Supplementary Material # Ca²⁺-pumping by PMCA-Neuroplastin complexes operates in the kiloHertz-range Cristina E. Constantin, Barbara Schmidt, Yvonne Schwarz, Harumi Harada, Astrid Kollewe, Catrin S. Müller, Sebastian Henrich, Botond Gaal, Akos Kulik, Dieter Bruns, Uwe Schulte, Heiko Rieger and Bernd Fakler - Supplementary Figures 1 5 - Supplementary Tables 1 3 #### Supplementary Figures #### **Supplementary Figure 1** (information related to Figure 1) #### **Supplementary Figure 1** #### Ca²⁺-gating of BK_{Ca} channels **a**, Activation and deactivation of BK_{Ca} channels determined at a membrane potential of 50 mV with a piezo-driven fast-application system exchanging $[Ca^{2+}]_i$ at the cytoplasmic face of the channels in the sub-millisecond range (termed: Ca^{2+} -gating Ca^{2+} -gating Ca^{2+} -gating solutions with the indicated values for $[Ca^{2+}]_i$ and a Ca^{2+} -free solution. Upper right panel: Values for activation and deactivation time constants of Ca^{2+} -gating at 50 mV. Lower panel: Representative current responses of Ca^{2+} -gating to either an increase in $[Ca^{2+}]_i$ (from 0 to 1, 3 or 10 μ M (left) or a decrease in [Ca²⁺]_i (from 1, 3 and 10 μ M to 0 (right)). Lines represent fits of a mono-exponential function to the activation and deactivation phases with time constants of 2.8 ms (red) and 14.7 ms (blue) for activation at 10 and 3 μ M Ca²⁺, respectively, and 6.0 ms (red) and 5.3 ms (blue) for deactivation from 10 and 3 μ M Ca²⁺, respectively. Time scale as indicated, current scale is 0.5 nA. (Data were taken from ²³). **b**, Current responses (color-coded) recorded in a CHO cell with the indicated voltage-protocol, protein expression and ion conditions were identical to the experiments in Fig. 1c, the patch pipette contained 10 mM EGTA. Trace in black reflects the Ca²⁺-inward current through Cav2.2 channels (following step-repolarization from 70 mV to -60 mV), while colored traces highlight BK_{Ca}-mediated outward K⁺ currents as in Fig. 1c activated by Ca²⁺-influx of 0.2 ms (blue), 0.8 ms (red) and 3.2 ms (green) duration, as well as by Ca²⁺-influx of 0.4 and 1.6 ms (light grey, for better discrimination). Note the accurate monitoring of $[Ca^{2+}]_i$ by the BK_{Ca} -current maximum. Scaling for time and current as indicated, dashed line denotes BK_{Ca} -current prior to Ca^{2+} -influx, small line is zero current. #### **Supplementary Figure 2** (information related to Figure 1) #### **Supplementary Figure 2** #### Fluorescence measurements by membrane-tethered GCaM6s **a**, Representative image of a CHO cell expressing Lck-GCaM6s before (left panel) and during/after step stimulation (right panel) with the voltage protocol in Fig. 1e. Dashed line is line-scan used for fluorescence measurement. **b**, Fluorescence intensity obtained along the line in (a). #### **Supplementary Figure 3** (information related to Figure 1) a b #### **Supplementary Figure 3** #### Ca²⁺-clearance by 10 mM EGTA in pulse-experiments **a**, Representative BK_{Ca}-currents recorded in response to 1, 2 and 5 Ca²⁺-influx pulses applied at 500 Hz (voltage protocol in lower inset) to CHO cells as in Figure 1, but with 10 mM EGTA in the patch-pipette (upper inset). **b**, Plot summarizing the time constants of the current decay determined in experiments as in (**a**); squares represent mean \pm SEM of the indicated number of cells. #### **Supplementary Figure 4** (information related to Figure 2) csBN-MS, mouse brain membranes #### **Supplementary Figure 4** ## Abundance-mass profiles of the constituents of native PMCA complexes in the mouse brain Abundance-mass profiles obtained by cryo-slicing BN-MS (csBN-MS, ⁵⁰) for the indicated proteins in a CL-47 solubilized membrane fractions from adult mouse brain (a total of 170 gel slices). Note the co-segregation of all PMCA isoforms with NPTN and a sub-population of BASI. The other sub-population of BASI co-assembles with the mono-carboxylate-transporter MOT1. Inset: Two-dimensional gel separation of PMCA1-4 and NPTN in the same membrane fractions, Western-probed with antibodies targeting PMCA1-4 and NPTN. Size (BN-PAGE) and molecular weight (SDS-PAGE) are as indicated. #### **Supplementary Figure 5** (information related to Figure 3) #### **Supplementary Figure 5** #### Calibration of the gating model of BK_{Ca} channels **a, b** Calibration of the extended BK_{Ca}-model via parameter-fitting to the BK_{Ca}-mediated currents recorded in experiments as in Extended Data Figure 1 (data taken from 23). BK_{Ca}-currents were elicited by fast application of solutions with the indicated [Ca²⁺]_i at the indicated constant membrane potential (**a**, Ca²⁺-gating), or by the indicated voltage-step with the indicated [Ca²⁺]_i constantly present at the cytoplasmic face of the channels (**b**, voltage-gating). Black lines represent the response of the BK_{Ca}-model to the respective changes in [Ca²⁺]_i and membrane potential. Note the good approximation of the experimental data by the calibrated model (parameters of the gating model are given in Supplementary Table 3). ${f c}$, Dependence of the time-to-peak (t_{peak}) of the BK_{Ca}-current maximum on the transport rate of the PMCA2-NPTN pumps (right panel) obtained from the calculations in Figure 3 (left panel). Note that perfect match between experimentally measured t_{peak} (black line, t_{peak} exp (right panel) or current trace in red (left panel)) and calculated t_{peak} (t_{peak} calc) is observed at a transport rate of about 18.000/s (grey line, right panel). #### **Supplementary Tables** #### **Supplementary Table 1.** Parameters defining model cell and spatio-temporal profiles for intracellular Ca²⁺ concentration. | parameter | value | description | | |----------------------|------------------------------|---|--| | • | | | | | c_0 | 0.1 μM [1] | [Ca ²⁺] at rest | | | D_{c} | 0.22 μm ² /ms [1] | Ca ²⁺ diffusion constant | | | r | 5 μm | cell radius | | | r_{pip} | 1.25 μm | pipette radius | | | C _{pip} | 10 μΜ | [Ca ²⁺] at pipette | | | ρ_{PMCA} | 50/μm² [2] | surface density of PMCA-NTPN | | | C _{1/2} | 0.43 μM [3] | Hill parameter | | | n | 2 [3] | Hill coefficient | | | Φ_{PMCA} | free parameter | PMCA pump strength | | | b _t | 0 or 10 mM [2] | total amount of [EGTA] | | | D_b | $0.113 \mu m^2 / ms$ | EGTA diffusion constant | | | b_{pip} | 0 or 10 mM [2] | [EGTA] at pipette | | | k, | 2.55 /μMs [1] | on-rate for Ca ²⁺ -EGTA binding | | | k. | 0.45/s [1] | off-rate for Ca ²⁺ -EGTA binding | | | N_{CaV} | 1.200 000 [2] | number of incoming Ca ²⁺ | | | Δt | 0.8 ms [2] | duration of the voltage pulse | | | | | | | #### References [1] citation 32[2] this study[3] citation 54 #### Equatorial cross-section of the spherically shaped model geometry The three-dimensional geometry is generated by rotating this cross section around its symmetry axis indicated by the straight dashed line. The outer boundary $\partial\Omega$ of the cell volume Ω is partitioned into $\partial\Omega$ pmca comprising PMCA, Cav and leak Ca $^{2+}$ currents, and $\partial\Omega$ pip with pipette solution-defined fixed Ca $^{2+}$ concentration. Grey regions denote cross sections of intracellular organelles whose volumes are inaccessible to diffusing Ca $^{2+}$ (70% of total intracellular volume), the boundaries, $\partial\Omega$ ex, of these excluded sub-volumes have no-flux boundary conditions for Ca $^{2+}$ diffusion. #### Supplementary Table 2. Parameters defining the BK_{Ca} -gating model used for computing the response to stationary conditions in $[Ca^{2+}]_i$. Stationary gating scheme for BK_{Ca} , channels (adapted and modified from (30)). Voltage dependent rates L(V) = L(0)•exp(-QFV/RT) define the transition between open and closed conformation, where L(0) is the open-to-closed equilibrium constant in the absence of bound Ca^{2+} at 0 mV, V is transmembrane voltage, Q is equivalent gating charges associated with the closed-to-open conformational change and R, T, F have their usual meaning. K_{Ci} and K_{Oi} define binding of Ca^{2+} to the four binding sites of BK_{Ca} (used in eq. 7) #### **Supplementary Table 3.** Parameters defining the extended BK_{Ca} -gating model used for computing the response to pulsed increases in $[Ca^{2+}]_i$. | parameter value | | parameter value | | |------------------------------|------------|-----------------|-------------| | γ_0^+ | 1/18.03 s | γ_0 | 1/0.0009 s | | γ_1^{+} | 1/80.02 s | γ_1 | 1/0.016 s | | γ_2^+ | 1/0.98 s | γ_2^- | 1/0.0012 s | | γ_3^+ | 1/0.008 s | γ3 | 1/0.00016 s | | γ_4^+ | 1/0.006 s | γ_4 | 1/0.002 s | | Q_1 | 2.25e | Q_2 | -0.11e | | $k_{C1}^{^{\dagger}}$ | 34.1/μMs | k _{C1} | 1741.68/s | | $k_{C2}^{^{\dagger}}$ | 3972.8/μMs | k _{C2} | 1015.79/s | | $k_{C3}^{^{\dagger}}$ | 208.92/μMs | k _{C3} | 20617.6/s | | $k_{C4}^{^{\dagger}}$ | 711.2/μMs | k _{C4} | 4449.017/s | | $K_{O1}^{^+}$ | 537.19/μMs | K _{O1} | 7536.7/s | | $K_{O2}^{^+}$ | 727.16/μMs | K _{O2} | 29.81/s | | K _{O3} ⁺ | 32.63/μMs | K _{O3} | 20.9/s | | K _{O4} ⁺ | 314.8/μMs | K _{O4} | 121.1/s | | | | | | Gating scheme for BKCa - non stationary case (adapted and modified from (30)). Voltage-dependent transition rates are defined as $e_1(V) = \exp^{\bullet}(Q_1FV/RT)$ and $e_2(V) = \exp^{\bullet}(Q_2FV/RT)$, with V being transmembrane voltage and R, T, F and Q_i as in Supplementary Table 2.