Supplementary Material

Ca²⁺-pumping by PMCA-Neuroplastin complexes operates in the kiloHertz-range

Cristina E. Constantin, Barbara Schmidt, Yvonne Schwarz, Harumi Harada, Astrid Kollewe, Catrin S. Müller, Sebastian Henrich, Botond Gaal, Akos Kulik, Dieter Bruns, Uwe Schulte, Heiko Rieger and Bernd Fakler

- Supplementary Figures 1 5
- Supplementary Tables 1 3

Supplementary Figures

Supplementary Figure 1 (information related to Figure 1)

Supplementary Figure 1

Ca²⁺-gating of BK_{Ca} channels

a, Activation and deactivation of BK_{Ca} channels determined at a membrane potential of 50 mV with a piezo-driven fast-application system exchanging $[Ca^{2+}]_i$ at the cytoplasmic face of the channels in the sub-millisecond range (termed: Ca^{2+} -gating Ca^{2+} -gating Ca^{2+} -gating solutions with the indicated values for $[Ca^{2+}]_i$ and a Ca^{2+} -free solution. Upper right panel: Values for activation and deactivation time constants of Ca^{2+} -gating at 50 mV. Lower panel: Representative current responses of Ca^{2+} -gating to either an increase in $[Ca^{2+}]_i$

(from 0 to 1, 3 or 10 μ M (left) or a decrease in [Ca²⁺]_i (from 1, 3 and 10 μ M to 0 (right)). Lines represent fits of a mono-exponential function to the activation and deactivation phases with time constants of 2.8 ms (red) and 14.7 ms (blue) for activation at 10 and 3 μ M Ca²⁺, respectively, and 6.0 ms (red) and 5.3 ms (blue) for deactivation from 10 and 3 μ M Ca²⁺, respectively. Time scale as indicated, current scale is 0.5 nA. (Data were taken from ²³).

b, Current responses (color-coded) recorded in a CHO cell with the indicated voltage-protocol, protein expression and ion conditions were identical to the experiments in Fig. 1c, the patch pipette contained 10 mM EGTA. Trace in black reflects the Ca²⁺-inward current through Cav2.2 channels (following step-repolarization from 70 mV to -60 mV), while colored traces highlight BK_{Ca}-mediated outward K⁺ currents as in Fig. 1c activated by Ca²⁺-influx of 0.2 ms (blue), 0.8 ms (red) and 3.2 ms (green) duration, as well as by Ca²⁺-influx of 0.4 and 1.6 ms (light grey, for better discrimination).

Note the accurate monitoring of $[Ca^{2+}]_i$ by the BK_{Ca} -current maximum. Scaling for time and current as indicated, dashed line denotes BK_{Ca} -current prior to Ca^{2+} -influx, small line is zero current.

Supplementary Figure 2 (information related to Figure 1)

Supplementary Figure 2

Fluorescence measurements by membrane-tethered GCaM6s

a, Representative image of a CHO cell expressing Lck-GCaM6s before (left panel) and during/after step stimulation (right panel) with the voltage protocol in Fig. 1e. Dashed line is line-scan used for fluorescence measurement. **b**, Fluorescence intensity obtained along the line in (a).

Supplementary Figure 3 (information related to Figure 1)

a

b

Supplementary Figure 3

Ca²⁺-clearance by 10 mM EGTA in pulse-experiments

a, Representative BK_{Ca}-currents recorded in response to 1, 2 and 5 Ca²⁺-influx pulses applied at 500 Hz (voltage protocol in lower inset) to CHO cells as in Figure 1, but with 10 mM EGTA in the patch-pipette (upper inset). **b**, Plot summarizing the time constants of the current decay determined in experiments as in (**a**); squares represent mean \pm SEM of the indicated number of cells.

Supplementary Figure 4 (information related to Figure 2)

csBN-MS, mouse brain membranes

Supplementary Figure 4

Abundance-mass profiles of the constituents of native PMCA complexes in the mouse brain

Abundance-mass profiles obtained by cryo-slicing BN-MS (csBN-MS, ⁵⁰) for the indicated proteins in a CL-47 solubilized membrane fractions from adult mouse brain (a total of 170 gel slices). Note the co-segregation of all PMCA isoforms with NPTN and a sub-population of BASI. The other sub-population of BASI co-assembles with the mono-carboxylate-transporter MOT1. Inset: Two-dimensional gel separation of PMCA1-4 and NPTN in the same membrane fractions, Western-probed with antibodies targeting PMCA1-4 and NPTN. Size (BN-PAGE) and molecular weight (SDS-PAGE) are as indicated.

Supplementary Figure 5 (information related to Figure 3)

Supplementary Figure 5

Calibration of the gating model of BK_{Ca} channels

a, b Calibration of the extended BK_{Ca}-model via parameter-fitting to the BK_{Ca}-mediated currents recorded in experiments as in Extended Data Figure 1 (data taken from 23). BK_{Ca}-currents were elicited by fast application of solutions with the indicated [Ca²⁺]_i at the indicated constant membrane potential (**a**, Ca²⁺-gating), or by the indicated voltage-step with the indicated [Ca²⁺]_i constantly present at the cytoplasmic face of the channels (**b**, voltage-gating). Black lines represent the response of the BK_{Ca}-model to the respective changes in [Ca²⁺]_i and membrane potential. Note the good approximation of the experimental data by the calibrated model (parameters of the gating model are given in Supplementary Table 3).

 ${f c}$, Dependence of the time-to-peak (t_{peak}) of the BK_{Ca}-current maximum on the transport rate of the PMCA2-NPTN pumps (right panel) obtained from the calculations in Figure 3 (left panel). Note that perfect match between experimentally measured t_{peak} (black line, t_{peak} exp (right panel) or current trace in red (left panel)) and calculated t_{peak} (t_{peak} calc) is observed at a transport rate of about 18.000/s (grey line, right panel).

Supplementary Tables

Supplementary Table 1.

Parameters defining model cell and spatio-temporal profiles for intracellular Ca²⁺ concentration.

parameter	value	description	
•			
c_0	0.1 μM [1]	[Ca ²⁺] at rest	
D_{c}	0.22 μm ² /ms [1]	Ca ²⁺ diffusion constant	
r	5 μm	cell radius	
r_{pip}	1.25 μm	pipette radius	
C _{pip}	10 μΜ	[Ca ²⁺] at pipette	
ρ_{PMCA}	50/μm² [2]	surface density of PMCA-NTPN	
C _{1/2}	0.43 μM [3]	Hill parameter	
n	2 [3]	Hill coefficient	
Φ_{PMCA}	free parameter	PMCA pump strength	
b _t	0 or 10 mM [2]	total amount of [EGTA]	
D_b	$0.113 \mu m^2 / ms$	EGTA diffusion constant	
b_{pip}	0 or 10 mM [2]	[EGTA] at pipette	
k,	2.55 /μMs [1]	on-rate for Ca ²⁺ -EGTA binding	
k.	0.45/s [1]	off-rate for Ca ²⁺ -EGTA binding	
N_{CaV}	1.200 000 [2]	number of incoming Ca ²⁺	
Δt	0.8 ms [2]	duration of the voltage pulse	

References

[1] citation 32[2] this study[3] citation 54

Equatorial cross-section of the spherically shaped model geometry

The three-dimensional geometry is generated by rotating this cross section around its symmetry axis indicated by the straight dashed line. The outer boundary $\partial\Omega$ of the cell volume Ω is partitioned into $\partial\Omega$ pmca comprising PMCA, Cav and leak Ca $^{2+}$ currents, and $\partial\Omega$ pip with pipette solution-defined fixed Ca $^{2+}$ concentration. Grey regions denote cross sections of intracellular organelles whose volumes are inaccessible to diffusing Ca $^{2+}$ (70% of total intracellular volume), the boundaries, $\partial\Omega$ ex, of these excluded sub-volumes have no-flux boundary conditions for Ca $^{2+}$ diffusion.

Supplementary Table 2.

Parameters defining the BK_{Ca} -gating model used for computing the response to stationary conditions in $[Ca^{2+}]_i$.

Stationary gating scheme for BK_{Ca} , channels (adapted and modified from (30)).

Voltage dependent rates L(V) = L(0)•exp(-QFV/RT) define the transition between open and closed conformation, where L(0) is the open-to-closed equilibrium constant in the absence of bound Ca^{2+} at 0 mV, V is transmembrane voltage, Q is equivalent gating charges associated with the closed-to-open conformational change and R, T, F have their usual meaning. K_{Ci} and K_{Oi} define binding of Ca^{2+} to the four binding sites of BK_{Ca} (used in eq. 7)

Supplementary Table 3.

Parameters defining the extended BK_{Ca} -gating model used for computing the response to pulsed increases in $[Ca^{2+}]_i$.

parameter value		parameter value	
γ_0^+	1/18.03 s	γ_0	1/0.0009 s
γ_1^{+}	1/80.02 s	γ_1	1/0.016 s
γ_2^+	1/0.98 s	γ_2^-	1/0.0012 s
γ_3^+	1/0.008 s	γ3	1/0.00016 s
γ_4^+	1/0.006 s	γ_4	1/0.002 s
Q_1	2.25e	Q_2	-0.11e
$k_{C1}^{^{\dagger}}$	34.1/μMs	k _{C1}	1741.68/s
$k_{C2}^{^{\dagger}}$	3972.8/μMs	k _{C2}	1015.79/s
$k_{C3}^{^{\dagger}}$	208.92/μMs	k _{C3}	20617.6/s
$k_{C4}^{^{\dagger}}$	711.2/μMs	k _{C4}	4449.017/s
$K_{O1}^{^+}$	537.19/μMs	K _{O1}	7536.7/s
$K_{O2}^{^+}$	727.16/μMs	K _{O2}	29.81/s
K _{O3} ⁺	32.63/μMs	K _{O3}	20.9/s
K _{O4} ⁺	314.8/μMs	K _{O4}	121.1/s

Gating scheme for BKCa - non stationary case (adapted and modified from (30)). Voltage-dependent transition rates are defined as $e_1(V) = \exp^{\bullet}(Q_1FV/RT)$ and $e_2(V) = \exp^{\bullet}(Q_2FV/RT)$, with V being transmembrane voltage and R, T, F and Q_i as in Supplementary Table 2.