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The mean first passage time (MFPT) of random walks is a key quantity characterizing dynamic
processes on disordered media. In a random fractal embedded in the Euclidean space, the MFPT is known
to obey the power law scaling with the distance between a source and a target site with a universal exponent.
We find that the scaling law for the MFPT is not determined solely by the distance between a source and a
target but also by their locations. The role of a site in the first passage processes is quantified by the random
walk centrality. It turns out that the site of highest random walk centrality, dubbed as a hub, intervenes in
first passage processes. We show that the MFPT from a departure site to a target site is determined by a
competition between direct paths and indirect paths detouring via the hub. Consequently, the MFPT
displays a crossover scaling between a short distance regime, where direct paths are dominant, and a long
distance regime, where indirect paths are dominant. The two regimes are characterized by power laws with
different scaling exponents. The crossover scaling behavior is confirmed by extensive numerical
calculations of the MFPTs on the critical percolation cluster in two dimensional square lattices.
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Introduction.—Random walks are fundamental for sto-
chastic processes, such as transport, search, and spreading.
While random walks on regular lattices have long been
studied [1], there has been an ever-increasing interest in the
topic incorporating structural disorder of the underlying
substrate [2], geometric confinement [3], stochastic reset-
ting [4], non-Markovian dynamics [5], and many more.
An important quantity characterizing random walks

(RWs) is the first passage time (FPT) distribution and
the mean first passage time (MFPT) [1,6]. Scaling proper-
ties of the FPT and MFPT reflect the interplay between the
RW dynamics and geometric properties of the underlying
substrate. For example, on infinite lattices, the FPT dis-
tribution follows a power law with a universal exponent
[1,6]. Generally, in finite scale-invariant media, the MFPT
TðrÞ between two sites at a distance r is known to obey the
scaling law [7–9]

TðrÞ ∼

8>><
>>:

Nrdw−df ; for dw > df
N ln r; for dw ¼ df

N; for dw < df

; ð1Þ

where N is the total number of sites, df is the fractal
dimension of the medium, and dw is its walk dimension. It
is remarkable that the scaling law is governed by only one

universal exponent, θ ¼ dw − df. On the other hand, on a
highly heterogeneous graph, the MFPT displays a more
complex scaling behavior [10–13]. In a scale-free network
characterized by a power-law distribution of local con-
nectivity of each site, the FPT and the MFPT averaged over
source sites display a target site dependent scaling behavior
[13]. Generally, in heterogeneous media, the MFPT from
site i to j could be very different from the MFPT from j to i:
for undirected graphs, one can assign a potential-like
quantity, called the RW centrality (RWC), to each site
[14]. Since the MFPT between two sites in either direction
differs by the difference in their inverse RWCs (see below),
a wide distribution of the RWCs could lead to a source-
target specific, or heterogeneous, scaling of the MFPT,
which is what we will address in this Letter.
To this purpose, we reconsider the scaling law in Eq. (1)

for two-dimensional (2D) critical bond percolation clusters.
We will show that despite a homogeneous local connec-
tivity distribution, the MFPT displays a heterogeneous
scaling behavior characterized by a site-dependent scaling
exponent and an intriguing crossover scaling, for which the
site with the highest RWC responsible. RWs on critical
percolation clusters have long been studied [2,15–18], but a
site-dependent or heterogeneous scaling has not been
reported yet. Our Letter also sheds light on the role of
the RWC for RWs in disordered media.
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Random walk centrality.—We consider an undirected
graph consisting of N sites, whose connectivity is repre-
sented with a symmetric adjacency matrix A ¼ AT , whose
matrix elements Aij are 0 or 1 indicating the absence or
presence of an edge between sites i and j [19], respectively.
The number of edges attached to a site i is its degree and is
given by ki ¼

P
j Aij. A discrete time RW on the graph is

defined by the transition matrix W ¼ K−1A, where K is a
diagonalmatrixwithKij ¼ δijki. That is, a randomwalker at
site i jumps to site j with the probability Wij ¼ Aij=ki in a
unit time step Δt ¼ 1. The transition matrix has the left row
eigenvector hπj ¼ ðπ1;…; πi;…; πNÞwith πi ¼ ki=ð

P
j kjÞ

and the right column eigenvector j1i ¼ ð1; 1;…; 1ÞT, both
with eigenvalue λ ¼ 1. The left eigenvector corresponds to
the steady state probability distribution [14].
A general theoretical framework for studying discrete

time random walks has been formulated some time ago
[1,14,20]. There the MFPT from site i to j is given by [14]

Tij ¼
Rjj − Rij þ δij

πj
; ð2Þ

where the matrix R is called the group generalized inverse
of ðI −WÞ [21,22] and given by R≡P∞

t¼0ðWt − j1ihπjÞ
[23]. Condamin et al. [7] noticed that Rij is dominated by
the term

P∞
t¼0Wðj; tjiÞ, where Wðj; tjiÞ≡ ðWtÞij is the

probability to find the walker at site j in t steps when it
started at site i. Assuming the scaling form Wðj; tjiÞ ¼
t−df=dwΠðrij=t1=dwÞ with rij being the Euclidean distance
between i and j [2], they derived the scaling law in
Eq. (1) [7].
The formal expression in Eq. (2) has a deeper implication

when the transition probabilities satisfy the detailed balance
condition, πiWij ¼ πjWji for all i and j, which holds for
RWs on undirected graphs. Then, one can assign an RWC
Ci ≡ πi=Rii to each site i, relating the MFPTs Tij and Tji

by [14]

Tij − Tji ¼ C−1
j − C−1

i : ð3Þ

The RWC is an indicator of the attractiveness of a site in the
random walk process: a first passage to a higher RWC site
from a lower RWC site takes less time than the first passage
in the opposite direction. The RWC has also been used to
identify influential nodes in complex networks [24–28]. The
inverse of the RWC αi ≡ 1=Ci ¼ Rii=πi is equal to the
average MFPT to site i from a random departure site j
sampled with the steady state probability distribution, αi ¼P

j≠i πjTji. It is also called the global mean first passage
time [10,29], or the accessibility index [30]. Similarly,
Kemeny’s constant is defined as Ki¼

P
j≠iTijπj¼

P
jRjj,

which is independent of i and a characteristic of an under-
lying graph [20,30,31].

MFPT from hub and marginal site.—In a disordered
medium site-to-site fluctuations of the RWC may affect the
scaling of the MFPT with the distance. We address this
issue for the RW on the critical bond percolation cluster of
2D square lattices [2,3,15–17], which we generate by
occupying bonds of a 2D L × L square lattice with periodic
boundary conditions with the critical occupation proba-
bility pc ¼ 1=2 and identifying the largest cluster. The 2D
critical percolation cluster is a random fractal with the
fractal dimension df ¼ 91=48 [32]. The walk dimension is
known to be dw ≃ 2.87 > df [33].
It is computationally demanding to evaluate the RWC

and the MFPT for it requires to find the group generalized
inverse of I −W [26]. We will adapt the numerical
algorithm developed in Ref. [34], which turns out to be
extremely efficient. It takes only a few minutes in an
ordinary desktop computer to compute the RWC distribu-
tion for the critical percolation cluster of lattices of size
1024 × 1024. All numerical data for 2D percolation clus-
ters are obtained on a 2D lattice with L ¼ 1024, if not
stated otherwise, and averaged over at least 2000 indepen-
dent realizations of the critical percolation cluster.
Figure 1 illustrates an RWC configuration on a critical

bond percolation cluster. The RWC distribution is highly
heterogeneous (see Appendix A in the Supplemental
Material [35]). High RWC sites are clustered and spread
out in a filamentous pattern, which is analogous to the
backbone structure [2]. This heterogeneity raises questions
about the simple scaling of the MFPTwith a single scaling
exponent as in Eq. (1).

FIG. 1. RWC configuration on a 2D critical percolating cluster
in a lattice of size 1024 × 1024. The highest and lowest RWC
sites are marked with blue and red circles, respectively. Red line
segments denote bridges between them (see the main text). The
black area represents sites that do not belong to the percolating
cluster.
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To highlight the site dependence of the MFPT, we
identify the hub (highest RWC site) and the marginal site
(lowest RWC site), and measure the average outbound and
inbound MFPTs to and from all the other sites at a given
distance r. As shown in Fig. 2, the outbound MFPT is
larger than the inbound MFPT for the hub, and vice versa
for the marginal site. The difference is exactly given by the
difference in the inverse RWCs [see Eq. (3)]. The MFPTs
scale algebraically with L and r as

T ∼ LΔrθ ð4Þ

with the scaling exponents Δ and θ. Surprisingly, the hub
and the marginal site are characterized by different scaling
exponents

θ ¼
�
θh ≃ 0.97ð5Þ; for the hub

θm ≃ 0.49ð5Þ; for the marginal site:
ð5Þ

The exponent θh associated with the hub is close to the
exponent dw − df ¼ 0.97ð4Þ of Eq. (1) in value. On the
other hand, the MFPT at the marginal site grows with a
considerably smaller exponent θm ≃ 0.49 (see Appendix B
in the SupplementalMaterial [35] for detailed analysis). The
finite size scaling exponent Δ also varies. It takes on Δh ≃
1.90 for the hub, which is in agreement with the fractal
dimension df ¼ 91=48 of Eq. (1) [7]. The marginal site
displays a stronger finite size effect with Δm ≃ 2.36 > Δh.
We note that Δh þ θh ≃ Δm þ θm. It is understood from

the site independence of Kemeny’s constant [30].
Kemeny’s constant evaluated at a site i is given by
Ki ¼

P
j≠i Tijπj. Since πj ¼ aj=N with Oð1Þ constant

aj, Kemeny’s constant is approximated as the arithmetic
average of outbound MFPTs to all the other sites. The
scaling form in Eq. (4) leads to K ∼ LΔþθ. Thus, Δþ θ
should be the same at the sites obeying Eq. (4). We also

note that the inbound and outbound MFPTs differ by a
constant factor. From now on, we focus our Letter on the
outbound MFPT.
Crossover scaling of MFPT.—The site-dependent scal-

ing behavior is not limited to an exceptional outlier site: We
consider the outbound MFPTs from a set of source sites
fM1;M2; � � �g selected hierarchically as follows. We select
the local minimum RWC site Mn among all sites within a
circle of radius Rn ¼ 2n−1 centered at the hub. The out-
bound MFPT TnðrÞ fromMn as a function of the distance r
to target sites is shown in Fig. 3(a). We find an interesting
crossover of TnðrÞ. It grows algebraically with r with the
exponent θm for r ≪ Rn and with the exponent θh for
r ≫ Rn. The crossover scaling behavior is summarized by
the scaling form

TnðrÞ ¼ NRθh
n F ðr=RnÞ; ð6Þ

where the scaling function F ðxÞ behaves as F ðx ≪ 1Þ ∼
xθm and F ðx ≫ 1Þ ∼ xθh . The crossover scaling is con-
firmed by the scaling plot shown in Fig. 3(b). The crossover
scaling persists when one chooses a source site at random
among the sites at given distance from the hub (see
Appendix C in the Supplemental Material [35]).
Our numerical results highlight the role of the highest

RWC site in the random walk dynamics. Imagine an
ensemble of the first passage events from a source site s
to a target site t at a distance rs−t. Let rs−h be the distance
from s to the hub. When the target is farther than the hub
(rs−t ≫ rh−s), the ensemble is dominated by the paths
detouring via the hub. Consequently the MFPT follows the
scaling T ∼ rθh with the scaling exponent θh ¼ dw − df
irrespective of s. On the other hand, when the target is
closer than the hub (rs−t ≪ rh−s), the ensemble is domi-
nated by direct paths and the MFPT scaling law depends on
the choice of s (see Appendix D in the Supplemental
Material [35]). The crossover may be overlooked when one

FIG. 2. (a) Average MFPT between the hub (circular symbols)
or the marginal site (rectangular symbols) with the other sites.
The outbound and inbound MFPTs are marked with empty and
filled symbols, respectively. In (b), we plot the MFPTs from and
to sites at a unit distance r ¼ 1 as a function of the linear system
size 64 ≤ L ≤ 1024. The scaling exponents are obtained by
fitting the data within the range indicated by the dashed lines.

FIG. 3. (a) Outbound MFPT Tn from the site Mn (open
symbols). Also shown is the MFPT from the hub (H, thick line)
and the marginal site (M, filled symbols). (b) Scaling plot of
TnðrÞ=Rθh

n vs r=Rn with Rn ¼ 2n−1. The dashed lines of slope θh
and θm given in Eq. (5) are guides to the eye.
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measures the MFPT averaged over all pairs of source and
target sites at a given distance.
One can understand the origin (and potential complica-

tions) of the scaling law for TðrÞ in Eq. (1) [7] by the
following consideration: Given a source-target pair at a
distance r, one partitions the entire graph into blocks of
linear size ξr ∼ r, putting the source and target into the
same block denoted as starting block. Each block has Nr ∼
rdf sites and the total number of blocks is N r ∼ N=Nr∼
Nr−df . If all blocks were statistically equivalent, the RW
would always spend τr ∼ rdw time steps in a single block
until it hops to a neighboring block. With Eq. (2) the return
time to the starting block is Tret ∼ τr · ð1=πbÞ, with the
probability to be in one block πb ∼ 1=N r ∼ rdf=N, thus
Tret ∼ Nrdw−df . The MFPT can then be estimated as
Tret=Ps, with Ps the probability to find the target site
before leaving the starting block, which is Ps ¼ Oð1Þ for
dw > df and Ps ∼ τr=Nr ∼ rdw−df for dw < df. This argu-
ment reproduces the scaling law Eq. (1), except for the
marginal case dw ¼ df, It clearly reveals that the simple
scaling, TðrÞ ∼ rθ with a unique scaling exponent θ, is
based on the assumption that the entire fractal lattice can be
partitioned into homogeneous blocks. Similar arguments
may also lead to scaling laws for the higher moments of the
FPT distribution, cf. Ref. [36]. Our results presented in
Fig. 3, however, indicate that blocks are heterogeneous on
all length scales.
This heterogeneity is further evidenced by the scaling

behavior of the chemical distance (number of edges in the
shortest path) lðrÞ with respect to the Euclidean distance
between two sites. The average chemical distance is known
to scale as lðrÞ ∼ rdmin ., with dmin ≃ 1.14 for the 2D critical
percolation cluster (Sec. 6.6 of [37]). We discriminate again
between the hub (h) and the marginal site (m) as starting
site and found

lðrÞ ∼
�
Lδhrdmin;h; δh ≃ 0.0; dmin :;h ≃ 1.11;

Lδmrdmin;m; δm ≃ 0.52; dmin :;m ≃ 0.58:
ð7Þ

The chemical distance lnðrÞ from the local minimum RWC

siteMn shows again a crossover lnðrÞ ¼ LδhRdmin :;h
n Gðl=RnÞ

for 1 ≪ Rn ≪ L. We also looked at the MFPTas a function
of the chemical distance and observed a similar crossover
behavior (see Appendix E in the Supplemental Material
[35] for the detailed analysis for the chemical distance
scaling).
Origin of crossover scaling.—A fractal may comprise a

subset of sites or bonds which is itself a fractal. For
instance, 2D percolation clusters contain red bonds (or
cutting bonds) which themselves form a fractal with fractal
dimension dred ¼ 3=4 [38]. More generally, a percolation
cluster has a mesoscale structure consisting of a backbone,
red bonds, and dangling ends [2,39]. This structural
heterogeneity is the origin of the site-dependent scaling
and the crossover scaling.

To support this claim, we study the distribution of
bridges [40] between the hub and the marginal site in
2D percolation clusters. A bond is defined to be a bridge if
the marginal site would be disconnected from the hub
without it, represented by red lines in Fig. 1 [41]. We find
that the total number of bridges obeys the power law
scaling Nb ∼ L0.75 (see Appendix F in the Supplemental
Material [35]), which indicates that the marginal site is
located deep within a dangling end. Moreover, as Fig. 1
illustrates, bridges are predominantly distributed near the
marginal site. Consequently, random walks from the
marginal site are quasi-one-dimensional along a path
consisting mainly of the bridges. The MFPT from a
marginal site to another separated by a chemical distance
l then scales like the 1D random walk MFPT TðlÞ ∼ Nl1.
Since the chemical distance l scales with the Euclidean
distance r as given in Eq. (7), we obtain

TðrÞ ∼ Ldfþδmrdmin;m : ð8Þ

Note that df þ δm ≃ 2.42 and dmin;m ≃ 0.58, which are
close toΔm ≃ 2.36 and θm ≃ 0.49, respectively [cf. Eq. (5)].
Our argument reveals that the quasi-one-dimensional
structure of bridges near the marginal site is responsible
for the crossover scaling. It also predicts, at least approxi-
mately, the scaling exponents Δm and θm in terms of the
geometric quantities δm and dmin;m.
We performed similar studies for 3D percolation clusters

[42], random walk trails [43], and the Sierpiński gasket. We
observe the described crossover scaling for the random
fractals as shown in Fig. 4. We point out that for the
deterministic fractal shown here (Sierpiński gasket), the
scaling exponents are site independent (see Appendix G in
the Supplemental Material [35] for further discussion).
Conclusion.—We report in this Letter, for the first time,

heterogeneous scaling behavior of the MFPT of RWs on a
random fractal, the critical percolation cluster in 2D.
MFPTs measured from the hub and measured from the
marginal site as a function of the distance of the target site
obey power law scaling with distinctively different expo-
nents and the distance dependence of MFPTs from general
starting sites shows a striking crossover.

FIG. 4. Crossover scaling of the MFPT for (a) 3D critical
percolation clusters, (b) 3D random walk trails, and (c) the
Sierpiński gasket.
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Heterogeneous behavior of various observables in dis-
ordered systems is expected, as, for instance, dynamical
heterogeneities in glassy systems [44] or in the context of
Griffiths singularities in strongly disordered systems [45]
like the transverse Ising chain [46] or the Sinai walk [47]. A
lack of self-averaging is a prominent consequence of this
spatial heterogeneity [48], and it manifests itself in the
quantities we looked at. But different power laws for
different regions in the system, as we find them for regions
close to the hub and close to the marginal site, have, to our
knowledge, not been reported before. An important con-
sequence of our results is that scaling theories for the MFPT
that are based on an explicit or hidden spatial homogeneity
assumption should be considered more carefully.
The origin of the strong heterogeneity in the MFPT can

be traced back to the broad distribution of the RWC. Our
results could be generalized to, and are relevant for, a larger
class of heterogeneous media embedded in real space, like
diffusion-limited aggregation, random resistor networks,
lattice animals, and so on. We also speculate that hetero-
geneous scaling could occur in multifractal systems char-
acterized by a continuous spectrum of fractal dimension.
Our results also suggest that the RWC distribution is
important to understand information spreading dynamics
on complex networks.
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