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Appendix A: Distribution of the Random Walk
Centrality

We investigate statistical properties of the random
walk centrality or the accessibility index of sites in the
2D critical percolation cluster. Given a percolation clus-
ter, we measure the accessibility indices α of all sites
and construct a histogram of them normalized by the
average value ⟨α⟩. The probability distribution function
P (α/⟨α⟩) is then obtained by taking the average of the
histogram over the ensemble of percolation clusters. In
Fig. S1(a), we present and compare the distribution func-
tions at three different values of L. They overlap one
another, which indicates that the accessibility distribu-
tion is characterized with only a single scale, namely the
mean value ⟨α⟩. The distribution function has asymmet-
ric Gaussian tails.

We also study the system size dependence of the mean
value ⟨α⟩, the minimum value αH of the hub, and the
maximum value αM of the marginal site. Their ensem-
ble averaged values follow the power law α ∼ L2.88(1)

with the same exponent close to the random walk ex-
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FIG. S1. (a) Distribution functions of the normalized ac-
cessibility index. The tails are fitted well by Gaussian
functions (dashed lines) with different stiffness on either
side. (b) System size dependence of the accessibility in-
dices of the hub (αH), the marginal site (αM ), and the
mean value (⟨α⟩). The figure in the legend refers to the
finite-size scaling exponent. (c) Distribution functions (solid
lines) of the largest accessibility index and the largest random
walk centrality (inverse accessibility index). They are com-
pared with the Gumbel distribution function (dotted lines)
PG(x) = exp

[
(x− µ)/β − e−(x−µ)/β

]
/β with µ and β being

determined from the mean and the variance of the data.

ponent dw. The accessibility index αi has a meaning of
the average MFPT to i from all the other sites. It is
surprising that the average MFPT to the most accessi-
ble site (hub) and the least accessible site (marginal site)
follow the finite-size scaling law with the same exponent.
This indicates that the average quantity alone is not a
useful measure. The structural heterogeneity is not cap-
tured by the finite size scaling behavior of the average
MFPT.

Figure S1(c) presents the distribution functions of the
maximum accessibility index αM/⟨α⟩ and the maximum
random walk centrality ⟨α⟩/αH , normalized with ⟨α⟩.
The distribution functions are comparable with the Gum-
bel distribution which governs the extreme value statis-
tics of Gaussian-distributed random variables.

Appendix B: Distance Dependent MFPT

We have shown in the main text the MFPTs from the
hub and the marginal site follow a power law scaling

T (r) ∼ L∆rθ (S1)

with distinct scaling exponents (∆h, θh) ≃ (1.90, 0.97)
for the hub and (∆m, θm) ≃ (2.36, 0.49) for the marginal
site. We also measure TA(r), the average MFPT from
an arbitrary source site selected at random (see App. C).
As shown in Fig. S2(a), TA(r) also follows the scaling
law of Eq. (S1). The scaling exponent is obtained from
an effective exponent analysis. The MFPTs within the
range r/

√
2 < r0 <

√
2r are fitted to yield the effec-

tive exponent θ(r). Figure S2(c) presents the effective
exponents for θh for the hub, θh for the marginal site,
and θr for a random site. The asymptotic scaling expo-
nent is given by the limiting value in the r → ∞ and
L → ∞ limit. The effective exponents for θh and θm
converge to the values obtained from the global fitting in
the main text. The effective exponent for θr converges to
θr ≃ 0.88. The three distinct scaling exponents θh, θm,
and θr signify the strong structural heterogeneity in the
first passage processes.

The strong heterogeneity weakens when one adopts the
chemical distance instead of the Euclidean distance as
seen in Fig. S2(b) and (d). The chemical distance depen-
dent scaling behavior will be discussed in App. E.
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FIG. S2. (a) Euclidean distance (r) dependence and (b) chem-
ical distance (l) dependence of the MFPTs from the hub (H),
the marginal site (M), and an arbitrary site selected at ran-
dom (A) at L = 1024. (c) The effective exponents for the
power law scaling T (r) ∼ rθ at L = 512 (circular symbols)
and L = 1024 (square symbols). The asymptotic values are
marked with the dashed lines. (d) The effective exponents for
the power law scaling T (l) ∼ lθl at L = 512 (circular symbols)
and L = 1024 (square symbols).

Appendix C: MFPT from a random site

We study the outbound MFPT from a set of sites
{A1, A2, · · · } where An is an arbitrary site selected ran-
domly among the sites at a distance Rn = 2n−1 from the
hub for 2D critical percolation clusters. We found that
the MFPT T ′

n(r) from An also exhibits the crossover scal-
ing of the form (6) of the main text. In Fig. S3(a), we plot
the ratio of T ′

n(r) to Th(r), MFPT from the hub, to high-
light the crossover. It clearly shows that T ′

n(r)/Th(r) de-
viates from 1 for r ≪ Rn and converges to 1 for r ≫ Rn.
Interestingly, the scaling exponent in the regime r ≪ Rn

is given by θa ≃ 0.84(5) ̸= θm. It is close to θh, but not
the same.

We also study outbound MFPT from a source site
A selected at completely random among all sites. In
Fig. S3(b), we compare the mean value TA(r) and the
standard deviation δTA(r) of the MFPTs from A to sites
at a distance r. TA(r) corresponds to the MFPT aver-
aged over all source-target pairs. It obeys a power law
scaling TA(r) ∼ rθr with a single exponent θr ≃ 0.88,
which is close to dw − df . However, the standard devia-
tion is even larger than the mean value for r ≪ L. This
strong non-self-averaging behavior is another indication
of the heterogeneity.

100 101 102 103

r

100

2

3

4

5

T
′ n(
r)
/T

h

(a) A10

An

A1

100 101 102 103

r

107

108

T
A

(r
)

slope = 0.88

(b)

TA(r)

δTA(r)

FIG. S3. (a) MFPT T ′
n(r) from an arbitrary site An at a

distance Rn = 2n−1 from the hub normalized by Th(r). The
horizon dotted line is a guide to the eye. (b) MFPT TA(r)
from an arbitrary source site selected randomly. If follows a
power law scaling TA(r) ∼ rθr with θr ≃ 0.88.

Appendix D: Direct and indirect explorations

We demonstrate a qualitative change in the ensemble
of first-passage trajectories as the source-target distance
increases. We focus on the 2D critical percolation clus-
ters in L2 square lattices. On a percolation cluster, we
first determine the source site s whose RWC is lowest
among those at a distance rh−s = L/8 from the hub, the
maximum RWC site. We then choose randomly a target
site t among those at a distance rs−t from s. We gener-
ate 1024×L random walk trajectories starting at s, and
compute the fraction fviaH of trajectories visiting the hub
before arriving at t.

Figure S4 (a) shows the fraction ⟨fviaH⟩ averaged over
1000 percolation clusters. The average fraction seems to
converge to a finite value in the large L limit and increases
gradually as rs−t increases. The probability of following
indirect paths via the hub increases as rs−t increases.

The distribution function shown in Fig. S4 (b) sig-
nifies a qualitative change. It is characterized by two
peaks at fviaH = 0 and 1, which reflect the dominance
of direct and indirect paths via the hub, respectively.
In the short distance regime (rs−t ≲ rs−h), both peaks
are evident. The double peak structure indicates strong
sample-to-sample fluctuations in the ensemble of perco-
lation clusters and the locations of source-target pairs.
As rs−t/rs−h increases, the peak at fviaH = 0 dimin-
ishes, leaving only a single peak at fviaH = 1 in the long-
distance regime (rs−t ≳ rs−h). The distribution func-
tion is clear evidence for the crossover from the direct
exploration in the short distance regime to the indirect
exploration via the hub in the long distance regime at
the trajectory level.
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FIG. S4. (a) Average fraction ⟨fviaH⟩ of random walk trajecto-
ries starting from the local minimum RWC site s and arriving
at the target site t via the hub. The distance between the hub
and s is rs−h = L/8, and the relative distances between s and
t are rs−t/rs−h = 0.25, · · · , 2.00. (b) Distribution function of
fviaH for L = 512.
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FIG. S5. (a) Chemical distance lh/m(r) from the
hub/marginal site. (b) System size L dependence of lh/m(r =
1). These plots confirm the power law scaling of Eq. (7) with
δh = 0, δm ≃ 0.52, dmin.,h ≃ 1.11, and dmin.,m ≃ 0.58.
(c) Chemical distance ln(r) from the local minimum RWC
site Mn. (d) Scaling plot of ln(r)/R

dmin.,h
n against r/Rn.

L = 1024 in (a), (c), and (d).

Appendix E: MFPT vs Chemical Distance

Structural heterogeneity of the critical percolation
cluster is evidenced by the scaling behavior of the chem-
ical distance l(r) with respect to the Euclidean distance
between two sites. The chemical distance between two
sites is defined as the number of edges in the shortest path
connecting them. It is known that the average chemical
distance l(r) between any pairs of sites at a distance r
scales as l(r) ∼ rdmin. with the chemical distance expo-
nent dmin. (Sec. 6.6 of [36]), which is for 2D critical per-
colation clusters dmin. ≃ 1.14. We discriminate between
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FIG. S6. (a) MFPT vs chemical distance from the hub and
the local minimum RWC sites. (b) Ratio of Tn(l) to Th(l) for
n ≥ 1. For the marginal site, Tm(l)/Th(l) can be fitted to a
function 0.27− 0.26/ ln(1.70l), which is drawn with a dotted
line. (c) Scaling plot of Tn(l)/Th(l) against l/Rdmin.

n .

the hub and the marginal site as starting site and find

l(r) ∼ Lδrdmin. (S1)

with different exponents (δ, dmin.) = (δh, dmin.,h) ≃
(0.0, 1.11) for the hub and (δm, dmin.,m) ≃ (0.52, 0.58)
for the marginal site (see Figs. S5(a) and (b)), satisfy-
ing δh + dmin.,h ≃ δm + dmin.,m. The chemical distance
ln(r) from the local minimum RWC site Mn shows again
a crossover ln(r) = LδhR

dmin.,h
n G(l/Rn) for 1 ≪ Rn ≪ L

(see Figs. S5(c) and (d)).
Given the similar crossover scaling of Tn(r) and ln(r),

one may anticipate a simple scaling, T (l) ∼ lθl with a
unique exponent θl = θ/dmin., of the MFPT with respect
to the chemical distance. Such a simple scaling behavior
of the average MFPT was indeed reported in Ref. [17, 18].
We have investigated the source site dependence of the
MFPT function Tn(l). Figure S6(a) shows the Th(l) from
the hub follows the power law scaling

Th(l) ∼ lθl (S2)

with θl ≃ 0.88. This exponent satisfies the scaling re-
lation θl = θh/dmin.,h. The MFPT Tn(l) from the lo-
cal minimum RWC sites still displays a crossover, albeit
weak. The crossover is more evident in Fig. S6(b). Tn(l)
undergoes a crossover between two limiting behaviors,
Th(l) of the hub and Tm(l) of the marginal site, at a char-
acteristic scale of the chemical distance ln ∼ Rdmin.

n (see
Fig. S6(c)). The numerical data suggest that

Tm(l) = Th(l)/(a− b/ ln(cl)) (S3)

with O(1) constants a, b, and c (see Fig. S6(b)). The
logarithmic correction results in the slow convergence of
the effective exponent in Fig. S2(d).

Appendix F: Number of bridge bonds

We investigate numerically the scaling law for the num-
ber of bridge bonds between the hub (highest RWC site)
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FIG. S7. The average number Nb of bridge bonds between
the hub and the marginal site for on the 2D critical bond
percolation clusters on the L× L square lattices.
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FIG. S8. MFPT on the critical bond percolation cluster in
3D. (a) MFPT T (r) from the hub and the marginal site for
L = 256. (b) Size dependence of the MFPTs from the hub and
the marginal site to the sites at a distance r = 1. (c) MFPTs
from the hub, the marginal site, and the local minimum RWC
sites for L = 256.

and the marginal site (lowest RWC site) on the 2D crit-
ical bond percolation clusters. On a given realization of
a critical percolation cluster on a L × L square lattice,
we identify the hub and the marginal site, and count the
number of bridge bonds between the pair. The number
of bridge bonds Nb averaged over 1000 realizations are
presented in Fig. S7. It follows a power law Nb ∼ L0.75

with respect to the system size L. We note that the scal-
ing exponent coincides with the fractal dimension of the
red bonds [37].

Appendix G: Crossover scaling for 3D critical
percolation clusters, 3D random trails, and the

Sierpiński gasket

The crossover scaling is not limited to the 2D crit-
ical percolation clusters. To confirm the generality of
the crossover scaling, we performed additional numerical
studies.

First, we investigated the scaling law for the MFPT

H

M
S1
S2

S3

FIG. S9. Sierpiński gasket of the 5th generation. The three
outermost sites are the marginal sites, and the three vertices of
the largest empty triangle are the hubs. They are marked with
red and blue symbols, respectively. The sites marked with
filled symbols are the source sites for the study of MFPTs. An
intermediate site Sn is at a distance 2n−1 from the marginal
site.

T (r) on the 3D critical bond percolation clusters. It
is known that the critical threshold is given by pc ≃
0.248 812 6 and the fractal dimension is given by df ≃
2.523 [41]. On a critical percolation cluster, we iden-
tified the hub (highest RWC site), Mn (local minimum
RWC site within a sphere of radius Rn = 2n−1 around
the hub), and the marginal site (lowest RWC site). The
MFPTs from these sites to the other sites were measured
as a function of the distance r. The ensemble averaged
MFPTs from the hub and the marginal site satisfy the
scaling law T (r) ∼ L∆rθ with (∆h, θh) ≃ (2.51, 1.21) for
the hub and (∆m, θm) ≃ (2.91, 0.79) for the marginal
sites (see Figs. S8(a) and (b)). The sums ∆h + θh and
∆m + θm are close to each other, and consistent with
the random walk dimension dw ≃ 3.64 ± 0.05 [2]. Fig-
ure S8(c) demonstrates that the MFPTs Tn(r) from the
local minimum RWC sites display the crossover scaling
behavior.

Second, we examined the MFPT on a random walk
trail in 3D, which is itself a random fractal with df =
2 [42]. On an L3 cubic lattice with periodic bound-
ary conditions, we generated a random walk trail of
8L2 steps and explored the MFPT problem on top of
it. Figure 4 (b) of the main text illustrates the dis-
tance dependence of outbound MFPTs from the hub,
the local minimum RWC sites, and the marginal site.
The MFPT scales as T (r) ∼ L2.00r1.25 for the hub and
T (r) ∼ L1.80r1.52 for the marginal site, and exhibits a
crossover scaling for the intermediate sites.

Lastly, we studied the scaling of the MFPT on the Sier-
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piński gasket, a deterministic fractal. Figure S9 depicts
a Sierpiński gasket of the 5th generation. As a deter-
ministic fractal, it has a symmetric shape and a degener-
ate RWC distribution. To avoid ambiguity arising from
this degeneracy, we considered the MFPTs from a hub, a
marginal site, and intermediate sites {Sn} on a straight
line between them. Figure 4 (c) of the main text shows
outbound MFPTs from the source sites on a Sierpiński
gasket of the 10th generation.

The crossover scaling for the Sierpiński gasket is weak
in comparison with the other fractals. The MFPT
obeys the power-law scaling T (r) ∼ AL∆rθ with site-
independent universal scaling exponents ∆ = df and

θ = dw − df with df = ln 3/ ln 2 and dw = ln 5/ ln 2,
where L is a linear size. Interestingly, the amplitude
A displays a site-dependent crossover behavior between
two values, AH for the hub and AM for the marginal site.
The MFPT from Sn scales with the amplitude ∼ AH in
a short distance regime and with the amplitude ∼ AM in
a long distance regime. The Sierpiński gasket is a simple
fractal characterized by a single fractal dimension df . It
does not include any dangling ends, and there are not any
bridge bonds between the hub and the marginal site. It
might explain the reason why the scaling exponents are
universal. Structural heterogeneity results in the weak
crossover in the amplitude.


