TC if

the local oxygen level o drops below o
(death)
TC . The model includes this by the

definition of c−:

c− = −1/t
(death)
TC c if o < o

(death)
TC else 0 . (3)

For simplicity interaction with the resulting cellular debris is neglected. In the

following the cell-flux J is defined. We assume that cells migrate only in response

to compression. Therefore a phenomenological “solid pressure” P is introduced.

Its equation of state depends on the cell density c as follows: Below the density
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c(norm) cells are not compressed, thus feel no forces, thus we set P = 0 for

c ≤ c(norm). Else we define P as linear function which is zero for c = c(norm)

and increases to P = 1 for c = c(max). In the style of Darcy’s law, momentum

terms in the equations of motion are neglected so that the cell migration speed

is proportional to the driving force, which means that

J = −Dc∇P , (4)

where D is an additional mobility constant. The cell density cannot exceed

c(max) since there are no external forces and c+ → 0 for c → c(max) even though

P remains finite.

In the general framework of such a model it would be possible to add cell-

cell adhesion. In this case one would consider volume fractions of other species

e.g. normal tissue and necrotic tissue which interact via a free energy potential.

See (Frieboes et al. 2007, and the references therein). The result is an effective

surface tension force. Combined with expansive forces which drive the tumor

rim outward it can cause a fingering instability. In our simpler model where

we have omitted such forces, tumor cells move diffusively opposed to their den-

sity gradient. Since tissue oxygenization is homogeneous on a coarse scale this

results in approximately spherically growing tumors. Biologically our model

corresponds to a situation where tumor cells adhere to each other as much as

to other cells. Also the tumor can expand without significant resistance from

the surrounding tissue. We can justify this because (i) not all tumors exhibit

fingering instabilities, (ii) we consider small tumor of less than 1 cm diameter

and (iii) pH level changes can happen that kill normal cells.

Below we compare our results with experimental data from melanoma. To

accommodate the model to this specific tumor type, which can extend through

multiple skin layers from the surface to muscle tissue, it would be straight

forward to include inhomogeneous and / or anisotropic environments. We would

expect this to trigger a different front shape of the growing tumor. However we

think – as is the case with a “fingering” tumor – that the characteristics of the

blood vessel network in which we are interested would be invariant with respect
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to such additions.

In order to identify necrotic regions, we record the maximum local TC den-

sity over time. If the current TC density is zero and there were TCs in the

past, we consider the location to be necrotic. On the basis of the rest of our

framework, there are no forces that would impose interesting dynamics on the

shape of necrotic regions. Thus we use this crude approximation.

The equations are discretized with a simple explicit finite volume scheme on

a cubic grid with 30 µm grid-cell size. We compute the fluxes through the cell

faces separately. Knowing the fluxes, ∇·J in (1) is discretized using a convective

upwind scheme. To ensure stability, the time step for the integration is 0.1 h,

whereas the updates of the rest of the system (see below) are done in 1 h steps.

2.4 Oxygen concentration field

The time scale for oxygen diffusion to reach a stationary state is of the order of

seconds whereas the times scale for tumor cell proliferation, tip cell migration

and endothelial cell proliferation is of the order of hours. Therefore we use for

the oxygen concentration the quasi-static solution o of the diffusion equation,

which adopts instantaneously any change in the source (vessels) and sink (tumor

cells) configuration:

0 = ∇2o− γoo+ αo(o
(B) − o) , (5)

where γo is a consumption rate coefficient, o(B) the blood oxygen level and

αo a source coefficient. γo is a linear combination of the tissue specific con-

stants γ
(norm)
o , γ

(tum)
o and γ

(necro)
o = 0, for normal tissue, tumor tissue and

necrotic regions, respectively. The definition of the density parameters implies

that necrotic areas inside the tumor do not consume oxygen. The factor αo

determines the amount of extravasated oxygen per concentration difference at

the vessel wall. It is defined as permeability times wall surface area per con-

centration and tissue volume. For simplicity it assumes a constant value for all

blood circulated vessels. o(B) is the oxygen concentration in blood plasma, for

which local variations are also neglected.
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The coefficients γo and αo comprise the diffusion constant and therefore

it does not appear in (5). We estimate γo based on the diffusion range Ro

of oxygen around isolated vessels found in tumors. Therefor we use that a

delta peak as source distribution generates an exponentially decaying radial

profile exp(−x
√
γo). Thus Rg is of the order of 1/

√
γo. The parameter o(B) is

determined such that, given γo, the concentration in between vessels is ca. 50%

of the concentration at the vessel wall.

2.5 Growth factor concentration field

The growth factor concentration g is computed by a Greensfunction-like method.

Underoxygenized tumor cells, which means that locally o < o
(prol)
TC , produce

growth factor with a constant rate. It diffuses through the tissues and degrades

with a constant rate. Therefore each source cell produces an exponentially

decaying distribution. Thus we can write g as

g(x ) =

∫
d3x ′ G(||x ′ − x ||) θ(o(prol)TC − o(x ′)) c(x ′) , (6)

where θ is the Heaviside step function. For simplicity we defineG(x) ∝ max (0, 1−
x/Rg) as a linearly decaying normalized function which vanishes at x = Rg,

where Rg is a “diffusion range” and limits the region where angiogenesis is

induced.

2.6 Vessel network remodeling dynamics

The evolution of the network is subject to three stochastical processes: sprout

initiation, sprout migration and collapse as well as continuous wall degeneration

and vessel dilation (Fig.1). The definition of these processes closely follows the

definition in (Welter, Bartha and Rieger 2009), where 2d networks are consid-

ered. Therefore we only give a brief description here and refer in particular for

the biological motivation of the details to (Welter, Bartha and Rieger 2009).

Sprout initiation: A new vessel segment can be added with probability ∆t/t
(sprout)
EC

at any location on the network if the local growth factor concentration is
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non-zero, the distance to the next branching point is less than l(spr) and

the time spent within the tumor is less than t
(switch)
EC . “Within” the tu-

mor is defined as 〈c〉 > c(norm)/2 averaged over the segment. The sprout

segment occupies an edge on the lattice (length ∆l) and points in the

direction of the largest growth factor increase.

Sprout migration: These new segments are tagged as sprouts which has the

following implications. Segments are appended to the current tip with

probability ∆t/t
(sprout)
EC , extending the original sprout. Sprouts can also

spawn sub-sprouts like normal vessels can. But they are excluded from the

collapse, degeneration and circumferential growth mechanisms. Sprouts

are untagged and become normal vessels if the tip fuses with another vessel

such that blood can flow, or if their respective life-time variable τ , which

every sprout has attached, reaches its predefined maximum t
(migr)
EC . If the

tip fuses with another sprout without creating a conducting branch, the

involved segments remain tagged.

Wall degeneration: The structural support provided by the cell layers sur-

rounding the endothelial cells is represented by the wall stability variable

w. For new vessels and the original vasculature it is initialized with the

wall-thickness of healthy vessels (Welter, Bartha and Rieger 2009). For

vessels inside the tumor its value decreases at the constant rate ∆w until

zero.

Vessel collapse: A segment can be removed with probability ∆t/t
(coll)
EC if its

wall stability variable w is zero and the wall shear stress f is below the

threshold f (coll).

Vessel dilation: The vessel radius r increases at the constant rate kr if r <

r(max), the average growth factor concentration over the segment is non-

zero and if the time spent within the tumor is larger than t
(switch)
EC .

Per time step (∆t = 1 h), a Monte-Carlo sweep is done per stochastical

process and all continuous variables and fields are advanced in time. The pa-
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rameter values that we use throughout the paper are given in table 1 (references

to physiological data are given in (Bartha and Rieger 2006; Welter, Bartha and

Rieger 2008, 2009).

The model is stable with respect to parameters since our observables vary

smoothly with parameter deviations. For brevity we omit a analysis here. In

previous papers Bartha and Rieger (2006); Welter, Bartha and Rieger (2008)

discussed variations for 2d models which are also relevant for the present study.

2.7 Arterio-veneous tree construction

A normal vasculature is hierarchically organized. Arterial and venous trees pro-

vide the supply and drainage system for the capillary bed. Vessels in these

trees divide into increasingly thinner branches like nearly ideal binary trees,

with the exception of occasional anastomosis. Their terminal branches are con-

nected to capillaries, which is where most of the exchange with the surrounding

tissue occurs. Capillaries are accordingly thin, permeable and densely and ho-

mogeneously distributed. The design goal of such a structure is to provide a

sufficient supply of nutrients to all regions of the tissue, while minimizing the

energy necessary to maintain the circulation.

We follow Gödde and Kurz (2001) who presented a method to construct

representations of vascular trees stochastically according to probabilistic rules

that depend on local system properties. The construction of the blood vessel

network is based on the stochastic remodeling of a collection of binary trees.

Each tree represents either an arterial or a venous branch. Analogous to the

definition Sec.2.1, the tree edges coincide with the edges of a lattice, and have

associated hydrodynamic properties.

An initial “guess” for the network is constructed by a random growth pro-

cess which originates from a prescribed set of arterial and venous “root” vessels

or nodes located at the lattice boundaries. Thereby certain elementary struc-

tural elements are successively appended at randomly selected leaf nodes until

the lattice is filled. The particular element and its direction is also selected

randomly. Thereby moves, that would result in overlapping nodes are rejected.
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For the study of 2d systems Welter, Bartha and Rieger (2009) used different

root configurations with long stems positioned randomly within certain ranges.

The structural elements comprised a single edge, and a Y-shape of three edges.

See the above reference for detailed specifications.

For the 3d systems, single root nodes are uniformly distributed over the

system domain faces. Arterial and venous types are selected in alternating

order. Configurations are rejected, where the distance between two nodes or

between a node and a domain edge is less than 10% of the domain lateral size.

The growth pieces are selected from three planar configurations: a single edge, a

⊣ shape consisting of three edges, and a − ⊏ shape consisting of five edges. The

latter two should approximate the more realistic Y shapes in real vasculatures.

After the initial growth successive optimization sweeps follow until a steady

state evolves. Per sweep leafs are removed or extended depending on the wall

shear stress in the parent edge. In order to determine a well defined blood

flow (Sec.2.2), and also for the final output, the individual trees are temporarily

connected by “capillary” edges between leaf nodes of opposing type (arterial or

venous).

While it is highly non-trivial to synthesize vascular networks that are real-

istic in every way possible, our initial networks exhibit reasonable hierarchical

structures, spatial distributions of the capillaries, and agreement with the flow-

data in (Gödde and Kurz 2001) and the experimental references therein.

3 Temporal evolution

Fig.2 shows snapshots of the temporal evolution of the tumor and the vessel

network for a 3d arterio-venous initial vasculature. Independent of the details

of the initial vasculature and system dimensionality the emerging global mor-

phologies share the same features. Initially the tumor oxygen consumption leads

to decreased oxygen levels within the nucleus and consequently enables vascular

remodeling via growth factor production of the TCs. The sprouting process first

creates a dense capillary plexus which provides more oxygen and facilitates tu-
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mor growth. Vessel collapses begin after a few days (Fig.2b). Small capillaries

collapse immediately under bad perfusion while thicker vessels survive longer

due to their stability (large w), independent on blood flow until they become

unstable. The network is thus progressively remodeled, predominantly within

a thin band around the tumor boundary. The sparse network left in the center

remains static except for few collapses of isolated threads.

The resulting network morphologies shown in Fig.3 display the typical high-

MVD periphery and low-density center. For the arterio-venous initial vascula-

tures, the remaining tumor vessels can form well perfused short-cuts between

arteries and veins penetrating the tumor boundary. This is a consequence of

the dilation that all vessels undergo in the tumor. The short-cuts consist of

neovasculature as well as parts of the initial vasculature. For regular initial

networks the surviving vessels are predominantly oriented along the global flow

direction. This direction is imposed by the flow boundary conditions, dictating

a homogeneous flow along the diagonal. Vessels perpendicular to this direction

have lower flow rates and shear forces and are thus prone to collapse. Depend-

ing on parameters and the initial network configuration, arterio-venous systems

can also exhibit such imposed flow directions between high-level arteries and

veins. However this is much less apparent due to the hierarchical organization

of the network. Starting with different initial arterio-venous networks yields

different final configurations (Welter, Bartha and Rieger 2009) but their global

characteristics, as quantified by the radial distribution functions analyzed in the

following do not vary significantly.

The tumor masses grow approximately spherically. After a short initial phase

their radius increases linearly since proliferation is predominantly restricted to

the boundary where sufficient space and oxygen is available. The cell density

profiles c exhibit steep slopes at at the invasive edges, dropping from c(norm)

to zero. In the tumor interior c fluctuates between zero and c(max) depending

on oxygenization. For the cellular-automaton based models (Bartha and Rieger

2006; Lee, Bartha and Rieger 2006; Welter, Bartha and Rieger 2009) the tumor

cell density is constant and proliferation is limited to the outer rim by definition
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and therefore these models also predict a constant expansion rate. Until ca. 300

h simulation time, the vessel network is still relatively dens so that all tumor

cells are supplied with sufficient oxygen to remain viable (o > o
(death)
TC ), but

may not be able to proliferate (o < o
(prol)
TC ). Further growth and an increasing

number of vessel collapses lead to regions where the inter-vascular distance is

greater than twice the oxygen diffusion radius. These regions become necrotic

due to under-oxygenization and death of tumor cells.

In order to capture morphological and hydrodynamic characteristics quanti-

tatively, we determined the average value of respective quantities in dependence

on the radial distance r from the tumor center at different times. An example of

these radial distributions is shown in Fig.4 for 3d arterio-venous systems. The

data is averaged over 40 simulation runs with different initial networks and over

concentric spherical shells centered around the tumor center.

The quantities of interest comprise the following: tumor density (in all pan-

els), microvascular radius (MVR, panel a) microvascular density (MVD, panel

b), blood flow rate through the vessels (q, panel c), vessel wall shear force (f ,

panel d), growth factor concentration (GF, panel f) and oxygen concentration

(O2, panel c) The microvascular density is defined as volume fraction occupied

by the vessels. The quantities associated with vessel segments (MVR, f , q) are

averaged over the number of vessel-occupied lattice sites within the respective

shells.

The peak in the radial tumor density indicates the boundary of the tumor

(stochastic fluctuations within the shells as well from sample to sample cause the

finite width of this step). Since the individual curves are for equidistant times

it is clear from the linear shift of the peak density that the tumor radius grows

linearly in time. Behind the peak, at smaller distances r from the center, the

tumor density drops monotonously, reflecting the emergence of necrotic zones

in the tumor center.

The MVD in panel (b) of Fig.4 has a peak in the peritumoral region, i.e.

outside of the tumor at a distance slightly larger than the peak of the tumor

density. It is 1.5 to 2-fold higher than the normal MVD (plateau value at large
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distances). Within the tumor (at small distances) the MVD drops monotonously

to zero (at long enough times), again reflecting the emergence of the the necrotic

core.

Correlated with the peak in the MVD is a small peak in the oxygen concen-

tration (panel f of Fig.4), and a dip in the average vessel radius (panel a), the

average flow rate (panel c), and the average shear force (panel d): The peak in

the MVD in the peritumoral region reflects the presence of many new capillar-

ies, which increase the oxygen supply but simultaneously decrease the average

vessel radius since capillaries have minimum radius. Furthermore, since the av-

erage blood flow that is supplied by the arterio-venous network is approximately

constant, this flow has to be distributed over 50-100% more microvessels in the

tumor perimeter, which induces a reduction in average flow rate and shear force.

Within the tumor (i.e. for distances smaller than the location of the peak

of the MVD) the vessel radius increases monotonously with decreasing distance

from the tumor center (panel a of Fig.4), which is the effect of the switch from

angiogenic sprouting to circumferential growth within the tumor. The axial

blood-pressure gradient within the vessels dp/dl (not shown here) decreases

monotonically with decreasing distance from the tumor center by more than

one order of magnitude. Although the pressure gradient decreases, the average

blood flow rate (q, panel c) within the vessels increases towards the tumor center

since it is proportional to the 4th power of the vessel radius R, q ∝ R4dp/dl.

The average shear force f is proportional to the 1st power of R, f ∝ Rdp/dl,

therefore it decreases with decreasing distance from the center.

The average oxygen concentration (panel f) decreases rapidly towards the

tumor center and drops below the GF production threshold o
(prol)
TC = 0.1 (rela-

tive to normal oxygen) at approximately the same distance rlow oxy, where the

the growth factor concentration (GF, panel f) displays a peak. This peak is

therefore not at the same position as the peak of the tumor density. For dis-

tances smaller than the “underoxygenization radius” r < rlow oxy all tumor cells

produce GF and the shape of the GF concentration versus distance r is identical

with the tumor density.
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MVD and vessel-radius show the typical compartmentalization that has been

observed in melanoma (Döme et al. 2002, 2007) and glioma (Vajkoczy and

Menger 2000): For instance Döme et al. (2002) measured the MVD and vessel

radius in three distinct regions of human and mouse melanoma: the central

region, a 100 µm wide peripheral band just behind the invasive edge, a 200

µm wide peritumoral region outside the invasive edge. In the central region,

they found a MVD that was reduced to 25% of the MVD of normal tissue, and

increaesd up to 200% in the peritumoral region. They found that the vessel

perimeter grew linearly from 50 µm to a plateau at 200 µm by day 15.

Analogous examinations were realized for 2d / 3d systems with regular initial

networks (Bartha and Rieger 2006; Lee, Bartha and Rieger 2006) and 2d systems

with arterio-venous network (Welter, Bartha and Rieger 2009), with qualitative

and quantitative good agreement. The precise numbers might be different due to

different parameters, minor model variations and initial networks. However the

global characteristics such as the compartmentalization into regions of different

MVD are also apparent.

4 Fractal dimension and spatial inhomogeneities

The topological and geometrical properties of tumor networks are vastly differ-

ent from normal blood-vessel networks (Baish and Jain 2000). Tumor vessels

are tortuous, lack a clear hierarchical organization and are spatially unhomoge-

neously distributed.

One can characterize and distinguish vessel networks by their are fractal

properties. The concept of a fractal dimension is often used for this purpose

(Gazit et al. 1995; Baish and Jain 2000). One commonly used method to esti-

mate fractal dimension is box-counting, which is carried out by superimposing

boxes of size ǫ arranged as a regular grid on the fractal object and counting

the number of boxes Nǫ which overlap the object. The self similar nature of

true fractal object leads to the power law Nǫ ∝ ǫ−Df , where Nǫ is the number

of overlapping boxes. Df is usually extracted by a linear fit in a log-log plot.
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However due to the limited size and resolution of the data representation, de-

termination of Nǫ is limited to ca. two orders of magnitude of ǫ. Furthermore

natural objects (or rather photographs thereof) are usually not perfectly fractal,

giving rise to deviations from the ideal power law. Therefore even a small regime

of a “good fit” is often considered sufficient to speak of a fractal dimension (or

more truthfully named box-counting dimension); see the discussion in (Chung

and Chung 2001).

The average dimension obtained from tumor networks based on 3d arterio-

venous initial networks is Dav3d
f = 2.50 ± 0.02. Tumor networks of 3d regular

systems were analyzed by Lee, Bartha and Rieger (2006), who reported Dr3d
f =

2.52 ± 0.05. For 2d arterio-venous systems we obtain Dav2d
f = 1.79 ± 0.03 and

lastly Bartha and Rieger (2006) reportedDr2d
f = 1.85±0.05. For brevity we refer

to the references above and (Welter and Rieger 2010) for plots and additional

data.

Bartha and Rieger (2006); Lee, Bartha and Rieger (2006) hypothesized that

the fractal properties of the emerging tumor vasculature are independent of the

initial (3d) blood vessel network. Our present finding that Dav3d
f of the tumor

vasculature for a 3d arterio-venous initial network is close to Dr3d
f for 3d regu-

lar initial networks supports this hypothesis. For two dimensional systems the

agreement between Dav2d
f and Dr2d

f is worse but within the margin of errors.

Moreover Dav3d
f and Dr3d

f agree well with the exactly known value for the con-

ventional critical percolation cluster in 3d Dperc3d
f = 2.52 (Stauffer and Aharony

1992). Analogously Dr2d
f is very close to the dimension of the percolation cluster

in 2d Dperc2d
f = 1.891.

For sufficiently large systems such as the tumor networks based on 2d arterio-

venous networks Welter, Bartha and Rieger (2009) could show that the fractal

dimension of the tumor occupied region agrees well with the dimension of the

tumor vessel network. The reason for this is that tumor cells survive everywhere

in close proximity to vessels, which means that on a scale much larger than the

diffusion radius of oxygen the shape of tumor is indistinguishable from the shape

of the vessel network.
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The basic mechanism responsible for the fractal properties of the tumor

vasculature is the stochastic removal of vessels via vessel collapse and regression

(Lee, Bartha and Rieger 2006; Welter, Bartha and Rieger 2008), see also (Paul

2009). In conventional percolation a critical cluster only emerges for an exactly

tuned bond concentration. In our model the network is dynamically driven

into this critical state without such a fine tuning since the removal of vessels is

correlated with the blood flow: the collapse of weakly perfused vessels stabilizes

the remaining ones due to an increase in blood flow. We propose that this

mechanism, and not an underlying invasion percolation process (Baish and Jain

2000; Gazit et al. 1995; Baish and Jain 1998), is also at work in real tumors.

Moreover, spatial inhomogeneities were characterized by probability distri-

bution functions (Fig.5) for (a) local MVD, (b) necrotic region size, and (c) size

of regions with high MVD, where “high MVD” is defined as a local MVD which

exceeds a fixed threshold value (ca. the MVD in normal tissue). The local MVD

was determined as fraction of occupied sites within cells of a superimposed grid.

For the central region of tumor networks emerging in 2d arterio-venous systems

(Welter, Bartha and Rieger 2009), excluding the strongly vascularized periph-

ery, the resulting distributions for (a),(b), and (c) show an algebraic decay with

ca. the same exponent −1.4. The distribution for (a) also show a peak near

zero, which is however trivial to due the existence of large necrotic regions. For

3d arterio-venous systems we obtain similar distributions which can also be fit

by power laws but with significantly different exponents −0.5 (a), −1.9 (b) and

−1.2 (c). These power laws are reminiscent of a self-organized critical state

(Jensen 1998), for which the absence of a typical length scale (over which for

instance size distributions would decay exponentially) is characteristic, like in

a stochastic dilution process at the percolation threshold or a flow-correlated

percolation process (Bartha and Rieger 2006).

In the following paragraphs we analyze the occurrence of so called “Hot

spots”. These hot spots are regions of increased blood flow within the tumor.

In clinical imaging of blood flow they can be observed using tomography tech-

niques. See e.g. (Pahernik et al. 2001). Since blood flow is directly linked to the
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existence of blood vessels, it is also important to analyze spatial inhomogeneities

of the tumor networks in order to understand “Hot spots”. Furthermore the

quantity q, defined in Sec.2.2 as blood flow rate of a vessel segment, is not di-

rectly experimentally accessible since it represents the total volume per time

transported through a finite sized pipe which might contribute to several voxels

in imaging data. The more relevant quantity is therefore the blood flow velocity

(magnitude), which can be interpreted as spatially varying field.

For regular initial networks Bartha and Rieger (2006); Lee, Bartha and

Rieger (2006) obtained tumor networks which consisted predominantly of iso-

lated strings within the tumor center. It is possible to interpret even one of

these strings as “Hot-spot” if there are no other blood perfused vessels in the

close vicinity. Depending on parameters the blood flow velocity in these strings

may be higher or lower than in the surrounding normal network. This is a con-

sequence of the vessel dilation effect. Although it is the blood pressure which

is prescribed via boundary conditions, instead of the blood flow rate, it can be

assumed that the flow rate into the tumor is limited by the relatively high flow

resistance of the capillary-like surrounding network. Therefore if the increase in

blood capacity is not counterbalanced by sufficient vessel collapses (determined

by the critical shear-stress parameter f (coll)), the flow velocity in tumor vessel

can be lower than in the original vasculature.

(Welter, Bartha and Rieger 2008) reported the possible emergence of mor-

phological artifacts in systems with regular, hexagonal, initial networks. Therein

surviving vessels converge to a singular point in the center of the tumor. On each

side of the central point, perpendicular to the flow direction, a massive region

void of vessels emerged. However, it should be stressed that the predicted global

properties nonetheless agree with the results from other systems as presented in

Sec.3. Moreover, these artifacts cannot occur in systems based on hierarchical

arterio-venous networks due to the fundamentally different blood-flow boundary

conditions and network organization.

Welter, Bartha and Rieger (2009) quantified and analyzed the spatial dis-

tribution of blood flow for 2d initial networks and Welter and Rieger (2010)
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for 3d networks. In good agreement one could observe that some vessels form

short-cuts between high-level arteries and veins penetrating the tumor rim. The

dilation effect decreases the flow resistance of the thinnest vessels which would

otherwise dominate the resistance of a potential short-cut. Which therefore

leads to flow rates and velocities which are orders of magnitudes higher than in

a normal capillary beds. The model thus supports the hypothesis raised in (Pa-

hernik et al. 2001) that hot spots are due to highly conductive arterio-venous

shortcuts. See the references above for plots of flow rate distributions. Also

see Fig.7 and corresponding figures in the references for an impression of the

transport or flow velocities.

Moreover, the model for 2d arterio-venous systems predicts the formation

of dense clusters of surviving vessels in the tumor center, accompanying the

predominant isolated strings. It could be shown that these clusters are more

likely to form in regions with high hydrodynamic pressure differences between

neighboring vessels. A spatially varying field p(r) of these pressure differences

can be constructed by determining the solution of the Laplace equation for p(r)

defined on the space between the vessels with the boundary condition that p(r)

is identical to the blood pressure inside the vessel at location r. Thus, the

field p(r) interpolates the pressure between vessels (Fig.6). Correlations be-

tween the gradient magnitude |∇p| of this map for the original vasculatures and

the microvascular density in the emerging tumors were determined in two ways

(Welter, Bartha and Rieger 2009): (1) Globally, where |∇p| and the MVD were

averaged over the region occupied by the final tumor for 40 different simula-

tion runs. The resulting correlation coefficient is ca. 0.9. (2) Locally, where

data points were generated by averaging over several sub-domains of 150 µm

radius. Their correlation coefficient varies between 0.2 and 0.4, depending on

parameters. Since single collapse events lead to long-ranged collapses of adjacent

network sections, we think that therefore local measurements show significantly

weaker correlations.

In contrast, dense vessel clusters observed in 2d are not apparent in the tumor

vasculature emerging within the 3d arterio-venous networks. Concomitantly the
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the pressure (gradient) fields for the 3d initial networks considered here are more

homogeneous, except on a very short scale in between neighboring vessels. This

is exemplified by Fig.6a in comparison to Fig.6b and c. We think that this is

the consequence of the much larger configuration space for 3d initial networks

compared to 2d. Vessels can wind around each other, arteries and veins can

“cross” each other, which they cannot in 2d, etc. Therefore, using a stochastic

algorithm, it seems to be very unlikely to construct a configuration which has

the same particular properties as most 2d networks have.

5 Drug transport

Normal arterio-venous vessel networks are designed to transport a plenitude

of substances efficiently to all regions within a tissue. The drastic differences

between the architecture of tumor networks to normal networks, i.e. sparsity,

tortuosity, lack of a clear hierarchy, etc., raises the question whether the mor-

phological characteristics of tumor networks pose a problem to successful drug

delivery. McDougall et al. (2002) first treated this question with the help of

a simulation model, where a time-dependent concentration profile c over the

vasculature is propagated according to the local blood flow-velocities.

The basis of this model is a network according to the definition in Sec.2.1 and

2.2. In addition, a mass parameter m is associated with each vessel describing

the amount of drug within its blood volume. This mass m is deterministically

updated in successive time steps: First the amount flowing out of vessels is

determined and added to auxiliary mass variables associated with the network

nodes. Under the assumption of perfect mixing, these nodal masses are then

redistributed into further downstream vessel. A detailed description can be

found in (Welter, Bartha and Rieger 2008; McDougall et al. 2002). For simplicity

the exchange of drug with extra-vascular space has been neglected up till now.

The results presented by McDougall et al. (2002) and in subsequent papers

(McDougall, Anderson and Chaplain 2006, and the references therein) are de-

rived from a vascularization model of pure in-growth and are discussed in the
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context of our results further below.

The transport model was adopted by Welter, Bartha and Rieger (2008,

2009); Welter and Rieger (2010) to check whether there are obstacles to success-

ful drug delivery inherent to tumor network which are embedded in a surround-

ing normal vasculature. The studied systems comprised regular 2d, arterio-

venous 2d and arterio-venous 3d initial networks, respectively.

The simulation starts with a “clean” network without drug. Drug is inserted

with a constant dimensionless volume-concentration of value 1 simultaneously

through the inlet nodes of the network. In the regular networks, these nodes

comprise the boundary nodes of the network pattern where the (negative) pres-

sure gradient imposed by the flow-boundary conditions (see Sec.2.2) points into

the system domain. The resulting drug “front” advances relatively even through

the entire network. Within the order of 60 s the front traversed to the out-flow

nodes at the opposite corner of the domain, where the domain size is 12 mm and

the diameter of the tumor is ca 6 mm. For continuous infusions the network is

saturated with the maximum drug concentration after expiration of this time.

The results obtained for arterio-venous initial networks are similar thereto.

When drug is inserted through all arterial inlets, it is distributed very rapidly

over the whole network. Within the order of several seconds the network is

saturated with the maximum drug concentration. To illustrate that, Fig.7 shows

a sequence of snapshots over 4 seconds. At the tumor border, where the MVD is

high and the networks contains many loops, there may be tiny regions (ca. 100

µm diameter) that take an order of magnitude longer to fill. Transport through

the dilated tumor-internal vessels is as fast as through high-level vessels of the

normal vasculature. The outer regions of the system where the network remains

normal can also transport drug towards the tumor periphery. Therefore the

tumor vasculature as a whole is well perfused. Qualitatively and quantitatively

the results for 3d systems (Welter and Rieger 2010) and 2d systems (Welter,

Bartha and Rieger 2009) are in good agreement. A notable exception seems to

be the robustness of the initial networks with respect to the disruption by the

tumor network. With this we mean that in 2d there are larger regions than in
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3d (≫ 100 µm diameter, extending into sections of the original network) with

significantly decreased flow velocities. We presume this might be because the

initial 2d configurations have fewer pathways to major feeding vessels. Therefore

blood flow is more likely to traverse the comparably badly conducting tumor

boundary, resulting in low flow rates.

Qualitatively it was for instance determined how long tumor vessels are

exposed to a drug concentration larger than a predefined minimum drug level

cthres. Welter and Rieger (2010) report that during a 30 s simulation time over

90% of the vessel network was exposed to at least c = 0.5 for at least 25 s,

and 99% for at least 15 s. Also by comparing exposure times for different cthres

they could conclude that drug advances through the network with a sharp front,

exposing vessels “on contact” instantly to high drug concentrations.

Our conclusion is therefore that experimentally observed deficiencies in drug

delivery must have other reasons, and these most probably lie within the char-

acteristics of extravasation of drug and interstitial fluid transport within the

tumor, which were not included into the present versions of the model.

6 Conclusion

We have demonstrated that realistic morphological properties of vacular remod-

elling in spherically growing solid tumors are correctly predicted by a methe-

matical model involving a physiologically relevant initial vasculature and the

dynamical processes of angiogentic sprouting in the tumor periphery, circum-

ferential vessel growth and blood flow correlated vessel regression within the

tumor. The emerging tumor vasculature is non-hierarchical and compartmen-

talized into a highly vascularised tumour perimeter, a tumour periphery with

large vessels density and dilated vessels and a central region containing necrotic

regions with a low microvascular density threaded by extremely dilated vessels.

The incorporation of an arterio-venous initial vascualture is important since

it provides a mechanism for short-cuts or “shunts” and concomitantly an in-

creased blood flow through the tumour vasculature (Welter, Bartha and Rieger
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2009; Welter and Rieger 2010) as observed in experiments (Sahani et al. 2005):

Thick arterioles and venules provide a well conducting support structure around

the tumour. Since the total pressure difference between the tree roots is fixed,

the transported blood volume is given by the total flow resistance of entire

vascular tree. Dilation of a few vessels forming a path between the tree roots

can remove bottlenecks formed by thinner vessels. The creation of new vessels

thereby promotes arterio-venous short-cuts, or shunts, through multiple partly

disjoint paths. After vessel dilation this leads to a decreased total flow resis-

tance, which implies an increased blood flow through the tumour vasculature

when compared with the initial vasculature. This is in contrast to grid-like

initial networks, where the total flow resistance is dominated by the network

outside the tumour (Bartha and Rieger 2006; Lee, Bartha and Rieger 2006; Wel-

ter, Bartha and Rieger 2008) and the flow cannot not increase via the dilation of

tumour internal vessels. Moreover, depending on the details of their construc-

tion arterio-venous networks display characteristic spatial inhomogeneities that

can, via locally increased pressure gradients (Welter, Bartha and Rieger 2009)

or simply the presence of major arteries (Welter and Rieger 2010), lead to the

formation of hot spots (i.e. regions of increased blood flow) inside the growing

tumor.

Vessel dilation via circumferential growth within the tumor is a major phys-

ical determinant of the emerging network morphology and blood flow organiza-

tion: Since blood flow through cylindrical vessels increases with the 4th power

of its radius a single or a few dilated vessels can carry most of the blood entering

a particular region of the tumor thereby destabilizing large parts of the capillary

network.

The correlation of vessel regression with the shear force exerted by the blood

flow upon the vessel walls is critical for the global geometry of the emerging

tumor vasculature as well as for the blood borne drug transport: the basic

mechanism responsible for the fractal properties of the tumor vasculature in

our model is the stochastic removal of vessels via vessel collapse and regression.

In conventional percolation Stauffer and Aharony (1992) a critical cluster only
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emerges for an exactly tuned bond concentration. In our model the network

is dynamically driven into this critical state without such a fine tuning since

the removal of vessels is correlated with the blood flow: the collapse of weakly

perfused vessels stabilizes the remaining ones due to an increase in blood flow. In

addition the remaining vessels are all well perfused and as a consequence blood

borne drug transport through the tumor vasculature is efficient, in contrast

to vessel-in-growth models (McDougall et al. 2002; McDougall, Anderson and

Chaplain 2006).

This does however not automatically imply that drug reaches all tumor cells

since neither drug transport through the tumor tissue nor drug uptake have

been addressed (Minchinton and Tannock 2006). The low differences between

interstitial fluid pressure (IFP) and microvascular pressure (MVP) due to vessel

leakiness (Hassid et al. 2006), causing low convection rates, as well as the low

diffusibility of drug molecules through vessel walls, causing lower diffusion ranges

for drug than for oxygen, appear to be the key physical determinants preventing

successful drug delivery in tumors. Work that incorporates these mechanism in

the type of models presented here is in progress.
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Figure 1: Illustration of the vessel network remodeling processes. The contents

of the boxes display exemplified states of the vessel network. The vessel segments

are shown as blue boxes if perfused with blood, else they are in a gray shade.

The dark-blue borders represent vessel walls of varying thickness and detached

cells (in c). The presence of a tumor is hinted at by a yellow mass. The state

transitions go from left to right as indicated by the arrows, whereby the rate

parameter is denoted below- and essential preconditions above the arrows. In (a)

a new sprout is generated by potentially splitting an existing segment, adding

a node and adding the new sprout segment. In (b) the sprout is extended by

adding further segments to its tip. (c) Vessel walls degenerate within the tumor

due to detachment of support cells. This is modeled by a decreasing maturation

parameter and depicted here as decreasing wall strength and surrounding debris.

(d) Vessel regression is modeled by removal of segments with critically low shear-

force (indicated by the red segment). This can disrupt blood flow over large

sections, leaving many non-circulated vessels, which will also regress within a

very short time scale. (e) Within the tumor vessels dilate. (See text for details.)

Figure 2: Visualization of 3d vessel network and tumor configurations obtained

at times 100 h (a), 200 h (b), 400 h (c), and 500 h (d), based on an arterio-venous

initial network. A cut through the cubic simulation volume is shown. The scale

bar represents approximately 1 mm. The vessels are depicted as cylinders which

are color coded by their blood flow rate q. On a logarithmic scale, it reaches

from 1 (green) over 106 (blue) to 109 (red) in units of µm3/s. Non-circulated

vessels are shown in gray shades. The spheroid in the center shows the iso-

surface where the tumor cell density equals 50% of the normal packing density

c(norm). Its cutting planes are slightly offset from those of the vessel network in

order to make slices of the tumor vasculature visible. Necrotic regions appear

in (c) and (d) as shadowy holes in the viable tumor mass.
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Figure 3: Displays final configurations for (a) a 2d system with a regular initial

network, at t = 1000 h. The lateral size of the simulation domain is 5.1 mm.

(b) a 2d system with an arterio-venous network based on a hexagonal lattice at

t = 1200 h. The domain is 12 mm wide and ca 10 mm high. (c) a 3d system

with a regular network at t = 400 h. The domain size is 4 mm. The tumor is

not displayed here. See (Lee, Bartha and Rieger 2006) for a complete display.

(d) the 3d arterio-venous system emergent at t = 600 h from the earlier stages

shown in Fig.2. The length of the scale bar represents approximately 1 mm.

The tumor is depicted as yellow mass except in (c). In (a) the age of individual

tumor cells is indicated by their brightness (darker means older). Vessels are

depicted as line segments or cylinders with the corresponding width or radius.

Their color indicates the their flow rate q. The color scale in (b) and (d) is

identical and stated in Fig.2. The flow rate in (a) is shown on a linear scale

ranging from 0 (green) over the value of the flow rate in the undisturbed initial

network (which is equal for all initial vessels) (blue) to the maximum flow rate

(red). See (Bartha and Rieger 2006) for details. The color scale in (c) ranges

from q = 0 (dark-cyan) to ∞ (red). See (Lee, Bartha and Rieger 2006) for

details.

Figure 4: Shows radial distributions obtained from 3d systems with arterio-

venous initial vessel networks (Welter and Rieger 2010). Similar data for other

systems can be found in (Bartha and Rieger 2006; Lee, Bartha and Rieger

2006; Welter, Bartha and Rieger 2009). The shown quantities are (a) vessel

radius (MVR), (b) microvascular density (MVD), (c) blood flow rate through

the vessels, (d) vessel wall shear force, (e) growth factor concentration and (f)

oxygen concentration as a function of the radial distance from the tumor center

for different times (legend see top left panel). The broken lines indicate the

radial tumor density at the times corresponding to the other quantities shown.

All curves are averaged over 40 runs and concentric shells of 100 µm width.
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Figure 5: Shows probability distributions for morphological quantities of 2d

systems with arterio-venous initial networks. In (a) the local MVD, given as

the local average over 250 µm wide boxes, (b) the volume of necrotic tissue

clusters, defined as the number of sites in connected components of dead tissue.

(c) the volume of vessel hot-spot areas, defined as the connected components

of regions where the local MVD exceeds a prescribed threshold (ca. the MVD

in the initial vasculature). The curves are generated from data collected from

results of 40 simulation runs at t = 1200. We note that the distributions show

algebraic decay. In this instance in particular with the same exponent with an

error of 2%.

Figure 6: Shows a comparison of the local gradient magnitude |∇p| of the con-

tinuous field p(r) which interpolates the blood pressure between neighboring

vessels of an initial network configuration (see text). |∇p| is relevant for the

survival of neovasculature because the shear stress within a new connection

generated between two original vessels is approximately determined by |∇p|.
Therefore the fluctuations in p and |∇p| can have an impact on the emergence

of inhomogeneities in the tumor vasculature. The gray level of the images cor-

respond to the range between the minimum (white) and maximum (black) |∇p|
values. (a) Shows the result for a 2d arterio-venous obtained by Welter, Bartha

and Rieger (2009), (b) shows a slice through the center of a 3d arterio-venous

system and (c) also shows a 3d arterio-venous system but with deterministically

laid out parent vessels, mimicking the 2d configurations like shown in (a) more

closely.
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Figure 7: Visualizes the drug concentration c obtained from a flow simulation

at times t = 0.5 s, 1 s, 2 s and 4 s. The left column shows 0.6 mm thick slices

through the system center. The right column shows perspective views of cuts

through the simulation domain. The scale bar represents approximately 1 mm

and the size of the simulation domain is 6 mm. The color code ranges from 0

(gray) to the injected concentration c = 1 (red). The transport is very effective

since already at t = 4 s the vasculature is mostly saturated.
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Table 1: List of parameter values used for all simulations

Parameter Value Description

N 600 Lattice size
∆l 10 µm Lattice const.
∆lV 60 µm Lattice const. (tree constr.)
D 300 µm2 / s TC mobility
c(norm) 1 / (10 µm)3 Normal cell density
c(max) 2 / (10 µm)3 Maximum cell density
o(B) 1 Blood oxygen level
αo 0.004 /µm2 O2 source coefficient

γ
(norm)
o 1/(100 µm)2 O2 consumption.

coeff. by normal cells

γ
(tum)
o 2/(100 µm)2 O2 consumption.

coeff. by tumor cells
Rg 200 µm Growth factor diffusion range

t
(switch)
EC 24 h Sprouting/Dilation switch delay

t
(sprout)
EC 5 h / 10 µm Sprout extension time

t
(migr)
EC 100 h Sprout activity duration
l(spr) 20 µm Sprout sites minimum separation
r(sprout) 4 µm Initial sprout vessel radius
kr 0.4 µm/h Vessel dilation rate
r(max) 25 µm Maximum dilation radius

t
(prol)
TC 10 h TC proliferation time

t
(uo)
TC 100 h Hypoxic TC survival time
f (coll) 2 Pa Critical wall shear-stress

t
(coll)
EC 20 h Unstable vessel survival time
∆w 0.05 µm/h Dematuration (w) rate

o
(death)
TC 0.01 TC death O2 threshold

o
(prol)
TC 0.1 TC hypoxia O2 threshold
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