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Quantum phases of incommensurate optical lattices due to cavity backaction
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Ultracold bosonic atoms are confined by an optical lattice inside an optical resonator and interact with a
cavity mode whose wavelength is incommensurate with the spatial periodicity of the confining potential. We
predict that the intracavity photon number can be significantly different from zero when the atoms are driven by
a transverse laser whose intensity exceeds a threshold value and whose frequency is suitably detuned from the
cavity and the atomic transition frequency. In this parameter regime the atoms form clusters in which they emit
in phase into the cavity. The clusters are phase locked, thereby maximizing the intracavity photon number. These
predictions are based on a Bose-Hubbard model, whose derivation is reported here in detail. The Bose-Hubbard
Hamiltonian has coefficients which are due to the cavity field and depend on the atomic density at all lattice sites.
The corresponding phase diagram is evaluated using quantum Monte Carlo simulations in one dimension and
mean-field calculations in two dimensions. Where the intracavity photon number is large, the ground state of the
atomic gas lacks superfluidity and possesses finite compressibility, typical of a Bose glass.
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I. INTRODUCTION

Self-organization of interacting systems of photons and
atoms in cavities is a remarkable example of pattern formation
in the quantum world. The structures which are formed are
due to the nonlinear dependence of the atomic potential on
the atomic density: The field scattered into the cavity depends
on and determines the atomic density distribution by means
of the mechanical effects of atom-photon interactions [1].
Features related to these dynamics were already predicted and
then observed in atomic gases confined by optical lattices
in free space [2–4]. In a high-finesse cavity the effect is
significantly enhanced due to the strong coupling one can
achieve between atoms and light at the single-photon level.
Here, spatial ordering [5–8], collective-atom recoil lasing
[9,10], synchronization [11], and motion-induced bistability
[12–15] have been observed in gases of laser-cooled atoms
inside a high-finesse cavity, when either the cavity or the atoms
are driven by an external laser. These phenomena typically
occur when the laser intensity exceeds a threshold value and
can be revealed by the light transmitted by the resonator’s
mirrors.

In recent theoretical studies it was argued that ultracold
atoms in cavity quantum electrodynamics setups offer a novel
setting to study disorder and glassiness [16,17]. Along a
similar line, in a recent work we analyzed self-organization
of atoms trapped by an external optical lattice and interacting
with the standing-wave field of a cavity whose periodicity
is incommensurate with the lattice periodicity. A sketch of
the setup is shown in Fig. 1. In this situation we showed
that scattering of light into the resonator generates an optical
lattice which is incommensurate with the one confining the
atoms and whose intensity depends on the atomic density at
all lattice sites [18]. This global potential is a feature of cavity
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quantum electrodynamics setups, where the cavity photons
undergo multiple scattering and give rise to an effective atomic
potential which is long ranged. It is important to note that this
potential would not be generated if the atoms were pointlike
particles located at the minima of the classical lattice: in this
case there is no coherent scattering into the cavity mode [19].
Density fluctuations here favor elastic scattering of photons
into the cavity field, giving rise to the formation of patterns
which maximize the intracavity field and which can exhibit
finite compressibility with no long-range coherence. The latter
feature is typical of disordered systems and corresponds to a
Bose-glass (BG) phase for sufficiently deep potentials [20–22].
Here, it emerges due to the nonlocal quantum potential of the
cavity field.

The purpose of the present paper is to provide the details of
the analytical and numerical derivation at the basis of Ref. [18].
We discuss in detail the statistical features which emerge
from the interaction with the cavity field, which induces an
interparticle potential whose range is as large as the system
size. We compare our results with numerical studies, in which
the quantum ground-state properties of bosonic atoms in a
classical bichromatic potential are analyzed. We also report
in detail the experimental parameter regimes where these
dynamics can be found making reference to the setup in
Ref. [7].

This paper is organized as follows. In Sec. II the theoretical
model is introduced. Here, the Bose-Hubbard Hamiltonian is
derived, which includes the infinitely ranged cavity potential
and is at the basis of the numerical simulations. The results
for the ground-state properties of the Bose-Hubbard model are
reported in Sec. III: In Sec. III A we show the results of quan-
tum Monte Carlo (QMC) simulations for the one-dimensional
(1D) lattice, while in Sec. III B the phase diagrams for the
two-dimensional (2D) case are discussed, which are obtained
using a mean-field approach. The limits of validity of the
model and the experimental parameter are analyzed in Sec. IV.
Conclusions are drawn in Sec. V, while the Appendices report
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FIG. 1. (Color online) Ultracold atoms are tightly confined by
an optical lattice of periodicity λ0/2. They are driven by a weak
transverse laser at Rabi frequency � and strongly couple to the mode
of a standing-wave cavity, both at wavelength λ. Since λ and λ0 are
incommensurate, one would expect no coherent scattering into the
cavity mode. The mechanical effects due to multiphoton scattering,
however, give rise to an incommensurate quantum potential, which
mediates an effective long-range interaction between the atoms and
modifies the properties of the quantum ground state. As a result, the
intracavity photon number can be large. The corresponding ground
state can show features typical of a Bose glass.

details at the basis of the derivation of the Bose-Hubbard model
in Sec. II and of the numerical results in Sec. III A.

II. THEORETICAL MODEL

The system we consider is composed of N ultracold
identical atoms of mass m which obey Bose-Einstein statistics.
The atoms are tightly confined by a 2D optical lattice of wave
number k0 = 2π/λ0, with λ0 the wavelength, such that the
spatial periodicity is d0 = λ0/2. An optical dipole transition
of the atoms is driven by a laser and scatters photons into a
mode of a high-finesse resonator, according to the geometry
shown in Fig. 1. The resonator field is a standing wave of
wavelength λ, which is incommensurate with the wavelength
λ0 of the external potential confining the atoms. When quantum
fluctuations can be neglected, i.e., deep in the Mott-insulator
(MI) phase of the external potential, the cavity field is in
the vacuum [19]. Density fluctuations, on the other hand,
induce photon scattering into the cavity field, giving rise to
the formation of patterns which maximize scattering into the
cavity mode.

In order to provide an appropriate description we consider
the Hamiltonian of the system in second quantization. We
derive an effective model for the dynamics of the atomic
external degrees of freedom, from which we obtain a Bose-
Hubbard Hamiltonian. This Bose-Hubbard Hamiltonian is the
starting point of the numerical investigations in Sec. III.

A. Coherent dynamics

The atoms are prepared in an electronic stable state which
we denote |1〉. They are confined on the x-z plane by an
external potential, while the motion along the y axis is here
assumed to be frozen out. For an atom at position r = (x,z)

the external potential reads

Vcl(r) = V0{cos2(k0z) + β cos2(k0x)}, (1)

where V0 is the potential depth along the z direction and
βV0 the potential depth along x. The atoms are at ultralow
temperature T and tightly bound to the potential minima. The
quantum gas density also spatially overlaps with the field of
an optical resonator: An atomic dipole transition with ground
state |1〉 and excited state |2〉 at frequency ω0 couples strongly
with a cavity mode at frequency ωc, wavelength λ, and wave
number k = 2π/λ such that the wave vector is along the z

axis. The intracavity field is pumped by the photons that the
atoms scatter, when these are driven by a transverse laser at
frequency ωL close to ωc, such that it has effectively the same
wavelength λ as the cavity mode. The setup is shown in Fig. 1.

The coherent dynamics of the cavity field and the atomic
internal and external degrees of freedom is governed by
Hamiltonian Ĥ, which we decompose into the sum of the
Hamiltonian for the cavity, the atoms, and their mutual
interaction:

Ĥ = ĤC + ĤA + Ĥint.

The Hamiltonian for the cavity mode reads

ĤC = h̄ωcâ
†â, (2)

where â and â† are the annihilation and creation operators of a
cavity photon, respectively, and obey the commutation relation
[â,â†] = 1.

The Hamiltonian for the atomic degrees of freedom ĤA (in
the absence of the resonator) takes the form

ĤA =
∑
j=1,2

∫
d2r �̂

†
j (r)Ĥj (r)�̂j (r)

+ 2U12

∫
d2r �̂

†
1(r)�̂†

2(r)�̂2(r)�̂1(r) (3)

and is written in terms of the atomic field operator �̂j (r,t),
which destroys an atom in the internal state |j = 1,2〉 at
position r and time t , and obeys the commutation relations
[�̂i(r,t),�̂

†
j (r′,t)] = δij δ(r − r′). Here,

Ĥj (r) = −h̄2∇2

2m
+ V

(j )
cl (r) + Ujj

2
�̂

†
j (r)�̂j (r) + h̄ω0δj,2,

(4)

where V
(j )

cl (r) is the optical potential of the atoms in state
j = 1,2, which for the ground state, j = 1, coincides with Vcl

in Eq. (1), δj,2 is the Kronecker δ, and Uj,l is the strength of
the contact interaction between atoms in state j and atoms in
state l, with j,l = 1,2.

Finally, the Hamiltonian describing the interaction between
the atomic dipoles and the electric fields reads

Ĥint = h̄g0

∫
d2r cos (kz)[�̂†

2(r)�̂1(r)â + H.c.]

+ h̄�

∫
d2r cos(k x)(�̂†

2(r)�̂1(r)e−iωLt + H.c.),

(5)

where g0 is the cavity vacuum Rabi frequency and the term
in the second line describes the coherent coupling between

043618-2



QUANTUM PHASES OF INCOMMENSURATE OPTICAL . . . PHYSICAL REVIEW A 88, 043618 (2013)

the dipolar transition and a standing-wave laser along the x

direction with Rabi frequency �.

B. Heisenberg-Langevin equation and weak excitation limit

Throughout this paper we assume that the photon scattering
processes are elastic. This regime is based on assuming that
the detuning between fields and atoms is much larger than
the strength with which they are mutually coupled. The large
parameter is the detuning,

	a = ωL − ω0, (6)

between the pump and the atomic transition frequency, which
is chosen so that |	a| � γ , where γ is the radiative line width
of the excited state, and so that |	a| � �,g0

√
ncav, namely,

the detuning is much larger than the strength of the coupling
between the ground and the excited state, where ncav = 〈â†â〉
is the intracavity photon number. In this regime the population
of the excited state is neglected.

Photons are elastically scattered into the resonator when the
laser is quasiresonant with the cavity field, which here requires
that |	a| � |δc| with

δc = ωL − ωc. (7)

In this limit the field operator �̂2(r,t) is a function of the cavity
field operator â and of the atomic field operator �̂1(r,t) at the
same instant of time according to the relation [23,24]

�̂2(r,t) = g0

	a

cos(kz)�̂1(r,t) â(t) + �

	a

cos(kx)�̂1(r,t) ,

(8)

which is given here to lowest order in the expansion in 1/|	a|.
Using Eq. (8) in the Heisenberg equation of motion for the
field operator �̂1(r,t) results in the equation

˙̂�1 = − i

h̄
[�̂1,ĤA] − i

�2

	a

cos2(kx)�̂1

− iU0 cos2(kz)â†�̂1â

− iS0 cos(kz) cos(kx)(â†�̂1 + �̂1â), (9)

which determines the dynamics of the system together with
the Heisenberg-Langevin equation for the cavity field:

˙̂a = −κâ + i(δc − U0Ŷ)â − iS0Ẑ + √
2κâin, (10)

where κ is the cavity line width and âin(t) is the input noise
operator, with 〈âin(t)〉 = 0 and 〈âin(t)â†

in(t ′)〉 = δ(t − t ′) [25].
The other parameters are the frequency U0 = g2

0/	a , which
scales the depth of the intracavity potential generated by a
single photon, and the frequency S0 = g0�/	a , which is the
Raman scattering amplitude with which a single photon is
scattered by a single atom between the cavity and the laser
mode [26]. Moreover, in Eq. (10) we have introduced the
operators

Ẑ =
∫

d2r cos(kz) cos(kx) n̂(r) ,

(11)
Ŷ =

∫
d2r cos2(kz) n̂(r),

where

n̂(r) = �̂
†
1(r)�̂1(r) (12)

is the atomic density. The two operators in Eq. (11) are
the spatial integrals of the atomic density weighted by the
fields spatial-mode function and space-dependent intensity,
respectively. In the limit in which the atoms can be consid-
ered pointlike, then n̂(r) ≈ ncl(r) = ∑

j δ(r − rj ) and Zcl =∑
j cos(kzj ) cos(kxj ), Ycl = ∑

j cos2(kzj ). Hence, when the
atoms are randomly distributed in the cavity field potential,
then Zcl → 0. In this case, thus, no photon is elastically
scattered into the cavity mode and the cavity field is in the
vacuum. This behavior can also be found in the situation we
consider in this work, where the atoms are ordered in an array
with periodicity which is incommensurate with the periodicity
of the pump and cavity standing wave. The focus of this work is
to analyze the effect of quantum fluctuations on this behavior.

C. Adiabatic elimination of the cavity field

We now derive an effective Hamiltonian governing the
motion of the atoms inside the resonator by eliminating
the cavity degrees of freedom from the atomic dynamics.
This is performed by assuming that the cavity field follows
adiabatically the atomic motion. Formally, this consists in
a time-scale separation. We identify the time scale 	t over
which the atomic motion does not significantly evolve while
the cavity field has relaxed to a state which depends on the
atomic density at the given interval of time. This requires that
|δc + iκ|	t � 1 while κBT 
 h̄/	t , with kB the Boltzmann
constant [23]. Moreover, the coupling strengths between atoms
and fields, which determine the time scale of the evolution due
to the mechanical effects of the interaction with the light, are
much smaller than 1/	t . In this limit, we identify the field
operator âst, which is defined by the equation∫ t+	t

t

â(τ )dτ/	t ≈ âst,

such that
∫ t+	t

t
˙̂ast(τ )dτ = 0, with ˙̂a given in Eq. (10). The

“stationary” cavity field is a function of the atomic operators
at the same (coarse-grained) time and, in particular, takes the
form

âst = S0Ẑ
(δc − U0Ŷ) + iκ

+ i
√

2κ ¯̂ain

(δc − U0Ŷ) + iκ
, (13)

with ¯̂ain the input noise averaged over 	t . The quantum noise
term can be neglected when the mean intracavity photon
number is larger than its fluctuations, which corresponds to
taking |S0〈Ẑ〉| � κ . In this limit, the field at the cavity output,

âout =
√

2κâst − ¯̂ain, (14)

allows one to monitor the state of the atoms [19,25,27]. Using
Eq. (13) in place of the field â in Eq. (9) leads to an equation
of motion for the atomic field operator which depends solely
on the atomic variables [23,24].

D. Bose-Hubbard model

Denoting the number of lattice sites K , a well-defined
thermodynamic limit is identified assuming the scaling of
the cavity parameters with K according to the relations
S0 = s0/

√
K and U0 = u0/K [23,28]. Under the assumption

that the atoms are tightly bound by the external periodic
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potential in Eq. (1), we apply the single-band approximation
and perform the Wannier decomposition of the atomic field
operator [29,30],

�̂1(r) =
∑
i,j

wi,j (r)b̂i,j , (15)

with the Wannier function wi,j (r) centered at a lattice site
with coordinate (xi,zj ) (with xi = id0, zj = jd0, and d0 =
λ0/2 the lattice periodicity), while b̂i,j and b̂

†
i,j are the

bosonic operators annihilating and creating, respectively, a
particle at the corresponding lattice site. The decomposition is
performed starting from the equation of motion of the atomic
field operator, obtained from Eq. (9) with the substitution
â → âst, Eq. (13). The details of the procedure are reported
in Refs. [23,24] and are summarized in Appendix A. We
remark that wi,j (r) are the Wannier functions obtained for the
dynamics of single atoms in a classical optical lattice, Eq. (1).
Their properties are summarized, for instance, in Ref. [31].

The resulting Bose-Hubbard Hamiltonian reads [18]

ĤBH = −
∑

〈i ′j ′,ij〉
t̂ij,i ′j ′ (b̂†i,j b̂i ′,j ′ + b̂

†
i ′,j ′ b̂i,j )

+ U

2

∑
i,j

n̂i,j (n̂i,j − 1) +
∑
i,j

ε̂i,j n̂i,j , (16)

where the 〈i ′j ′,ij 〉 in the sum denotes the nearest neighbors
of the corresponding lattice site. The on-site interaction, the
on-site energy, and the tunneling rate are defined as

U = U11

∫
d2r wi,j (r)4, (17)

ε̂i,j = ε(0) + δε̂i,j , t̂ij,i ′j ′ = t (0) + δt̂ij,i ′j ′ . (18)

In particular, the on-site energy (tunneling rate) is the sum of a
term which is constant, ε(0) (t (0)), and of a term which depends
on the lattice site and is due to the cavity field. In detail, the
constant terms read

ε(0) = E0 + V0X0, t (0) = −E1 − V0X1,

with

Xs =
∫

d2r wi,j (r)[cos2(k0x) + β cos2(k0z)]wi ′,j ′ (r), (19)

Es = − h̄2

2m

∫
d2r wi,j (r)∇2wi ′,j ′ (r), (20)

such that for s = 0, then (i,j ) = (i ′,j ′), while for s = 1, then
(i ′,j ′) is a nearest-neighbor site. These terms are due to the
dynamics in the absence of a cavity field. In Appendix A we
show that the site-dependent term of the tunneling coefficient,
δt̂ij,i ′j ′ is negligible, so that t̂ij,i ′j ′ ∼ t (0). The site-dependent
part of the coefficient εi,j proves, instead, to be relevant and
reads

δε̂i,j = V1J
(i,j )
0 + h̄s2

0

δ̂2
eff + κ2

�̂δ̂effZ
(i,j )
0,0 , (21)

where the various terms of the sum on the right-hand side
(r.h.s.) have different physical origins (note that 〈δε̂i,j 〉 is real-
valued under the assumption that 〈δ̂eff〉 � κ , as we assume in
what follows). The first term on the r.h.s. is due to the standing

wave of the classical transverse pump, with V1 = �2/	a and

J
(i,j )
0 =

∫
d2r wi,j (r) cos2(k x) wi,j (r). (22)

This coefficient is site dependent along the x direction, namely,
in the direction of propagation of the transverse field, while it
is constant along the z direction when x is fixed. The other term
on the r.h.s. of Eq. (21) is due to the cavity field. In particular,
it depends on the operator

δ̂eff = δc − u0

∑
i,j

Y
(i,j )
0 n̂i,j /K, (23)

whose mean value gives the shift of the cavity resonance due
to the atomic distribution [24], while the coefficients

Y
(i,j )
0 =

∫
d2r wi,j (r) cos2(kz) wi,j (r),

(24)
Z

(i,j )
0,0 =

∫
d2r wi,j (r) cos(kz) cos(kx) wi,j (r)

are the overlap integrals due to the cavity optical lattice and the
mechanical potential associated with the scattering of cavity
photons, respectively. Finally, this term is multiplied by the
operator

�̂ =
∑
i,j

Z
(i,j )
0,0 n̂i,j /K, (25)

which is the sum of the atomic density over the lattice mediated
by the Raman scattering amplitude.

E. Discussion

When the pump is off, � = 0, the Hamiltonian we have
derived reduces to the typical Bose-Hubbard model as it occurs
in systems of ultracold atoms confined by optical lattices
[29,30]. The latter exhibits a superfluid (SF)–MI quantum
phase transition which is controlled either by changing the po-
tential depth V0, and hence the hopping coefficient t , or by the
on-site interaction strength U [29,30]. In this paper we assume
U to be constant and vary t by varying the potential depth V0.

When the transverse laser drives the cavity field by means
of elastic scattering processes, the Hamiltonian depends on the
nonlocal operator, (25), which originates from the long-range
interaction between the atoms mediated by the cavity field.
The physical observable which is associated with this operator
is the cavity-field amplitude,

âst ≈ S0K�̂

δ̂eff + iκ
, (26)

as is visible by using Eq. (25) in Eq. (13), and after discarding
the noise term, assuming this is small. It can be measured by
homodyne detection of the field at the cavity output [32]. The
intracavity photon number, n̂cav = â

†
stâst, reads

n̂cav ≈ S2
0K2

δ̂2
eff + κ2

�̂2 ≡ K
s2

0

δ̂2
eff + κ2

�̂2, (27)

and the intensity of the field at the cavity output provides a
measurement of the operator �̂2, where the second expression
on the r.h.s. uses the chosen scaling of the cavity parameters
with the number of sites. The intracavity photon number
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vanishes when the atomic gas forms an MI state: In this
case 〈�̂2〉MI ∝ (

∑
i,j Z

(i,j )
0 )2 = 0, since there is no coherent

scattering into the cavity mode. Also, deep in the SF phase
〈�̂2〉SF → 0, as one can verify using Eq. (25).

It is interesting to note that, using definitions (25) and (23),
Hamiltonian (16) can be cast in the form

ĤBH = −
∑

〈i ′j ′,ij〉
t (b̂†i,j b̂i ′,j ′ + b̂

†
i ′,j ′ b̂i,j ) + U

2

∑
i,j

n̂i,j (n̂i,j − 1)

+ ε(0)N̂ + V1

∑
i,j

J
(i,j )
0 n̂i,j + h̄s2

0

δ̂2
eff + κ2

K�̂2δ̂eff,

(28)

where we have neglected the site dependence of the tunneling
parameter (the validity of this approximation is discussed in
Appendix A). In this form the Bose-Hubbard Hamiltonian
depends explicitly on the operator corresponding to the number
of intracavity photons [see Eq. (27)], showing the long-range
interacting potential due to the cavity field. This potential either
decreases or increases the total energy, depending on the sign
of 〈δ̂eff〉: When 〈δ̂eff〉 < 0, “disordered” (i.e., aperiodic) density
distributions are expected when the mean density is fractional.
Its sign hence critically determines whether disordered density
distributions are energetically favorable. A similar behavior
has been identified in the dynamics of self-organization in
periodic potentials [28,33,34]. The dependence of the chemical
potential on the operator �̂ is a peculiar property of our model,
which makes it different from the case of a bichromatic optical
lattice [22,35], in which the strength of the incommensurate
potential is an external parameter, independent of the phase of
the ultracold atomic gas.

We further remark that interesting dynamics could be
observed for density distributions such that 〈δ̂eff〉 = 0. In this
regime, bistability due to the quantum motion is expected
[13,14,24,36,37]. In this work we focus on the regime in which
the system is far away from this situation, so that |〈δ̂eff〉| � κ .

III. RESULTS

The Bose-Hubbard model of Eq. (16) is at the basis of the
results of this section. We first consider a 1D lattice along the
cavity axis by taking the aspect ratio β � 1 in Vcl(r) and study
the phase diagram by means of Monte Carlo simulation. We
then analyze the situation where the atoms are ordered in a
2D optical lattice inside the cavity and determine the phase
diagram using a mean-field approach. In both cases, the phase
diagram is found by evaluating the ground state |φG〉 of the
free energy, such that it fulfills the relation

min{〈φG|ĤBH − μN̂ |φG〉}, (29)

where μ is the chemical potential.
In the following the ratio between the typical interparticle

distance d0 and the wavelength of the cavity is chosen to be
d0/λ = 83/157, which is close to 1/2. Although this ratio is
a rational number, nevertheless, for sufficiently small system
sizes (here about 300 sites per axis) the emerging dynamics
simulates the incommensurate behavior. We remark that, for
the chosen number of sites, the number of intracavity photons
is 0 for pointlike scatterers when the density is uniform. We

refer the reader to Refs. [38–40], where the phase diagram of
bichromatic potentials in systems of finite size is discussed.

The parameters of the cavity field, which determine the
coefficients of the Bose-Hubbard Hamiltonian in Eq. (16), are
extracted from the experimental values g0/2π = 14.1 MHz,
κ/2π = 1.3 MHz, and γ /2π = 3 MHz for 87Rb atoms [7,14].
From these values, after fixing the size of the lattice we get
u0 and the range of parameters within which we vary the
rescaled pump strength s0. Finally, the on-site interaction in
the 1D case is U/h̄ ∼ 50 Hz (U11/h̄ = 6.4 × 10−6 Hz m) and
has been taken from Ref. [41]. For the 2D optical lattice, U/h̄

varies between 1 and 3 kHz (U11/h̄ = 5.5 × 10−11 Hz m2) (see
Ref. [42]). A detailed discussion on the validity of Eq. (16) for
this choice of parameters is reported in Sec. IV.

A. One-dimensional lattice

We focus here on atoms confined in the lowest band of a 1D
lattice along the cavity axis. For this geometry the first term
on the r.h.s. of Eq. (21) is a constant energy shift along the
cavity axis and can be reabsorbed in the chemical potential;
that is, μ → μ − ε(0) − V1J0. The 1D Hamiltonian can thus
be written as

Ĥ(1D)
BH = −

∑
i

t (b̂†i b̂i+1 + b̂
†
i+1b̂i) + U

2

∑
i

n̂i(n̂i − 1)

+ h̄s2
0

δ̂2
eff + κ2

K�̂2δ̂eff, (30)

where i labels the lattice site along the lattice and J0 is the
value of integral (22) at the considered string. Here, the on-site
energy term depends on the sites only through cavity QED
effects.

1. Tunneling coefficient t → 0

We first analyze the case in which the tunneling t → 0,
where the atoms are classical pointlike particles localized
at the minima of the external potential. We determine the
mean density n̄ = ∑K

i=1〈n̂i〉/K as a function of the chemical
potential μ and evaluated over the ground state, which is found
by diagonalizing Hamiltonian (30) after setting t = 0 [43].
The μ dependency of the density is shown in Fig. 2 for
different values of the laser-cavity detuning δc = ωL − ωc. The
derivative of the curve gives the compressibility χ = ∂n̄/∂μ.
The two curves in Fig. 2 correspond to two behaviors that
are determined by the sign of the coefficient C = 〈δ̂eff〉 in
Eq. (21). For the parameters we choose this sign is controlled
by the sign of the detuning δc, Eq. (6), namely, by whether
the laser frequency is tuned to the red or to the blue of the
cavity frequency (the parameter choice is discussed in Sec. IV).
When δc > 0, for a finite intracavity photon number the cavity-
induced interaction energy is positive: The configurations
minimizing the energy are thus the ones for which 〈n̂cav〉 = 0,
for which Hamiltonian (30) reduces to the Bose-Hubbard
model for atoms in a periodic potential.

For δc < 0, on the other hand, the cavity-induced interaction
energy is negative: In this case an arrangement of the atoms
that maximizes the intracavity field is energetically favorable.
Concomitantly the incompressible phase at n = 1 shrinks,
while for fractional densities the compressibility becomes
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FIG. 2. (Color online) Mean density n̄ as a function of the chem-
ical μ (in units of U ) at t = 0 in a 1D lattice. Curves were obtained
by an exact diagonalization of Hamiltonian (30) for δc = 5κ (dashed
line) and δc = −5κ (solid line), both for K = 100. Other parameters
are s0 = 0.006κ (with κ = 2π × 1.3 MHz), u0 = 0.8κ , and U/h̄ =
50 Hz. Here, the chemical potential is reported without the constant
shift, i.e., μ → μ − ε(0) − V1J0. The dash-dotted line was evaluated
for the same parameters as the solid line, except with K = 200. It
shows that the results remain invariant as the system size is scaled up.

nonzero and the intracavity field is significantly different from
0. For incommensurate densities the quantum ground state is
twofold degenerate. Figure 3 displays the two corresponding
density profiles (i.e., the local boson occupation numbers ni

as a function of the lattice site index i) for the case δc < 0
and μ = 0, for which n̄ < 1. One configuration corresponds
to particle occupation, ni = 1, at sites with Z

(i,j )
0 > 0 (hence

� > 0) and ni = 0 for the other sites; the other configuration,
to particle occupation at sites with Z

(i,j )
0 < 0 (hence � < 0).

The two configurations correspond to two phases of the cavity
field which differ by π . This behavior is analogous to that
encountered in the self-organization of ultracold atoms in
optical potentials [6,44]. Nevertheless, it must be noted that,
whereas in the system of Ref. [44] the atomic patterns are
periodic and maximize scattering into the resonator, here
scattering into the cavity is maximized by aperiodic density
distributions.

Clearly, even in the presence of finite intracavity fields,
the mean value of the amplitude vanishes because of this

1 10 20 30 40 50 60 70 80 90 100
0

1

Lattice sites’ labels

1 10 20 30 40 50 60 70 80 90 100
0

1

Lattice sites’ labels

n̂i

n̂i

FIG. 3. (Color online) Boson occupation number, ni , as a function
of the site i for the two distributions corresponding to the two ground
states at δc = −5κ and μ = 0. Other parameters are the same as in
the caption of Fig. 2. Filled bars correspond to 〈n̂i〉 = 1; white bars,
to 〈n̂i〉 = 0.

FIG. 4. (Color online) Mean density n̄ as a function of μ (in units
of U ) for a 1D lattice of K = 100 sites for t = 0, δc = −5κ , u0 =
0.8κ , U/h̄ = 50 Hz (with κ/2π = 1.3 MHz), while the values of s0

are reported in the legend. (a) Curves were evaluated by diagonalizing
Eq. (30) after setting 〈�̂〉 = 1/4 (i.e., by artificially removing cavity
backaction). (b) Curves were found for the corresponding parameters
by diagonalizing the full quantum model of Eq. (30). Other parameters
are as described in the caption to Fig. 2.

degeneracy. Therefore, when analyzing the intracavity-field
amplitude we plot the mean value of operator |�̂|. In the rest
of this article 〈�̂〉 ≡ 〈|�̂|〉 and can be either 0 or a positive real
number.

It is interesting to compare the results for our system with
the predictions for a 1D bichromatic lattice with incommensu-
rate wavelengths [38–40]. For this purpose we substitute the
operator �̂ in Eq. (30) with a scalar �̂ → 1/4. This choice is
made in order to obtain similar curves at commensurate
densities n̄ = 0, 1, 2 for s0 = 0.004κ . Figure 4(a) displays
the resulting density as a function of the chemical potential for
different strengths of the cavity field and δc < 0. We observe
that, by increasing s0 in the model where �̂ is a scalar, the
parameter regions for which the particle density is constant,
and hence the gas is incompressible, rapidly shrink [45]. This
trend is significantly slower for the case in which cavity
backaction is taken into account, as shown in Fig. 4(b). In
addition, in the presence of cavity backaction, discontinuities
in the values of the compressibility are encountered and seem
to correspond to the first-order phase transition [46]. This
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t = 0.096 U
t = 0.216 U

FIG. 5. (Color online) (a) Mean density n̄ and (b) expectation
value 〈�̂〉 versus the chemical potential μ (in units of U ) for a
1D lattice at different tunneling values, t/U = 0.014, 0.053, 0.096,
0.216. Other parameters are the same as for the black line at
s0 = 0.008κ in Fig. 4(b). Curves were evaluated by means of a QMC
program described in Appendix B. Dotted vertical lines indicate the
values of μ in Fig. 6.

behavior qualitatively differs from that encountered when
artificially removing the effect of the cavity, as shown in
Fig. 4(a). For the largest value of the laser intensity considered
here, s0 = 0.008κ , the incompressible phases disappear.

2. Phase diagram for t > 0

In the following we discuss our results for t > 0, which
we obtained with a QMC approach [47,48], whose details are
reported in Appendix B. Figure 5(a) displays the averaged den-
sity versus chemical potential for s0/κ = 0.008 and increasing
values of the tunneling rate. For t → 0 one recovers the black
curve in Fig. 4(b), while as t grows the curve is increasingly
shifted towards negative values of μ and tends to a more
smooth curve at larger values of μ. The discontinuities in the
mean density and in the cavity-field amplitude observable in
Fig. 5 lead to a steplike dependency of the compressibility from
μ. The three vertical bars for t = 0.096U indicate the three
values of μ/U which we choose for plotting the density profile,
〈ni〉 vs. i, in Fig. 6. Here, we observe that as μ is increased the
amplitude of the density oscillations increases. The appearance
of clusters where the density has periodicity λ0 = 2d0 is due to
the fact that λ ∼ 2d0: These oscillations locally maximize the
value of 〈�̂〉. Since the ratio λ/d0 is incommensurate (for the
system size we consider), this pattern can only exist locally:
The size of the clusters is in fact limited by the beating between
the two spatial periodicities. In particular, after a number of
sites of the order of the length scale of the beating signal, the
density fluctuations increase and allow the atomic distribution
to reorganize in the external potential. In this way, the fields
emitted by the atoms add up coherently and the intracavity
field is maximized. In all cases considered the on-site energies
exceeds the on-site repulsion.

Figures 7(a) and 7(b) display n̄ and 〈�̂〉, which is pro-
portional to the cavity-field amplitude, as a function of μ.
Curves are evaluated at t = 0.053U and for two different

values of s0, such that the on-site energy is typically smaller
than the on-site repulsion. The case corresponding to the
typical Bose-Hubbard model, which is found here by setting
s0 = 0 (i.e., the pump laser is off), is reported for comparison.
In the presence of a laser incompressible phases are still
found. For the corresponding values of the chemical potential
the cavity field vanishes. We observe, in addition, jumps
in the density between commensurate values of n̄ for which
the intracavity photon number is different from 0. Figure 7(d)
reports the Fourier transform of the pseudocurrent-current
correlation function J (ω) [47,48] for three points in the phase
diagram, which are indicated by the arrows in Fig. 7(c)
(details of the procedure are reported in Appendix B). The SF
density is obtained by the extrapolated value at zero frequency,
ω = 0. In the whole parameter region where the cavity field is
different from 0, we observe that the SF density vanishes. This
behavior, together with the nonvanishing compressibility, is
characteristic of a BG phase. Outside this region the gas is SF.

The density profile, 〈ni〉 versus i, is shown in Fig. 8 for
the three values of μ indicated in Fig. 7(c). In the left plot,
corresponding to the vanishing SF fraction, we observe a
density modulation and thus localized density fluctuations.
These become less localized for μ = 0.04, while in the SF
region, where the number of photons is 0, the density is uniform
along the lattice.

The phase diagram is extrapolated by tracking the behavior
of the density n̄ versus the chemical potential for different
tunneling values. Figure 9 displays the resulting phase diagram
in the μ-t parameter plane. Gray regions indicate the MI states
at densities n̄ = 0, 1, 2; blue regions, a compressible phase with
vanishing SF density, where the number of intracavity photons
is large, while outside these shaded regions the phase is SF.
The effect of cavity backaction is evident at low tunneling,
where 〈�̂〉 > 0: Here the size of the MI regions is reduced and
one observes a direct transition between the MI and the BG
phases. At larger tunneling a direct MI-SF transition occurs
and the MI-SF phase boundary merges with the one found for
s0 = 0: In fact, for larger quantum fluctuations 〈�̂〉 → 0 in the
thermodynamic limit. This feature is strikingly different from
the situation in which the incommensurate potential is classical
[38–40], where the MI lobes shrink at all values of t with
respect to the pure case. Before we conclude this section, some
remarks regarding the determination of the phase diagram must
be made. In fact, we have used the grand-canonical ensemble to
obtain the phase diagram in the presence of cavity backaction.
In the absence of cavity backaction (� → 0) we have used the
canonical approach for QMC simulation, which allows us to
accurately determine the transition borders.

B. Two-dimensional lattice

We now analyze the phase diagram of a 2D lattice of
which one axis coincides with the cavity axis, while in the
perpendicular direction the atoms are pumped by the standing-
wave laser, which is quasiresonant with the cavity field. In this
situation, hence, the site-dependent term proportional to the
laser intensity (V1) in Eq. (21) is relevant. The presence of this
classical field, in fact, significantly affects the phase diagram
even in the absence of the cavity, since its wavelength is taken
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FIG. 6. (Color online) Upper row: On-site density distribution 〈n̂i〉 and local density fluctuations 〈n̂2
i 〉 − 〈n̂i〉2 as a function of the site i. The

line connecting the points serves as a guide for the eyes. Lower row: On-site energy due to the cavity field, δεi (in units of U ). Curves were evalu-
ated for the parameters of the curve in Fig. 5 with t = 0.096U and s0 = 0.008κ . Plots correspond to μ/U = 0.2, 0.7, and 1.2 (from left to right).

to be incommensurate with the periodicity of the confining
optical lattice.

Before we discuss the results, some consideration of the
parameters is in order. For the parameters we take that the
effect of the classical incommensurate potential proportional
to V1 dominates over the cavity incommensurate field in
determining the value of the on-site energy, Eq. (21). In
particular, the sign of the coefficient V1 is determined by
the detuning 	a . The size of the lattice is fixed to vary
about the value K ∼ 300 × 300, then the expectation value
of operator δ̂eff in Eq. (23) is such that it can be approximated
by δ̂eff ∼ −u0

∑
i,j Y

(i,j )
0 n̂i,j /K . This property shows that the

sign of the cavity-induced potential in the Bose-Hubbard
Hamiltonian, Eq. (28), is controlled by the sign of u0 and,
thus, of the detuning 	a between atom and pump. A simple
check of the sign of the coefficients in Eq. (28) shows that
the formation of finite intracavity potentials is energetically
favored when 	a > 0.

We first analyze the behavior of the mean density as a
function of the chemical potential for t → 0 for opposite signs
of 	a , which is found by determining the ground state of the 2D
Hamiltonian in Eq. (28) after setting the tunneling coefficient
t = 0. The results are displayed in Fig. 10. For the set of

parameters considered we observe the appearance of in-
compressible phases. To a very good approximation they
are in the interval of values determined by the classical
incommensurate potential V1, which takes either positive
or negative values depending on whether 	a is positive or
negative. For commensurate density n̄ = 1 and 	a < 0, for
instance, an incompressible phase is found in the interval 0 �
μ � μ1 < U , where μ1 depends on V1. For 	a > 0, instead,
the incompressible phase is in the interval 0 < μ1 � μ � 1.
Differently from the 1D case, the incommensurate phase
shrinks only on one side due to the effect of the classical pump
(while the cavity potential is a small correction). The dominant
effect of the classical field is also visible when analyzing the
curve in the parameter regime where the phase is compressible:
The inset in Fig. 10 shows a zoom of the curve for 	a > 0,
which exhibits various discontinuities in the compressibility.
The finite compressibility is mostly due to the classical
field. The jump of the density at μ′ (with −0.05 < μ′ < 0)
corresponds to the region in which an intracavity potential
is built and is thus due to cavity backaction. Note that this
discontinuity is observed at a shifted value of μ when 	a < 0.

We now determine the behavior at finite t for the 2D lattice
taking 	a > 0 by means of a local mean-field calculation.
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FIG. 7. (Color online) Results of QMC simulations for a 1D
lattice with 74 sites and t = 0.053 with periodic boundary conditions.
(a) Mean density n̄ and (b) modulus of the mean intracavity-field
amplitude 〈�̂〉 versus μ (in units of U ) for s0 = 0.003κ (triangles),
for s0 = 0.004κ (circles), and in the absence of the pump laser s0 = 0
(squares). (c) Zoom of mean density in the region of parameters
with −0.18 � μ � 0.18. (d) Fourier transform of the pseudocurrent-
current correlation function J̃ (ω) for the values of μ/U indicated by
the arrows in (c) for s0 = 0.003κ . Simulation parameters used are
L = 128 and 	τ = 1. Lines show cubic interpolations of the data.
The extrapolated value at zero frequency is the estimation of the SF
density. Other parameters are the same as in Fig. 5.

This is performed by setting b̂i,j = ψi,j + δb̂i,j , where ψi,j =
〈b̂i,j 〉 is a scalar giving the local SF order parameter and δb̂i,j

are the fluctuations with zero mean value. The new form is
substituted in Eq. (16) and the second-order fluctuations of
the hopping term, namely, the terms δb̂i,j δb̂i ′,j ′ , are discarded
[49]. The resulting Bose-Hubbard Hamiltonian in the mean-
field approximation takes the form Ĥ(MF)

BH = ∑
i,j Ĥi,j , where

Ĥi,j = −tηi,j

(
b̂
†
i,j − ψ∗

i,j

2

)
+ H.c. + U

2
n̂i,j (n̂i,j − 1)

+ ε̂i,j n̂i,j , (31)

and ηi,j = ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 is the sum of the
local SF parameters of the neighboring sites. We remark that
cavity backaction makes Hamiltonian Ĥi,j in (31) nonlocal
in the density, since it depends on the collective operator �̂

appearing in ε̂i,j . The local SF order parameters ψi,j are found
by solving the coupled set of self-consistency equations ψi,j =
〈φ(MF)

G |b̂i,j |φ(MF)
G 〉, where |φ(MF)

G 〉 = ⊗K
i,j=1|φi,j 〉 is the ground

state in the mean-field approximation. It is thus the direct
product of the single-site states |φi,j 〉, defined as

|φi,j 〉 =
∞∑

n=0

α(i,j )
n |n〉i,j , (32)

in which |n〉i,j is the state of n bosons at a lattice site with
(xi,zj ), and

∑
i,j |α(i,j )

n |2 = 1. In our numerical implemen-
tation the evaluation of the ground state is repeated till the
averaged SF order parameter ψ = ∑

i,j ψi,j /K converges up
to a tolerance of 0.005. The recursive calculation of the ground
states of the self-consistent Hamiltonian Ĥ(MF)

BH is terminated
once the value of n̄ converges with an accuracy of 2 × 10−4.

Figure 11 displays the mean density as a function of the
chemical potential for the same parameters as the solid curve
in Fig. 10 but for t = 0.01U . The zoom-in on the region of
parameters where the compressibility is different from 0 shows
that also at finite t the curve is discontinuous. The jumps
indicate the interval of values in which there is an intracavity
field (see crosses). The inset displays the corresponding curve
when the pump is far detuned from the cavity field: The
compressibility does not present jumps in the compressible
phase and the mean intracavity field is at least three orders of
magnitude smaller.

Figure 12(a) displays the mean SF order parameter in
the μ-t plane and for density n̄ � 1. Here, the dotted lines
identify the regions where the order parameter takes values
below 0.02. The solid curve indicates where the gap in the
spectrum is different from 0, corresponding to vanishing den-
sity fluctuations 	� = (n2 − n2)1/2, where n = ∑

i,j 〈n̂i,j 〉/K
and n2 = ∑

i,j 〈n̂2
i,j 〉/K (the threshold is set at 0.02). For

comparison, Fig. 12(b) displays the corresponding diagram
when the cavity is pumped far off-resonance, so that the effect
of cavity backaction is very small and practically negligible.
We note that the curve delimiting the MI phase has a very
similar behavior in the presence and in the absence of cavity
backaction, showing that for the parameters considered the
existence of incompressible phases is determined by the
transverse optical lattice. The behavior of the compressible
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î

/U

Lattice sites’ labels

local density fluctuation
density distribution

0

0.2

0.4

0.6

0.8

1

1.2

n̂
i

,
n̂

2 i
n̂

i
2

μB/U = 0.04
n̄ = 0.55

-0.2
0

0.2

0 10 20 30 40 50 60 70

δ
î
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FIG. 8. (Color online) Upper row: On-site density distribution 〈n̂i〉 and local density fluctuation 〈n̂2
i 〉 − 〈n̂i〉2 as a function of the site i. The

line connecting the points serves as a guide for the eyes. Lower row: Mean on-site energy 〈δε̂i〉 (in units of U ). Curves were evaluated for the
parameters of the (red) curve with triangles in Figs. 7(a)–7(c) with t = 0.053U and s0 = 0.003κ . Plots correspond to μ/U = 0, 0.04, and 0.08
(from left to right).

phase with vanishing order parameter, which we here denote
the BG phase, instead varies significantly in the presence of

FIG. 9. (Color online) The phase diagram obtained by QMC
calculation for a 1D lattice with 74 sites for s0 = 0.004κ . Other
parameters are as in Fig. 7. Results are compared with the pure case
(dotted curves).

FIG. 10. (Color online) Mean density n̄ versus μ (in units of U )
for a 2D lattice. The curve was evaluated by exact diagonalization of
Hamiltonian (16) for t = 0, K = 70 × 70, and 	a < 0 (dashed line)
and for t = 0, K = 70 × 70, and 	a > 0 (solid line). Parameters are
|	a | = 2π × 58 GHz, s0 = 0.15κ , δc = −5κ , u0 = 237κ (κ = 2π ×
1.3 MHz). Inset: Zoom of the curve at K = 70 × 70 and 	a > 0 in the
compressible phase. The dashed-dotted line for K = 100 × 100 and
	a > 0 shows, compared with the solid line, that the qualitative be-
havior of the curves remains invariant as the system size is scaled up.
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FIG. 11. (Color online) Mean density n̄ [upper (blue) line] and
〈�̂〉 [lower (green) line with crosses] versus μ (in units of U ) for
a 2D lattice. Curves were evaluated using the local mean field for
t = 0.01U and K = 70 × 70. Parameters are 	a = 2π × 58 GHz,
s0 = 0.15κ , δc = −5κ , u0 = 237κ (κ = 2π × 1.3 MHz). Inset: Same
curves, but for δc = −300κ . Note that the maximum value of 〈�̂〉 is
almost five orders of magnitude smaller than for δc = −5κ .

the cavity potential, as one can observe by comparing
Figs. 12(a) and 12(b). We, finally, point out the region
delimited by the dashed line, which appears only in Fig. 12(a):
This indicates the parameters for which the mean value of �̂

is at least two orders of magnitude larger than outside. In this
region there is an intracavity field, which is due to coherent
scattering by the atoms.

The typical onsite density encountered in this parameter
region, in particular, for the parameters indicated by the white
square in Fig. 12(a), is shown in Fig. 12(c). We compare it with
the case without cavity backaction: the density corresponding
to the white square in Fig. 12(b) is displayed in Fig. 12(d).
Without cavity backaction one observes dark stripes along the
vertical direction at which the density is minimum. The stripes
are almost regularly distributed and are due to the classical
incommensurate potential along the x axis. When cavity
backaction becomes relevant, an incommensurate potential
also appears along the z direction. This intracavity potential
is associated with the appearance of clusters within which
the density exhibits a checkerboard distribution, as shown
in Fig. 12(c). These clusters are the 2D analogy of the
density-wave-like behavior observed in one dimension: they
maximize scattering into the cavity field and their size is
determined by the length due to the beating between the lattice
wavelength and the incommensurate cavity potential.

Since a finite intracavity field is associated with certain
atomic density distributions and, vice versa, such distributions
are due to the backaction of the cavity field, the signal at the
cavity output contains the information on the quantum ground
state of the system and permits us to monitor its properties.
This situation is quite different from the one encountered when
light is used to measure the state of a quantum gas [50,51]:
There, the mechanical effects of the scattered photons heat
the atom and significantly perturb the state. In our case,
instead, the mechanical effects of the cavity photons trap the
atoms in the BG phase. Cavity losses do not significantly
perturb the quantum state of the atoms for the parameter
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FIG. 12. (Color online) (a,b) Order parameters in the μ-t plane
(in units of U ) obtained by the mean-field calculation for a 70 lattice
with periodic boundary conditions. Dotted lines separate the region
with vanishing order parameters, while the solid line identifies the
border for the incompressible MI state at density n̄. Regions with
finite compressibility and vanishing order parameters correspond to
BG phases. The dashed line separates the region where the photon
number is two orders of magnitude larger than outside. Parameters are
s0 = 0.15κ , u0 = 237κ , 	a = 2π × 58 GHz, whereas (a) δc = −5κ

and (b) δc = −300κ . In the latter case the effect of the cavity potential
is expected to be small. Local densities 〈n̂i,j 〉 of the phase diagram at
μ = 0.1U and t = 0.01κ are shown (c) for δc = −5κ and n̄ = 0.57
[white square in (a)] and (d) for δc = −300κ and n̄ = 0.47 [white
square in (b)].

regimes we choose, in which photon number fluctuations
can be neglected. We now analyze the signal at the cavity
output as a function of the tunneling coefficient at a fixed,
fractional density. The corresponding intensity is evaluated by
calculating nout = 〈â†

outâout〉, where âout is given in Eq. (14).
The intensity as a function of the tunneling coefficient t is
reported in Fig. 13(a): Upon increasing the trapping potential
depth V0 (decreasing the tunneling), a sudden increase in the
intracavity photon number is observed. This corresponds to the
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FIG. 13. (Color online) (a) Intensity at the cavity output, nout =
〈a†

outaout〉, as a function of t (in units of U ) for the parameters in
Fig. 12(a) and by fixing n̄ = 0.5. Here, nout is in units of n

(0)
out =

κn(max)
cav , where n(max)

cav = s2
0K/(δ̂2

eff + κ2) is the maximum number of
intracavity photons, obtained when all atoms scatter in phase into
the cavity mode. The curve with circles (right y axis) gives the
corresponding order parameter. (b) Contour plot of the local density
distributions at point (I) in (a), where t = 0.034U , μ = 0.106U ,
〈�̂〉 = 0.136. (c) Local density distributions at point (II) in (a), where
t = 0.039U , μ = 0.122U , and 〈�̂〉 � 0. (d) Local density 〈n̂i,j 〉 as
a function of the site numbers along z for lattice site 20 along x.
The (blue) squares correspond to parameters in (b); (red) circles, to
parameters in (c).

transition to density distributions according to checkerboard
clusters, as Figs. 13(b)–13(d) show in detail. Before this
sudden increase the density distribution is almost flat along
the cavity axis: The atoms delocalize over the lattice sites and
there is no coherent scattering of photons into the resonator.

IV. EXPERIMENTAL PARAMETERS

The Bose-Hubbard Hamiltonian in Eq. (16) was derived
by performing a series of approximations which have been
discussed in detail in the previous section. In this section
we show that existing experimental setups, like the ones in
Refs. [7,14], allow observation of the phases predicted by
Eq. (16). Moreover, we identify here the parameters which are
then used in the numerical plots presented in Sec. III.

The parameters for the cavity field, which determine the
coefficients of the Bose-Hubbard Hamiltonian in Eq. (16), are

extracted from the experimental values g0/2π = 14.1 MHz,
κ/2π = 1.3 MHz, and γ /2π = 3 MHz for 87Rb atoms
[7,14]. The detuning between atoms and the cavity mode at
wavelength λ = 780 nm is about 	a/2π = 58 GHz. For these
parameters U0/π ≈ 3.4 kHz. The corresponding value of S0

depends on the Rabi frequency of the transverse laser. For
instance, for �/2π = 3.08 MHz, then S0/2π = 0.74 kHz. An
external optical lattice trapping the atoms such that the ratio
d0/λ � 83/157 is realized can be made by pumping a cavity
mode at wavelength 737.7 nm. Other ratios can be considered
as well, depending on the cavity setup and the atoms.

1. Parameters

We now check that these values are consistent with the
approximations we made in deriving Eq. (16). For this purpose
we must fix the number of sites, and thus the number of atoms
N , since the total shift and the total scattering amplitude
must be properly rescaled by N . Let K be the number of
sites, such that for densities n̄ = 1 the number of sites is
equal to the number of atoms. For a 1D lattice with K � 300
sites one finds u0/2π = U0K/2π ≈ 1.02 MHz and s0/2π =
S0

√
K/2π ≈ 0.013 kHz or, alternatively, u0 � 0.8κ and s0 =

0.01κ . Other values are obtained by accordingly changing the
Rabi frequency �. We set |δc| = 5κ and observe that for this
value |δc − u0| ≈ |δc|. We now check the order of magnitude
of the coefficients of the Bose-Hubbard model for these param-
eters. Here, s2

0K|δc|/(δ2
c + κ2) � 0.0045κ � 2π × 5.75 kHz.

For these parameters the on-site energy due to the cavity field
exceeds the MI gap when 〈�̂2〉 � 10−3. For a 2D lattice with
K = 300 × 300 sites, then u0 = U0K � 2π × 308.5 MHz or,
alternatively, u0 = 237κ . For �/2π = 2.6 MHz, for instance,
then s0 = S0

√
K � 0.15κ and V1 = �2/	a � 0.78 kHz. For

these parameters, typical values of the density distribution give
|δeff| � 88κ � κ , such that s2

0Kδeff/(δ2
eff + κ2) = 23κ . Here,

already for 〈�̂2〉 � 10−5 cavity backaction has a significant
effect.

2. Spontaneous emission rate

Both in the 1D and in the 2D case, the parameters
give a very small occupation of the excited state: The
probability that an atom is excited scales with Pexc ∼
Kmax(g2

0ncav,�
2)/	2

a , where ncav is the mean intracavity
photon number. For the parameters considered Pexc � 10−3 

1. The corresponding spontaneous emission rate following an
excitation due to the cavity field reads γ ′

c = γg2
0ncav/	

2
a �

2π × 0.17ncav Hz, while spontaneous decay after an excitation
due to the transverse laser scales with γ ′

L = γ�2/	2
a � 2π ×

0.08 Hz.

3. Adiabatic elimination of the cavity mode

We now check the conditions for adiabatic elimination of
the cavity mode for a 1D lattice with 300 sites. The adiabatic
elimination of the cavity field from the atomic equations
of motion requires that one neglect the coupling with the
atoms over the time scale over which the cavity reaches a
“stationary” value, which depends on the instantaneous density
distribution. This introduces a time scale 	t = 1/|δc + iκ|, for
which the inequalities shall be fulfilled, S0

√
ncav	t 
 1 and
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U0ncav	t 
 1. These relations are satisfied for the typical
numbers of intracavity photons we encounter. In addition,
since the atoms must move slowly over this time scale, their
kinetic energy (temperature) must be such that kBT 
 h̄/	t ,
where kB is the Boltzmann constant. The latter condition
is satisfied for atoms at T � 1 μK, which is achieved in
Bose-Einstein condensates.

4. Neglecting quantum noise

Quantum noise in Eq. (13) can be neglected when
Ks2

0〈�̂2〉 � κ2, which corresponds to a depth of the lattice
created by photon scattering that is much larger than single-
photon fluctuations. For the parameters discussed here one
needs a lattice with sites K � 104, which corresponds to
the 2D situation we analyze. The 1D lattice we consider
numerically contains K � 100 sites, however, the scaling of
the behavior with the number of particles shows that our
predictions remain valid for larger numbers, where one can
discard fluctuations in the intracavity photon number.

5. Single-band approximation

In the derivation of the Bose-Hubbard Hamiltonian in
Eq. (16) we have performed an expansion of the field operator,
(15), into Wannier functions of the lowest band of the external
lattice. Discarding the higher bands is correct as long as the
energy gap between the lowest and the first excited Bloch
band 	E = √

4ER|V0| is much larger than the interaction
energy Vint, which here is Vint = U + max |δεi,j | between the
particles [52], where ER = h̄2k2

0/2m is the recoil energy.
Figure 14 displays the ratio 	E/Vint in the limit of zero
tunneling t → 0. We have checked that this ratio remains
lower than unity for the parameters chosen here. Increasing
the laser amplitude �, i.e., increasing s0 (and hence δε̂) leads
to an increase in Vint and thus forces one to take into account
higher Bloch bands.

FIG. 14. (Color online) Ratio of the energy gap between the two
Bloch bands, 	E = √

4ER|V0|, and the interaction energy, Vint =
U + max |δεi,j |, as a function of the chemical potential μ (in units
of U )and at zero tunneling. The single-band approximation is valid,
	E/Vint � 1. The (green) curve with crosses shows the maximum
values of 〈δε̂i,j 〉 at the corresponding values of μ/U . Parameters are
the same as in Fig. 12(a).

6. External harmonic trap

In our treatment we have assumed that the atoms are
confined by an external optical lattice. In several experimental
situations [14], however, the atoms are additionally confined
by a harmonic trap potential. This gives rise to a smooth
position-dependent on-site energy, which will act as the bias
field, removing the degeneracy between the two ground-state
configurations we identify. Moreover, it can lead to the
observation of the characteristic wedding-cake form [29,53].
The influence of cavity backaction on such structures shall be
analyzed in future works.

V. CONCLUSION AND OUTLOOK

Ultracold atoms confined in tight classical lattices and
strongly coupled with a standing-wave cavity mode self-
organize in order to maximize the number of intracavity
photons. This self-organization takes place when the atoms are
driven by a transverse laser field which is quasiresonant with
the cavity mode and whose intensity exceeds a threshold value.
In this paper we have studied the quantum ground state when
the cavity mode has a wavelength which is incommensurate
with the interparticle distance d0 due to the external lattice.
We have shown that the atomic density rearranges in clusters,
within which the atoms form density waves, then locally
maximize, scattering into the cavity mode. The clusters have
a mean size corresponding to the beating wavelength between
the two overlapping fields and are phase locked with one
another, so that the intracavity field is maximum. These
quantum phases are often characterized by vanishing order
parameter and finite compressibility, so that they share several
analogies with a BG phase.

In our theoretical model, the atomic dynamics are described
by a Bose-Hubbard-type Hamiltonian, where the effect of
the cavity field enters by means of a nonlocal term, which
depends on the density at all sites. This term is the cavity-
mediated potential, which depends on the atomic distribution.
In particular, its sign is determined by the detunings between
atoms and fields, which thus controls whether self-organized
structures are energetically favorable. When the sign of the
detuning is appropriately chosen, the cavity field gives rise to
a long-range interaction between the atoms and to new phases,
where the atomic densities self-organize in order to maximize
the intracavity photon number. We remark that this system
constitutes a setting where quantum fluctuations give rise to
effects usually associated with disorder.

An attractive feature of the setup we consider is the
possibility it offers to measure the state of matter by detecting
the cavity light at the output in a nondestructive way. We
have shown that the intensity of the light at the cavity output
provides a signature of the formation of clusters. An open
question is whether and how the quantum phase can be fully
characterized by photodetection, thus providing an alternative
route to other experimental methods [22,54–56]. In this context
we mention that the spectrum of the scattered light can allow
one to determine the quantum phase of atoms across the MI-SF
phase transition [50,51] and give the fingerprint of a BG phase
[57]. Reference [58] reports how to measure the condensate
fraction by photodetection. These concepts shall be revisited
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and further extended to this setup for the purpose of developing
a full quantum state tomography of the self-organized state by
measuring the light emitted by the resonator.
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APPENDIX A: DERIVATION OF THE BOSE-HUBBARD
HAMILTONIAN

In this Appendix we report the basic steps which lead to the
derivation of the Bose-Hubbard Hamiltonian in Eq. (16). The
steps follow methods we developed in Refs. [23,24], We first
substitute the cavity-field operator, (13), after neglecting the
quantum noise term, into the equation for the quantum-field
operator in Eq. (9). Using the Wannier decomposition, we
obtain the equations of motion for operators b̂l,m, which read

˙̂bl,m = 1

ih̄
[b̂l,m,Ĥ0 + Ĥp] − iĈl,m, (A1)

where, for β = 0, 1,

Ĥ0 = U

2

∑
i,j

n̂i,j (n̂i,j − 1) + (E0 + V0X0)N̂

+ (E1 + V0X1)B̂ (A2)

is the Bose-Hubbard Hamiltonian in the absence of a cavity
field and of a transverse laser, with Es and Xs given in
Eqs. (19), while U is defined in Eq. (17). Here, B̂ = B̂x + B̂z

is the hopping term, where B̂x = ∑
i,j (b̂†i+1,j b̂i,j + b̂

†
i,j b̂i+1,j )

describes tunneling between neighboring sites of the lattice
along x, and B̂z = ∑

i,j (b̂†i,j+1b̂i,j + b̂
†
i,j b̂i,j+1) describes tun-

neling between neighboring sites of the lattice along z. The
Hamiltonian Ĥp contains the terms due to the pumping laser
propagating along the x direction and reads

Ĥp = V1

∑
i,j

J
(i,j )
0 n̂i,j + V1

∑
i,j

J
(i,j )
1 B̂x

i,j , (A3)

with V1 = h̄�2/	a , while J
(i,j )
0 is defined in Eq. (22) and

J
(i,j )
1 =

∫
d2r wi,j (r) cos2(k x) wi+1,j (r).

Finally, operator Ĉl,m in Eq. (A1) is due to the coupling with
the cavity field and reads

Ĉl,m = S0

(
S0Ẑ
D̂†

P̂l,m + P̂l,m

S0Ẑ
D̂

)
+ U0

(
S2

0
Ẑ
D̂†

Q̂l,m

Ẑ
D̂

)
,

(A4)

where we have introduced the operators D̂ = (δc − U0Ŷ) + iκ
and

P̂l,m = [b̂l,m,Ẑ]

≈ Z
(l,m)
0,0 b̂l,m + Z

(l,m)
0,1 b̂l,m+1 + Z

(l,m)
1,0 b̂l+1,m

+Z
(l−1,m)
1,0 b̂l−1,m + Z

(l,m−1)
0,1 b̂l,m−1,

Q̂l,m = [b̂l,m,Ŷ]

≈ Y
(l,m)
0 b̂l,m + Y

(l,m)
1 b̂l,m+1 + Y

(l,m−1)
1 b̂l,m−1. (A5)

Operator Ĉl,m cannot be generally written in the form of the
commutator between b̂l,m and a Hermitian operator. However,
in the thermodynamic limit we have chosen, operator (A4) can
be cast in the form Ĉl,m = [b̂l,m,Ĥ(1)

BH] (for details see [24]),
where the operator

Ĥ(1)
BH =

∑
i,j

(
δε̂i,j n̂i,j + δt̂xi,j B̂

x
i,j + δt̂ zi,j B̂

z
i,j

)
(A6)

is different from 0 when the pump laser is on, � > 0. Due
to the incommensurate wavelength of the laser and cavity
mode with respect to the lattice spacing, the coefficients of
the Hamiltonian are site dependent and read

δε̂i,j = V1J
(i,j )
0 + h̄s2

0

δ̂2
eff + κ2

�̂δ̂effZ
(i,j )
0,0 . (A7)

Here, the collective operator �̂ = 1/K
∑

i,j Z
(i,j )
0,0 n̂i,j appears

in the site-dependent parameters. The site-dependent tunneling
terms read

δt̂xi,j = −2h̄
s2

0 δ̂eff

δ̂2
eff + κ2

�̂Z
(i,j )
1,0 − V1J

(i,j )
1 ,

(A8)

δt̂ zi,j = −2
h̄s2

0

δ̂2
eff + κ2

�̂δ̂effZ
(i,j )
0,1 .

In the regime of the parameters we consider (see Sec. IV) for
which max |〈δε̂i,j 〉| ∼ U and |V0| � max |〈δε̂i,j 〉| (hence the
validity of a single-band approximation), |δtx | and |δtz| are
at least eight orders of magnitude smaller than t (0) and are
therefore neglected. Thus in our model, only the coefficient
ε̂i,j can depend on the lattice sites in a relevant way.

APPENDIX B: DETAILS OF THE QMC CALCULATION

For the convenience of the reader, first, we recapitulate the
basics of the discrete imaginary time world-line algorithm [48]
which we use to obtain the 1D results. Next, we describe
how we treat the particular long-range term of our model
numerically.

In order to estimate the equilibrium properties of the system,
the partition function is decomposed at first by

Z = Tre−βHBH = Tr(e−	τHBH )L, (B1)

where 	τ = β/L. In the 1D case, the Bose-Hubbard Hamil-
tonian can be written as a sum of pair Hamiltonians H1d

BH =∑K−1
i=0 Hi,i+1, with

Hi,i+1 = 1
4U [n̂i(n̂i + 1) + n̂i+1(n̂i+1 + 1)]

− t(b̂†i b̂i+1 + b̂
†
i+1b̂i). (B2)
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In the second step, the Hamiltonian is typically divided into a
part of even site labels, which interact with their subsequent
odd-labeled sites, and a complementary odd part, which
contains the remaining interactions (H1d

BH = Heven + Hodd):

Heven =
K/2−1∑

i=0

H2i,2i+1, (B3)

Hodd =
K/2−1∑

i=0

H2i+1,2i+2. (B4)

At this stage, the Suzuki-Trotter [59,60] formula can be
applied:

Z ≈ Tr(e−	τHevene−	τHodd )L, (B5)

which involves an error of the order of O(	τ 3) [61]. Finally,
2L sets of occupation number states are inserted between each
exponential leading to the effective 2D imaginary time path
integral representation of the system:

Z ≈
∑
{nl}

L−1∏
l=0

〈n2l+2|e−	τHeven |n2l+1〉〈n2l+1|e−	τHodd |n2l〉,

(B6)

in which the bosons are described by world lines (Fig. 15). The
system is now described by 2L matrix elements, which consist
of easy calculable two-site problems. The Monte Carlo process
enters now by sampling the world lines via local updates,

{
FIG. 15. Path integral representation of the system. The hori-

zontal expansion displays the spatial dimension whereas the vertical
slices represents the evolution in imaginary time. One valid con-
figuration is described by a set of particle paths (world-lines) that
obey periodic boundary conditions in spatial and temporal direction
and particle conservation in each slice. World-lines can either exhibit
a closed connection from bottom to top (dash line) with so-called
winding number W = 0 or winded around the system [here with
W =+1 (solid line)]. The shaded squares of the checkerboard pattern
indicates the plaquettes, where Hi,i+1 acts and hence hopping can
occur.

where the thermodynamical weights of only four plaquettes
are involved, and optionally global updates, which are needed
to insert and delete straight world lines in the system for the
grand-canonical simulation [47,48].

The quantities, which are diagonal in the occupation-
number representation, like the density (B8) and the local
density fluctuation (B9), can now estimated easily by averag-
ing the occupation numbers n(i,l) over all slices after reaching
equilibrium:

〈n̂i〉 = 1

2L

2L−1∑
l=0

〈n(i,l)〉, (B7)

n̄ = 1

K

K−1∑
i=0

〈n̂i〉, (B8)

κi = 〈
n̂2

i

〉 − 〈n̂i〉2, (B9)

where 〈· · ·〉 denotes the Monte Carlo average. Characterizing
the superfluidity is a bit more cumbersome. It has been
discussed in Refs. [48,62] that the SF density is related to
the mean square of the winding number 〈W 2〉 by

ρs = 〈W 2〉
2β t

K, (B10)

whereas the winding number is defined as the number of world
lines that are wound along the lattice due to the periodic
boundary conditions (see Fig. 15). In order to determine ρs ,
one commonly defines the pseudocurrent, which counts the
number of particles that moves to the right minus the number of
particles moving to the left for every time slice l = [0,2L − 1]:

j (l) = 1

2

K−1∑
i=0

[n(i,l) − n(i + 1,l)]

− [n(i,l + 1) − n(i + 1,l + 1)]. (B11)

The mean-square winding number can now computed via
〈W 2〉 = 1

K2

∑2L−1
l,l′=0〈j (l)j (l′)〉. Due to the fact that the applied

(local and global) Monte Carlo updates conserve the winding
number at every step, W is technically restricted to 0. In order
to determine 〈W 2〉 anyway, one computes the correlator J (l) =
〈j (l)j (0)〉 during the simulation and its Fourier transform
J̃ (ωn) = ∑

l e
i lωnJ (l) afterwards. The value at 0 obeys

J̃ (0) =
〈∑

l

j (l)j (0)

〉
= K2

2L
〈W 2〉, (B12)

which enables the determination of the SF density by means
of Eqs. (B12), (B10), and β = 	τL via the extrapolation:

ρs = lim
ωn→0

J̃ (ωn)

t	τK
. (B13)

In our particular model, (30), the long-range interaction
term

V̂ = h̄s2
0

δ̂2
eff + κ2

K�̂2δ̂eff (B14)
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occurs and has to be treated additionally. We decided to
distribute this term equally to both the even and the odd parts
of the Hamiltonian, namely, Hs = Ûs + T̂s + V̂ /2, where
s = {even,odd}. The (symmetric) Trotter decomposition of
the matrix element of slice l is then given by

〈nl+1|e−	τHs |nl〉 ≈ 〈nl+1|e− 	τ
4 V̂ e− 	τ

2 Ûs

× (1 − 	τT̂s)e
− 	τ

2 Ûs e− 	τ
4 V̂ |nl〉. (B15)

Since V̂ is diagonal in the occupation-number representation,
one can trace the matrix element, (B15), back to the common
case of the short-range Bose-Hubbard model:

〈nl+1|e−	τHs |nl〉 ≈ e− 	τ
4 (V ({nl+1})+V ({nl}))

×
∏
i even
(i odd)

〈
nl+1

i nl+1
i+1

∣∣Hi,i+1

∣∣nl
in

l
i+1

〉
. (B16)

Within the Monte Carlo sampling, the ratios of these matrix
elements have to be evaluated efficiently. In the present model,
one make use of the fact that the interaction is a function of
only two accumulative quantities, which depends linearly on

the occupation numbers:

〈n|V̂ |n〉 = V ({n}) = f

(
1

K

∑
i

Z
(i)
0 ni,

1

K

∑
i

Y
(i)
0 ni

)
,

(B17)

where the (nonlinear) function is

f (�,�) = h̄s2
0

(δc − u0�)2 + κ2
K�2(δc − u0�). (B18)

For the case of single-particle updates, each of these quantities
can be evaluated in constant computer time, if one uses the
auxillary variables � = 1

K

∑
i Z

(i)
0 ni and � = 1

K

∑
i Y

(i)
0 ni

and only tracks the differences caused by the update. For an
update, e.g., |nl,nl+1〉 → |n′

l ,n
′
l+1〉 = |nl + 1,nl+1 − 1〉, one

has to compute

�′ = � + (
Z

(l)
0 − Z

(l+1)
0

)/
K, (B19)

� ′ = � + (
Y

(l)
0 − Y

(l+1)
0

)/
K. (B20)

The desired matrix element 〈n′|V̂ |n′〉 can now be calculated by
applying the new auxillary variable in the function f (�′,� ′).
The auxillary variable has to be allocated for each time slice
separately.
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