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Jamming and flocking in the restricted active Potts model
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We study the active Potts model with either site occupancy restriction or on-site repulsion to explore jamming
and kinetic arrest in a flocking model. The incorporation of such volume exclusion features leads to a surprisingly
rich variety of self-organized spatial patterns. While bands and lanes of moving particles commonly occur
without or under weak volume exclusion, strong volume exclusion along with low temperature, high activity, and
large particle density facilitates jams due to motility-induced phase separation. Through several phase diagrams,
we identify the phase boundaries separating the jammed and free-flowing phases and study the transition between
these phases which provide us with both qualitative and quantitative predictions of how jamming might be
delayed or dissolved. We further formulate and analyze a hydrodynamic theory for the restricted APM which
predicts various features of the microscopic model.
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I. INTRODUCTION

Flocking is a collective phenomenon of active matter [1,2],
occurs in ensembles of self-propelled particles, and denotes
the emergence of ordered motion of large clusters, called
flocks. It plays a significant role in a wide range of systems
across disciplines including physics, biology, ecology, social
sciences, and neurosciences and is abundantly observed in
nature: from human crowds [3,4], mammalian herds [5], bird
flocks [6], and fish schools [7,8] to unicellular organisms such
as amoebae, bacteria [9,10], collective cell migration in dense
tissues [11], and subcellular structures including cytoskeletal
filaments and molecular motors [12–14].

The paradigmatic model to describe the flocking transition
is the Vicsek model (VM) [15–19] in which individual parti-
cles tend to align with the average direction of the motion of
their neighbors. At low noise and high density, the particles
cluster and move collectively in a common direction, which
is the landmark of flocking. The transition from the gas phase
at high noise and low density to the polar-ordered Toner-Tu
phase at low noise and high density, displaying long-range or-
der by coherent motion of all particles, is first order [20]. But,
in contrast to conventional first-order phase transition scenar-
ios, the coexistence phase of the VM shows either multiple
bands of collectively moving particles denoted as microphase
separation [19,21] or a polar-ordered cross sea phase [22].
A large number of variations of the original VM has been
studied (see Ref. [2] for an overview), and recently discretized
versions of it have been analyzed: the active Ising model
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(AIM) [23–25], active Potts model (APM) [25–27], and active
clock model (ACM) [28,29], in which particles move on a
lattice in two (AIM) or more (APM, ACM) discrete directions.
Common to those is that the microphase separation in the
coexistence region is replaced by macrophase separation—a
single collectively moving band [23,24,26–28].

Self-propelled particles with repulsive interactions, such as
active Brownian particles (ABPs) [30], show at high density
and high Péclet number another cluster state, different from
flocking via alignment, denoted as motility-induced phase
separation (MIPS) [31]. Consequently, the interplay between
alignment and repulsive interactions could lead to complex
phase diagrams, as was demonstrated for the VM with re-
pulsive particle interactions [32] or ABPs with alignment
interactions [33,34].

In this paper we address the question of what happens
to the phase diagram of the APM when on-site interactions
between the particles are present, either in the form of hard or
soft core repulsion, or in the form of a maximal occupancy
larger than one of each site, the restricted APM (rAPM).
In analogy with the VM with particle-particle repulsion one
expects the phase diagram for the rAPM to be enriched by
at least one MIPS state, but also other kinetically arrested
states can occur as active lattice gas models with repulsive
interactions [35]. These are sometimes denoted as “jammed
states,” not to be confused with jamming occurring in active
glasses [36].

The paper is organized as follows. In Sec. II we define
the restricted active Potts model and provide details of the
simulation protocols. Section III presents our results for three
different versions of the on-site repulsion: (1) the “maximum
particle per site” (MPS) is restricted to one akin to the active
lattice gas (ALG) [37], (2) hard-core restriction or MPS > 1,
and (3) soft-core repulsion. In Sec. IV we present the hydro-
dynamic description of our model. Finally, we conclude this
paper with a summary and discussion of the results in Sec. V.
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FIG. 1. (above) Sketch of the q = 4 rAPM showing biased hop-
ping (solid bent arrow) to a neighboring lattice site with rate D(1 +
ε) and unbiased hopping (faint bent arrow) along the remaining
directions with rate D(1 − ε/3). Hard-core restriction is represented
by a Heaviside step function �(MPS − ρi ), and soft-core repulsion
is represented by the probability exp(−2βUρi ). Red, green, blue, and
black circles represent particles of state σ = {1, 2, 3, 4}, respectively.
(below) Illustration of on-site flipping of a particle from σ = 3 to
σ = 1 with flipping rate Wflip.

II. MODELING AND SIMULATION DETAILS

We consider an ensemble of N particles defined on a two-
dimensional square lattice of size L2 with periodic boundary
conditions applied on both sides, where L is the linear lattice
dimension. The average particle density ρ0 is then defined
as ρ0 = N/L2. The model is built on the APM [26,27] in
which the dynamics is governed either by the on-site flipping
of the internal spin state or by nearest-neighbor hopping. We
also now propose restrictions on particle hopping. We suggest
three types of mutually exclusive restrictions: a particle is
allowed to hop to its neighbor if (1) that neighbor is empty or
(2) the population of the neighboring site is less than the max-
imum occupation per site (hard-core restriction), or (3) the
hopping is allowed with a probability (soft-core repulsion). A
schematic diagram of this arrangement is shown in Fig. 1.

The spin state of the kth particle on lattice site i is denoted
by σ k

i , with an integer value in [1, q], while the number of
particles in state σ on-site i is nσ

i . The local density on-site i
is then defined by ρi = ∑q

σ=1 nσ
i , counting the total number

of particles on the site. The Hamiltonian of a q-state APM
is defined as HAPM = ∑

i Hi decomposed as the sum of local
Hamiltonian Hi [26,27]:

Hi = − J

2ρi

ρi∑
k=1

∑
l �=k

(
qδσ k

i ,σ l
i
− 1

)
, (1)

where J = 1 is the coupling between the neighboring sites.
We take q = 4. A particle at site i with state σ either flips
to another state σ ′ or hops to any of the neighboring sites
(as permitted by the different restriction protocols). The local
magnetization corresponding to state σ at site i is defined
as mσ

i :

mσ
i =

ρi∑
j=1

qδ
σ,σ

j
i
− 1

q − 1
. (2)

A. On-site alignment or flipping dynamics

A particle at site i with state σ can flip and align with
another state σ ′, and therefore, flipping is a purely on-site
phenomenon. From Eq. (1), one can calculate the local energy
difference before and after the flipping. From Refs. [26,27],
the expression of the energy difference reads

�Hi = Hnew
i − Hold

i = qJ

ρi

(
nσ

i − nσ ′
i − 1

)
. (3)

The flipping is then accepted with the rate

Wflip(σ → σ ′) = γ exp(−β�Hi )

= γ exp

[
−qβJ

ρi

(
nσ

i − nσ ′
i − 1

)]
, (4)

where β = T −1 is the inverse temperature. It should be noted
that for MPS = 1, only one particle is allowed per site, and
consequently, on-site alignment interaction is absent for this
limit of the model. From Eq. (4), nσ

i = 1 and nσ ′
i = 0 leads to

�Hi = 0, and hence we have Wflip(σ → σ ′) = γ as the flip-
ping rate of particles for MPS = 1. For hard-core restriction
and soft-core repulsion, we take γ = 1.

B. Biased diffusion or hopping dynamics

The biased diffusion mechanism is similar to the process
described in Refs. [26,27]. A particle with state σ hops to a
direction p with rate

Whop(σ, p) = D

(
1 + ε

qδσ,p − 1

q − 1

)
, (5)

where ε (0 � ε � q − 1) is the self-propulsion parameter.
At ε = q − 1, particles move purely ballistically, resulting
in complete self-propulsion, while ε = 0 corresponds to the
absence of self-propulsion. However, with ε = 0, particles are
not passive and can still diffuse on the lattice [see Eq. (5)]
but without any bias. This differs from the VM where the
zero-velocity limit corresponds to immobile particles with a
dynamics reminiscent of the XY model. Let us also mention
that for ε > 0, the system is out-of-equilibrium, but the model
is not at equilibrium even when ε = 0. Following Ref. [24],
it can be shown using Kolmogorov’s criterion [38] that the
system does not satisfy detailed balance with respect to any
distribution, i.e., the product of the forward transition rates
differs from that of the reverse order. The system would be
effectively an equilibrium system only when the particles
would cease to move (being jammed), for instance, when the
density is high and hopping restrictions are strong.

Under the purely repulsive hard-core exclusion, biased
diffusion is subjected to the maximum number of particles
allowed per site set by the parameter MPS, and Eq. (5) gets
modified in the following way:

W HC
hop (σ, p) = Whop(σ, p)�(MPS − ρi ), (6)

where �(MPS − ρi ) is a Heaviside step function and is de-
fined as

�(MPS − ρi ) =
{

1, for ρi < MPS
0, otherwise.
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ρi is the particle number at a neighboring site i to which a
hopping is attempted. MPS = 1 is a special case under the
hard-core exclusion category where a move to the neighbor
is possible only if that site is empty. Therefore, unlike hard-
core and soft-core repulsions, on-site interactions between the
particles are absent for MPS = 1. This can also be thought of
as an asymmetric simple exclusion process (ASEP) in which
particles perform biased random walks under the hard-core
repulsion that two particles cannot occupy the same site at
a given time (MPS >1 is the non-lattice-gas variety of the
ASEP). Therefore, MPS = 1 constructs the simple-exclusion
“active lattice gas” [37] version of the APM.

A soft-core repulsion would allow a particle hop to a neigh-
boring site i from a randomly chosen site depending on the
change in the local field. The local field is defined by

V (ρi ) = Uρi(ρi − 1), (7)

where U is an interaction coefficient that can be attractive
(U < 0) or repulsive (U > 0). After hopping, the local field
with ρi + 1 particles at site i becomes V (ρi + 1) = Uρi(ρi +
1). Particle hopping to site i is then accepted with probability

P = min[1, exp(−β�V )]

= min[1, exp(−2βUρi )], (8)

where �V = V (ρi + 1) − V (ρi ) = 2Uρi. Then, for soft-core
repulsion, the modified form of Eq. (5) can be written as

W SC
hop(σ, p) = Whop(σ, p) exp(−2βUρi ). (9)

U symbolizes the restriction strength that regulates parti-
cle accumulation on a lattice site. Note that U � 0 denotes
exp(−β�V ) � 1 which physically signifies an attractive field
where particles can freely crowd into a site similar to the APM
[26]. In this paper we consider only repulsive interactions,
U > 0, acting in the limit U → ∞ like volume exclusion.

C. Simulation details

Simulation evolves in the unit of Monte Carlo steps
(MCSs) �t resulting form a microscopic time �t/N , N be-
ing the total number of particles. During �t/N, a randomly
chosen particle either updates its spin state with probability
pflip = Wflip�t or hops to one of the neighboring sites with
probability phop = Whop�t . For q-state APM, an expression
for �t can be obtained by minimizing the probability of
nothing happens pwait = 1 − (phop + pflip) [26],

�t = [qD + exp(qβJ )]−1. (10)

This hybrid Monte Carlo dynamics was used previously in
the simulations of the AIM [23,24], APM [26,27], and ACM
[28]. Instead of computing �t from the minimum of pwait for
systems that have small transition probabilities and therefore
large pwait (one has to generate random numbers until the
chosen transition is accepted), one can also apply a Gillespie-
like algorithm where one computes the time at which the next
event will take place in the system.

III. NUMERICAL RESULTS

In this section we present the numerical simulation results
of the q = 4 rAPM with MPS = 1, hard-core restriction

FIG. 2. Time evolution snapshots of the rAPM with MPS = 1
displaying MIPS. The right boundary of the diagonal high-density
band is due to particles of state σ = 3 (blue) and σ = 4 (black), and
the left boundary is due to particles of state σ = 1 (red) and σ = 2
(green). Parameters: Pe = 50 and ρ0 = 0.3.

(MPS > 1), and soft-core repulsion. The models are simu-
lated on a square lattice of linear size L = 100 with periodic
boundary conditions, where individual particle states σ =
{1, 2, 3, 4} correspond to the movement directions right, up,
left, and down, respectively. Simulations are performed for
various control parameters: D = 1 is kept constant throughout
the simulations, β = 1/T regulates the noise in the system,
ρ0 = N/L2 defines the average particle density, and self-
propulsion parameter ε dictates the effective velocity of the
particles. Starting from a homogeneous initial condition, the
Monte Carlo algorithm (Sec. II C) evolves the system under
various control parameters until the stationary distribution is
reached. Following this, measurements are carried out and
thermally averaged data are recorded.

A. MPS = 1 (ALG version of the rAPM)

In this segment we present the results for q = 4 state APM
with MPS = 1. Following Ref. [37] and Eq. (4), γ represents
the flipping parameter with flipping probability γ�t . We then
define the Péclet number Pe as

Pe = v√
Dγ

, (11)

where v = 4Dε/3 is the self-propulsion velocity in the hy-
drodynamic limit of the four-state APM [26], and we get
Pe = (4ε/3)

√
D/γ . As Pe is proportional to ε, for small Pe,

diffusion dominates, and the effect of self-propulsion becomes
negligible. Conversely, the effect of activity gets more and
more pronounced as Pe increases.

In Fig. 2 snapshots demonstrate MIPS via the time evolu-
tion of the rAPM starting from a random initial configuration.
Initially, the self-propelled particles (SPPs) nucleate stable
clusters (where domains of all the four states can be vis-
ible) and coarsen and coalesce at later times (t = 105) to
phase separate into a diagonal solid phase that stabilizes in
a steady state and a gas phase, a consequence of MIPS. A
careful examination of the diagonal domain (t = 105) reveals
that the right (upper) and left (lower) domain boundaries are
formed by multiple opposite spin states (e.g., for a diagonal
band spanning from the bottom-right corner to the top-left
corner, the right domain boundary is always formed by par-
ticles with σ = 3 and 4, and the left domain boundary is
formed by particles of σ = 1 and 2). A two-state variant of
this model having σ = 1 and 3 would result in a vertically
jammed band [37], and a combination of σ = 2 and 4 would
result in a horizontally jammed band. Therefore, the high-
density diagonal band arises when the steady state culminates
into orthogonally directed clusters intercepted by oppositely
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FIG. 3. Pe−ρ0 phase diagram (for γ = 10 and varying ε) for
MPS = 1 illustrated by snapshots at time t = 105. As density in-
creases, the system undergoes a transition from the disordered gas
phase to a MIPS state [31] for Pe > 8. At the intermediate densities,
we observe solid diagonal bands where a small section of the band
(Pe = 50, ρ0 = 0.3) is magnified to provide a detailed structure of
the domain.

directed clusters. See the Supplemental Material [39], which
demonstrates the formation of a diagonal band (parameters:
ρ0 = 0.45, ε = 2.7, Pe = 113).

The steady-state behavior of the rAPM with MPS = 1
is illustrated in Fig. 3 by representative late-stage snapshots
as a function of propulsion strength Pe and average particle
density ρ0. As a function of density, the system undergoes
a transition from a disordered gaseous phase to the MIPS
state at both intermediate and large Pe. At intermediate densi-
ties, we observe diagonal high-density bands on a disordered
background, which we discussed in detail in the context of
Fig. 2. As density is increased, the area of the high-density
solid phase also increases by shrinking the area of the gaseous
phase. The boundaries of such a square gaseous region are al-
ways formed by particles of oppositely moving states (σ = 1:
right vertical boundary, σ = 3: left vertical boundary, σ = 2:
up horizontal boundary, and σ = 4: down horizontal bound-
ary) whose preferred hopping directions are unavailable due to
the restriction. Nevertheless, density fluctuation happens from
the domain boundaries to the square void space (therefore,
the center of mass of the jammed clusters shifts position
with time, though slowly). The internal structure of the high-
density phases in both these MIPS states are similar, i.e.,
orientationally disordered (due to the lack of the alignment
interactions), and can be described as amorphous solid. As
mentioned before, the formation of these jammed amorphous

FIG. 4. (a) Pe−ρ0 phase diagram for MPS=1 for the snapshots
in Fig. 3. (b) MIPS phase diagram (for ε = 0.6, 1.5, and 2.4) showing
that the binodals ρlow and ρhigh are independent of ε. The critical Pe
is estimated as Pec � 8 above which the phase separation occurs.

solid phases is a consequence of MIPS. MIPS refers to the
spontaneous phase separation of a system of SPPs with purely
repulsive interactions (and without any attractive interaction)
into coexisting dense and dilute phases. The physics of MIPS
can be understood as slowing of SPPs due to enhanced crowd-
ing when the local density of SPPs increases in some part of
the system due to fluctuation, as shown in Fig. 3.

In Ref. [35] a related model with alignment interactions
extending to the nearest neighbors was studied and shown to
exhibit jams, gliders, and bands, which we do not observe
here since the MPS = 1 case only has hard-core interactions.
In addition, the hopping dynamics in our model depends
on the self-propulsion parameter ε (0 � ε � q − 1), and for
ε < q − 1, we always have a nonzero hopping rate along the
nonpreferred directions, whereas in Ref. [35], a particle can
hop only in the preferred direction.

Phase diagrams of the rAPM with MPS = 1 are shown in
Fig. 4. Figure 4(a) shows the quantitative analog of the dia-
gram shown in Fig. 3 where three different shades signify the
three MIPS states having similar internal domain morphology
but different shapes. We categorized these three MIPS states
as MIPS (I) (small cluster state at large Pe and small ρ0),
MIPS (II) (diagonal high-density state at intermediate ρ0), and
MIPS (III) (high-density state with a square gaseous domain
at large ρ0). At large Pe, as the average density increases, the
system transitions from MIPS (I) state to MIPS (III) state via
the MIPS (II) state of jammed diagonal stripes. The system re-
mains in the gaseous phase at small Pe because of low activity
(diffusion dominates self-propulsion) and then transitions to
the MIPS (III) state at large densities.

We further compute the binodals ρlow and ρhigh for several ε
and plot the resulting phase diagram in Fig. 4(b). The binodals
are the coexisting densities and physically signify the average
densities of the gas and ordered phases at a given Pe and
are estimated by calculating the average densities in different
square boxes inside the high- and low-density regions. From
the diagram we observe that the binodals are independent of ε

up to fluctuations, and the critical Pe is estimated as Pec � 8
above which phase separation proceeds via spinodal decom-
position. The shape of the phase diagram and the qualitative
nature of the coexistence lines are similar to the diagram
obtained for the active lattice gas [37] where the critical Pe
was estimated as Pec � 4.
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FIG. 5. (a), (c) Steady-state snapshots of the four-state rAPM with MPS > 1 in the T − MPS plane. (a) For ε = 0.9, an increase in MPS
induces a transition from the jammed MIPS state to the liquid phase at lower T and to the coexistence region with transversely propagating
liquid band at a higher T . (c) Snapshots for ε = 2.7 where a jam-to-lane transition occurs at large MPS and higher T . Here the coexistence
band is longitudinal. Legend: red (σ = 1): right; green (σ = 2): up; blue (σ = 3): left; black (σ = 4): down; white: empty. Arrows indicate
the direction of motion. (b), (d) T − MPS phase diagrams showing the four phases of rAPM where phase transition happens from the jammed
state to the free-flowing state as either MPS or T is increased. Parameter: ρ0 = 4.

B. Hard-core restriction (MPS > 1)

This section presents our findings of the rAPM with hard-
core restriction where we restrict the number of allowed
particles on a site (MPS > 1). A lower MPS signifies higher
restriction on particle movement.

Figures 5(a) and 5(c), respectively, show steady-state snap-
shots as a function of temperature and MPS for small (ε =
0.9) and large (ε = 2.7) propulsion velocities. In Fig. 5(a)
the system exhibits phase-separated orientationally disor-
dered jammed domains with well-defined ordered domain
boundaries for strong repulsion, whereas it shows features
of unrestricted APM as relaxation on particle movement
increases. By jamming we denote a transition from a free-
flowing state to a high-density kinetically arrested solid
configuration [40] due to MIPS. Although domain boundaries
are ordered, the preferred directions of motion of the particles
on the boundaries are inaccessible due to the hard cutof,f and
as a consequence, the jammed bands are almost immobile.
With more freedom on movement, the system manifests a
liquid phase at low temperature and a liquid-gas coexistence
region (with transversely moving liquid band on gaseous
background) at a relatively higher temperature typical of unre-
stricted flocking models [23,24,26,28]. In this paper, by liquid
we always mean a liquid phase with respect to orientational
order. A further increase in temperature leads to a disordered
gaseous phase (not shown in the snapshots).

Figure 5(c) is analogous to Fig. 5(a) but for higher particle
velocity. Figure 5(c) at low temperature demonstrates jammed
clusters with four orientationally ordered subdomains (as q =
4) in a gridlocked position (where the four quadrants orient
against each other in such a way that the cluster is jammed),
although the ordering does not extend over a long distance
even at long times and the global polarization of such a cluster
is zero (see the Supplemental Material [39]; parameters: ρ0 =
4, ε = 2.7, MPS = 100, β = 1.05). Such a configuration is
almost immobile although there are fluctuations in the bound-
aries. With their preferred hopping directions fully crowded,
particles from the boundaries of such a cluster can hop to sites
in the gaseous region, but the probability of such a jump is
much lower when the particle velocity is high [see Eq. (5)].
At high temperature, however, the morphology of the jammed

cluster changes to a spatially and structurally disordered phase
with well-defined domain boundaries which appears less con-
gested compared to the low-temperature clusters. Both these
less and strongly congested jammed clusters are examples of
MIPS where the difference in the internal domain structure
arises due to the effect of the temperature. MIPS with a
phase-separated cluster of ordered domains having finite char-
acteristic length scales (similar to the snapshot corresponding
to T = 1.1 and MPS = 18) has also been observed for ABPs
and active Janus colloids [41]. For MPS > 1 (and also for
soft-core repulsion; see Sec. III C), we have local alignment
interaction between particles, and although MIPS is tradition-
ally defined as a phase separation of repulsively interacting
particles without any alignment interaction, a phase separation
where particle velocity reduces with increasing local density
can also be attributed to MIPS [42]. It has also been shown
for ABPs with alignment interaction that alignment promotes
MIPS [34,43].

In Fig. 5(c), as restriction is relaxed, enhanced flipping
at high temperature dissolves the congestion observed at
low temperature, and the system makes a transition from
the jammed phase to the coexistence phase exhibiting lane.
During this process, the system also exhibits a band-to-
lane reorientation transition as a function of the particle
self-propulsion velocity, a novel feature of the flocking phe-
nomenon in the unrestricted APM [26,27], where we observe
a transverse band [blue band in Fig. 5(a)] at small particle
velocity whereas a longitudinally moving lane [green band in
Fig. 5(c)] at large velocity.

Figures 5(b) and 5(d) show the T − MPS phase diagrams
for ε = 0.9 and ε = 2.7, respectively. In Fig. 5(b) the com-
bination of temperature and MPS determines four phases of
the rAPM. At large MPS, which facilitates particle hopping
to neighboring sites, the rAPM behaves like the unrestricted
APM [26,27], and we observe the three phases of the un-
restricted APM in the phase diagram: a gaseous phase at
high temperatures, an ordered liquid phase at low tempera-
tures, and a coexistence region at intermediate temperatures,
where the motion of the ordered liquid band is transverse.
At low MPS, the hard-core repulsion prevents collective mo-
tion, resulting in a jammed MIPS state for a large range of
temperatures. As temperature is increased, the jammed region
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FIG. 6. (a), (c) Steady-state snapshots for MPS > 1 in the T −ρ0 plane for (a) MPS = 15 and ε = 0.9 and (c) MPS = 60 and ε = 2.4.
(b), (d) T −ρ0 phase diagrams of the rAPM with hard-core restriction for (b) ε = 0.9 and (d) ε = 2.4. In (b) the liquid phase appears for
intermediate densities but makes a transition to the jammed MIPS state at higher densities, whereas in (d), at large activity, jamming appears
early and the liquid phase is observed only when the temperature is moderately high.

shrinks, and at high enough temperatures, the system always
remains gaseous. These jammed clusters occur either in the
coexistence region or in the liquid region and emerge due to
MIPS.

Figure 5(d) shows T − MPS phase diagram for large par-
ticle velocity. The coexistence region is now characterized
by lanes [26], and for small MPS, the jammed phase occurs
even at very high temperature. As portrayed in both phase
diagrams, fluctuations play a crucial role in the transition of
the jammed phase to the coexistence or liquid phase by en-
hancing the probability of flipping. For ε = 0.9, the hopping
rate to nonpreferred directions is substantial compared to ε =
2.7. Thus, moderate self-propulsion and thermal fluctuations
help break the jammed configuration more efficiently. Another
difference is the MPS range. Particles hop quickly at large
ε. At higher MPS values, tending toward unrestricted APM,
the liquid band of the coexistence region becomes narrower
and more populated with increasing ε. The unrestricted APM
ε − ρ0 phase diagram shows this [26]. As the liquid binodal
value increases with ε (at a fixed T ), so does the cutoff MPS.

In this paper our main goal is to investigate the effect
of various repulsive interactions on particle hopping and on
the consequent flocking dynamics. To do so, we will now
compare the temperature-density and velocity-density phase
diagrams of the unrestricted APM [26,27] with the phase
diagrams obtained with the current model.

Figures 6(a) and 6(c) show steady-state snapshots as a
function of average particle density and temperature with
hard-core repulsion for ε = 0.9 and ε = 2.4, respectively. In
Fig. 6(a), at smaller densities, as the temperature is increased,
the system shows a transition from coexistence region and
polar-ordered phase to the disordered gas phase. No jamming
occurs because the allowed MPS merely restricts particle hop-
ping at these densities. At a larger density, however, jamming
happens for all values of temperature because a larger den-
sity requires higher MPS to avoid jamming. The jamming
observed for large densities shows a MIPS state of ordered
domains at low temperature and a MIPS state of disordered
internal domain with well-defined ordered domain boundaries
at high temperatures.

Figure 6(c) shows the steady-state snapshots with faster
moving particles compared to Fig. 6(a), which was for slow
particles. Notice the difference in the domain morphology of

the MIPS state in Figs. 6(a) and 6(c) for low temperatures
and high density. For ε = 0.9, hopping probability along the
nonbiased directions is substantial compared to ε = 2.4, and
therefore the high-density jammed area is larger and less con-
gested for ε = 0.9. At large particle velocity (ε = 2.4), the
transition to more crowded jamming is enhanced due to large
MPS and high velocity where more particles can now gather
at a site, and the activity along the nonpreferred directions
decreases significantly. As a consequence, the jammed cluster
of four orientationally ordered subdomains in a gridlocked
position now occupy less area, but the congestion is extremely
strong.

The corresponding T − ρ0 phase diagrams are shown in
Figs. 6(b) and 6(d). Figure 6(b) shows that at low temperature
and activity, the system mimics the unrestricted APM behav-
ior with transition from a gaseous to an ordered liquid phase
via the liquid-gas coexistence region as density is increased.
At higher densities, phase transition to the jammed phase
happens from the coexistence region and the ordered liquid
phase due to the hopping restriction through MPS.

With high particle velocity, however, low temperature fa-
cilitates jamming even at intermediate densities [Fig. 6(d)].
Increasing the temperature helps the system to break the con-
gestion, and free-flowing phases such as lane and ordered
liquid phases emerge. A large ε allows particles to self-propel
more along the preferred direction, which is unaltered at low
temperatures, and particles of different states meeting at a
point stay stuck for a long time, causing a jammed MIPS
state at low temperature and high density. A temperature
increase partially dissolves this situation by enhancing flip-
ping as switching the state changes the preferred direction
of propulsion. Both phase diagrams show a high-temperature
gaseous phase unaffected by the control parameters beyond a
critical temperature Tc ∼ 2.3.

Next, we will discuss the ε − ρ0 diagram of the rAPM by
changing the strength of the self-propulsion ε while keeping
the temperature fixed. The resultant steady-state snapshots
and the corresponding phase diagram are shown in Figs. 7(a)
and 7(b), respectively. The snapshots show that the system
exhibits a jam of orientationally ordered subdomains due to
MIPS at high density and motility. High particle motility
promotes particle accumulation at a lattice site, and since
these particles have a very small probability to hop toward

014604-6



JAMMING AND FLOCKING IN THE RESTRICTED ACTIVE … PHYSICAL REVIEW E 108, 014604 (2023)

FIG. 7. (a) Steady-state snapshots and (b) ε−ρ0 phase diagram
of the rAPM with MPS = 20 for T = 1.42 (β = 0.7). (a) An increase
in ρ0 and ε drives the system towards a jammed state. (b) The
phase diagram resembles the unrestricted APM [26,27] for ε < 2
but breaks down at larger ρ0 and ε. The reorientation transition
(transverse to longitudinal band motion) happens at ε ∼ 2.1 and a
liquid-gas phase transition takes place at ρ0 ∼ 3.5 for ε = 0 [26,27].

the nonbiased directions, a higher MPS is required to avoid
jamming. The snapshots also exhibit the three typical phases
of the unrestricted APM at small density and velocity.

The ε − ρ0 phase diagram in Fig. 7(b) shows four regions
similar to the T − ρ0 phase diagrams shown in Figs. 6(b) and
6(d). Excluding the high-velocity limit, the phase diagram
resembles the unrestricted APM diagram [26,27] where the
binodals ρgas and ρliq delimit the coexistence region from the
gas and liquid phases. The reorientation transition, which is
a novel feature of the APM and where the system exhibits
a transverse band motion at small ε and a longitudinal lane
motion at large ε, is also observed. The conventional phase
diagram, however, breaks down at large ε where a transition
to the jammed MIPS state from the coexistence region and the
liquid phase is realized. At ε = 0, similar to the unrestricted
APM [26,27], the system exhibits a direct liquid-gas phase
transition around ρ0 ∼ 3.5.

The systematic variation of magnetization is an indicator
of symmetry breaking. Figure 8 shows the order parameter
against different control parameters where we consider the
maximal magnetization mmax among the four estimates [see
Eq. (2)]. It can be seen from the plots that magnetization
changes abruptly across the phase boundaries denoted by
dashed vertical lines. A fully ordered liquid state is char-
acterized by mmax � 1, and mmax = 0 signifies a disordered

gaseous phase. Figure 8(a) shows mmax versus tempera-
ture where the low-temperature region is characterized by
a nonzero but small mmax signifying a MIPS state (locally
ordered subdomains marginally raise the mmax to a nonzero
value). As the temperature is increased, a phase transition
from the MIPS state to the coexistence region happens with a
sharp jump in the magnetization indicating a first-order phase
transition. Further increase of the temperature shows another
first-order phase transition from the coexistence to the disor-
dered gas phase. mmax against density in Fig. 8(b) also presents
two first-order phase transitions as density is increased, gas to
coexistence and coexistence to MIPS, respectively. The MIPS
state occurs at a relatively high ε in Fig. 8(c) because of the
large MPS value. Figure 8(c) also validates that the transition
to the MIPS state is a first-order transition as demonstrated by
the discontinuous jump of the order parameter at the transition
point.

As discussed so far, jamming in our model is a kinetically
arrested state due to MIPS and MIPS signifies the coexistence
of an active low density gas with a high density jammed clus-
ter, which is reminiscent of equilibrium liquid-gas demixing
and thus can be seen as a first-order transition. As shown in
Fig. 8, we also find the transition from the ordered or flock-
ing phase to the jammed phase as a discontinuous first-order
phase transition. At this point, the system undergoes a sudden
jamming transition, leading to the formation of large-scale
clusters that are kinetically trapped in a glassy state. It has
already been shown in the context of active Brownian parti-
cles that MIPS can be described as an equilibrium-like phase
transition (not just a dynamically trapped state), and MIPS
verify the characteristic properties of first-order liquid-gas
phase transitions [44]. That MIPS-like transitions between
polar liquid and amorphous jammed solid is a first-order tran-
sition has also been shown in the context of motile colloids
both experimentally and theoretically [42]. This observation
is also consistent outside the field of active matter where
experimental data of traffic flow on highways finds the phase
transition from free flow to traffic jam as a first-order phase
transition [45].

One can also distinguish between a jammed state and a
free-flowing state by the mean-square displacement (MSD)
of the high-density clusters or by the number fluctuations
[46]. Besides strongly suppressed number fluctuations a
jammed state can be characterize by the time dependence of
the MSD: either oscillatory [46], because jammed clusters

FIG. 8. Normalized maximal magnetization mmax for the rAPM with MPS > 1 as a function of T , ρ0, and ε in (a)–(c), respectively. mmax

of the coexistence region is larger than the jammed phase. For the disordered gas phase, mmax = 0 and mmax � 1 for the liquid phase.
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FIG. 9. (a), (c) Steady-state snapshots for the rAPM with soft-core repulsion in the T −U plane for (a) ε = 0.9 and (c) ε = 2.7 with fixed
ρ0 = 4. (b), (d) T −U phase diagrams for the parameters of (a) and (c), respectively. Transition to jamming happens at low T and large U with
the fact that high propulsion facilitates jamming.

oscillate around their mean position, or saturating at large
times, because clusters or bands cease to move; see Ap-
pendix A). For high-density MIPS clusters observed in Fig. 3,
we have noticed an oscillatory nature in the MSD (data not
shown).

C. Soft-core restriction

In this section we present the results of the rAPM with
soft-core repulsion paramterized by the value of U > 0 in
Eq. (9). Figures 9(a) and 9(c) depict the late-stage coarsening
of the four-state rAPM in the T − U plane for (a) ε = 0.9
and (c) ε = 2.7. For small propulsion, the system exhibits
jammed clusters composed of four ordered subdomains at
low temperature and large restriction similar to the hard-core
repulsion (see the Supplemental Material [39]; parameters:
ρ0 = 7, ε = 0.9, U = 0.07, β = 1). An increase in the tem-
perature (and low U ) helps to dissolve the jam, and we observe
the three phases of the unrestricted APM [26,27]. Figure 9(c)
is analogous to Fig. 9(a) but for a larger velocity. Due to
the high propulsion and therefore suppressed particle motion
along the nonpreferred directions, the liquid phase (observed
with ε = 0.9) becomes a jammed MIPS state. A rise in the
thermal fluctuation helps to break the clog for small U , but due
to high motility, the jam persists even when the temperature is
high for strong repulsion. As explained before, this jammed
phase is a kinetically arrested jammed phase due to MIPS
where we observe reduction of the active particle current as
density becomes sufficiently high. The structural transforma-
tion of such a kinetically jammed phase with temperature is
demonstrated in Appendix B.

We find, e.g., square or rectangular kinetically jammed
clusters with our model for both hard-core restriction and
soft-core repulsion [see Fig. 5(c) (MPS = 18, T = 1.1) and
Fig. 9(a) (U = 0.16, T = 1)]. The square structure is due to
the four-state version of our model where particles can hop
to only the four nearest neighbors of a square lattice, and it
is through hopping that the neighbors are connected. There-
fore, jammed clusters have a square or rectangular geometry
and contain four locally ordered subdomains for q = 4 and a
hexagonal cluster with six locally ordered subdomains for q =
6 (simulated on a triangular lattice, data are not shown here).
We have also investigated the AIM (q = 2) with soft-core
repulsion and observe a vertically jammed MIPS state similar

to active lattice gas [37]. The effect of soft-core repulsion has
also been investigated on off-lattice flocking models such as
ACM and VM, which manifest MIPS (see Appendix C).

The corresponding T − U phase diagrams are shown in
Figs. 9(b) and 9(d). Figure 9(b) shows a liquid-to-gas tran-
sition via the coexistence region for small values of U as
temperature is raised. An increase of hopping restriction via
U , however, changes this scenario, and we observe a transition
to the jammed phase at low and intermediate temperatures.
At very high temperatures, the system remains in the gaseous
phase. In Fig. 9(d) due to the high velocity of the particles,
jamming dominates the phase diagram, and at low tempera-
ture, the system exhibits jamming even at small U .

Now we will focus on the T − ρ0 and ε − ρ0 phase di-
agrams of the rAPM with soft-core repulsion, and we will
compare them with the similar diagrams obtained for hard-
core rAPM and unrestricted APM.

The soft-core T − ρ0 phase diagrams for low and high
particle velocities along with the steady-state snapshots are
shown in Fig. 10. The snapshots in Figs. 10(a) and 10(c)
tell a story of jamming transition that is consistent with the
findings of hard-core rAPM where we observe jamming for
low temperatures and high densities. Notice the difference in
the internal structure of the jammed clusters in Figs. 10(a)
and 10(c) where for small activity we observe a MIPS state
of orientationally disordered active particles having ordered
domain boundaries whereas the MIPS state exhibits a grid-
locking of ordered subdomains at large activity. The system
behaves as the unrestricted APM at high temperatures. These
observations are presented in the form of phase diagrams in
Figs. 10(b) and 10(d) where we notice that the system repli-
cates unrestricted APM behavior [26,27] for intermediate and
large temperatures. Temperature reduction, on the other hand,
leads to an increase in the jammed region with increasing
densities. For sufficiently high temperatures, the system is
always in a gaseous phase that is unaffected by the control
parameters, and we find the critical temperature Tc ∼ 2.3 is
also independent of the nature of restriction [see Figs. 6(b) and
6(d)]. A comparison of the phase diagram in Fig. 10(d) and the
T − ρ0 phase diagram of the unrestricted APM [26] reveals
that restriction has shifted the unrestricted phase diagram to
the low-density region (similar for the hard-core diagrams too)
where the jamming phase emerges as a fourth phase at low
temperatures, keeping the Tc the same.
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FIG. 10. (a), (c) Snapshots of the rAPM with soft-core repulsion illustrating the different self-organized patterns as a function of T and ρ0

for (a) small ε = 0.9 (U = 0.07) and (c) large ε = 2.7 (U = 0.02). The snapshots signify that low temperature, high density, and large activity
facilitate jamming. (b), (d) T -ρ0 phase diagrams of the rAPM with soft-core repulsion for parameters of (a) and (c), respectively. Apart from
the usual gas and liquid binodals observed in the unrestricted APM, we observe a jammed phase adjoining both coexistence and liquid phases
at large densities and low temperatures.

In Fig. 11 we show the phase snapshots and phase diagrams
in the ε − ρ0 plane. The qualitative nature of the snapshots
shown in Fig. 11(a) is similar to our findings for the hard-core
restriction shown in Fig. 7(a) where at large velocity jams
emerge when density is increased. At small velocities, the
system sequentially shows the gas, coexistence, and liquid
phases as density is increased.

The corresponding phase diagram is shown in Fig. 11(b).
The system behaves nearly diffusively for very small ε; there-
fore, jamming does not exist at this limit. However, with high
activity, due to the restriction on propulsion, a jammed phase
occurs even at small and intermediate densities where the
cutoff ε value to jamming decreases with ρ0. This physically
signifies that for small densities, high activity is needed to
create a jam, whereas for large densities, jamming can happen
at less speed. The conventional ε − ρ0 phase diagram of the
unrestricted APM [26] breaks down at the large velocity-
density limit in Fig. 11(b), whereas in the ε � 1 limit, the two
diagrams are analogous. At the zero activity limit (ε = 0), the
system behaves like the unrestricted APM at small repulsion
where we see a direct liquid-gas transition around ρ0 ∼ 3.5
whereas, at strong repulsion, orientationally disordered self-
segregated domains are observed instead of the ordered liquid
phase (see Appendix D for details).

FIG. 11. (a) Steady-state snapshots of the rAPM with soft-core
repulsion in the ε−ρ0 plane for T = 1.42 (β = 0.7) and U = 0.07.
(b) The soft-core ε−ρ0 phase diagram qualitatively resembles the
hard-core phase diagram of Fig. 7(b) showing that the jamming
threshold decreases with density and activity.

Figure 12 is analogous to Fig. 8 but for soft-core repulsion.
Similar to Fig. 8(a), mmax versus temperature in Fig. 12(a)
shows two first-order transitions (jammed to coexistence and
coexistence to gas) as temperature is increased. mmax versus
ε in Fig. 12(b) shows a jamming transition from an ordered
liquid phase. At small velocities, due to slow propulsion
and large density, the system exhibits a fully ordered liquid
phase, but at large velocities, particles quickly accumulate
locally, and due to large restriction (U ), particle movements
are heavily restricted and therefore we observe a jammed
state. Figure 12(c) shows variation of mmax with U where
small U facilitates particle hopping, which together with slow
particles and a relatively large density gives rise to an ordered
liquid phase. As restriction is enhanced, the system makes an
unsurprised transition to the jammed phase. Similar to Fig. 8,
the jamming transition with the soft-core repulsion is also
first-order, signifying that the specific origin of the restriction
imposed on the particle movement does not alter the nature of
the phase transition.

IV. HYDRODYNAMIC THEORY

In this section we formulate the hydrodynamic contin-
uum theory for the microscopic rAPM. From the microscopic
hopping and flipping rates, we derive the equation for the
probability density function ρσ (x; t ) ∼ 〈nσ

i (t )〉 for a particle
to be at the position x, corresponding to the site i, and in the
state σ at the time t . We keep only the first-order terms in
the |mi| � ρi expansion of the flipping rate (4). To represent
the different hopping restrictions, we introduce a function
f (ρ) where ρ is the total density at the arrival position. The
form of this function is f (ρ) = 1 − sρ for s = 1/MPS, and
f (ρ) = exp(−sρ) for the soft-core rAPM where s = 2βU . In
Appendix E we derive the hydrodynamic equations:

∂tρσ = −∂‖Jσ‖ − ∂⊥Jσ⊥ +
∑
σ ′ �=σ

Kσσ ′ (ρσ − ρσ ′ ), (12)

where the current is

Jσ‖ = −D‖[ f (ρ)∂‖ρσ − f ′(ρ)ρσ ∂‖ρ] + v f (ρ)ρσ , (13)

Jσ⊥ = −D⊥[ f (ρ)∂⊥ρσ − f ′(ρ)ρσ ∂⊥ρ], (14)
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FIG. 12. (a)–(c) Normalized maximal magnetization mmax of the rAPM with soft-core repulsion as a function of T , ε, and U , respectively.
A small nonzero mmax is indicative of a jammed phase, and a comparatively high mmax < 1 characterizes a coexistence region.

with D‖ = D(1 + ε/3), D⊥ = D(1 − ε/3), and v = 4Dε/3,
and the flipping interaction term Kσσ ′ = −γ for MPS = 1 and

Kσσ ′ = 4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2
, (15)

with α = 8(βJ )2(1 − 2βJ/3), for MPS > 1 and soft-core
rAPM. The different expressions of f (ρ) and Kσσ ′ lead to
three different hydrodynamic equations for the three different
studied models, discussed in the next subsections. Without
any restriction for the particle density, i.e., setting f (ρ) =
1 in Eq. (12), the unrestricted APM hydrodynamic equa-
tions derived in Ref. [26] are recovered. Without any loss of
generality, we set D = 1, r = 1, and J = 1 defining the scales
of time, density, and temperature, respectively.

We solve Eq. (12) numerically using FreeFEM++ [47],
a software package based on the finite element method [48].
The equations are integrated over discrete time tn = n�t , at
which the density is denoted as ρ (n)

σ (x). The initial density
ρ (0)(x) is taken as a high-density bubble or stripe on a low-
density background. The final time is denoted as tmax. The
weak formulation of Eq. (12) is the integral equation∫

�

dx
∑

σ

[
wσ ρ (n+1)

σ − �t (∂‖wσ ∂‖Jσ‖ + ∂⊥wσ ∂⊥Jσ⊥)
]

− �t
∑
σ ′>σ

(wσ − wσ ′ )Kσσ ′
[
ρ (n+1)

σ − ρ
(n+1)
σ ′

]

=
∫

�

dx
∑

σ

wσ ρ (n)
σ , (16)

where ρ (n)
σ (x) is the known particle density at time tn,

ρ (n+1)
σ (x) is the unknown particle density at time tn+1, and

wσ (x) is a test function. Kσσ ′ and the restriction terms in Jσ‖
and Jσ⊥ are calculated at time tn to have a linear equation of
ρ (n+1)

σ (x). This integral equation is solved over a triangular
mesh grid with N vertices on the boundaries. The densities
are calculated on the nodes of the mesh grid and interpolated
linearly over the space with Lagrange polynomials. The pre-
cision of the numerical solution is increased for a narrow grid
(N � 1) and small time increments (�t � 1), and the com-
putational time has a complexity proportional to N 2/�t . It
takes about 48 hours for N = 75 and tmax/�t = 50 000 time
steps, on a 4 GHz processor. The FreeFEM++ codes used to
compute the numerical solutions are available in Ref. [49].

A. MPS = 1 (ALG version of the rAPM)

For MPS = 1, with f (ρ) = 1 − ρ and Kσσ ′ = −γ ,
Eq. (12) becomes

∂tρσ = D‖∂‖[(1 − ρ)∂‖ρσ + ρσ ∂‖ρ]

+ D⊥∂⊥[(1 − ρ)∂⊥ρσ + ρσ ∂⊥ρ]

− v∂‖[(1 − ρ)ρσ ] − γ (4ρσ − ρ). (17)

The only homogeneous solution is ρσ = ρ0/4, corresponding
to a disordered phase. In Appendix F we perform the linear
stability analysis of this solution, leading to the spidodals:

ϕ± = 3

4
± 1

4

√
1 − 64

Pe2 , (18)

where Pe = v/
√

Dγ is the Péclet number. Note that the Pé-
clet number must be larger than Pec = 8 to observe MIPS.
The MIPS state is a high-density diagonal band on a low-
density phase, whose densities are denoted by ρhigh and ρlow,
respectively. Figure 13(a) shows the numerically obtained
phase-separated density profile for ρ0 = 0.75 and Pe = 10.
The right boundary of the diagonal high-density band is
mainly populated by state σ = 2 (top) and σ = 3 (left) and
the left boundary by state σ = 1 (right) and σ = 4 (down).
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FIG. 13. (a) MIPS density profile for MPS = 1, ρ0 = 0.75 and
Pe = 10, obtained numerically with FreeFEM++ for N = 100,
�t = 0.01, and tmax = 1000. The density of the two disordered
phases is ρlow � 0.391 and ρhigh � 0.941. (b) Velocity-density phase
diagram for MPS = 1, computed with the numerical solutions of
Eq. (17), in a square domain of linear size L = 50, for three values
of ε. The dotted line shows the spinodals given by Eq. (18), and the
solid line represents the theoretical value of the binodals calculated
in Appendix F.
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This leads to the relation ρ1 + ρ3 = ρ2 + ρ4, irrespective of
the direction in which the diagonal band is formed.

In Appendix F we also derive two relations linking im-
plicitly ρlow and ρhigh, and demonstrate that the binodals are
independent of ε. The demonstration is similar to the one
made in Ref. [37], for an active lattice gas with a slightly dif-
ferent hydrodynamic equation. From these two relations and
for Pe = 10, we get ρ th

low � 0.389 and ρ th
high � 0.927, compa-

rable to the densities numerically obtained in Fig. 13(a). At the
large Péclet limit, we derive the asymptotic behavior: ρlow �
−(8/Pe2) ln(16/3Pe2) and ρhigh � 1 − 16/3Pe2. Figure 13(b)
shows the velocity-density phase diagram computed with the
phase-separated density profiles, validating the independence
of the binodal densities ρlow and ρhigh on ε. The spinodal and
binodal lines obtained analytically are also represented.

B. Hard-core restriction (MPS > 1)

For MPS > 1, with f (ρ) = 1 − sρ, Eq. (12) becomes

∂tρσ = D‖∂‖[(1 − sρ)∂‖ρσ + sρσ ∂‖ρ]

+ D⊥∂⊥[(1 − sρ)∂⊥ρσ + sρσ ∂⊥ρ]

− v∂‖[(1 − sρ)ρσ ] +
∑
σ ′ �=σ

Kσσ ′ (ρσ − ρσ ′ ), (19)

with Kσσ ′ defined in Eq. (15) and s = 1/MPS. The ho-
mogeneous solutions, given by the solutions of Kσσ ′ (ρσ −
ρσ ′ ) = 0, are those of the unrestricted APM derived in
Refs. [26,27]. The disordered homogeneous solution ρσ =
ρ0/4 corresponds to a gas phase. The ordered homogeneous
solution is given by the relation Kσσ ′ = 0, corresponding to a
liquid phase moving in a given direction. For a polar liquid
along the state σ = 1, the densities are ρ1 = ρ0(1 + 3M )/4
and ρ2,3,4 = ρ0(1 − M )/4 with the magnetization M:

M = βJ

α

[
1 ±

√
1 + αμ0

βJ

]
, (20)

with μ0 = 2βJ − 1 − r/ρ0. This ordered homogeneous solu-
tion exists only when αμ0 + (βJ )2 > 0, i.e., for density larger
than

ρ∗ = 8(1 − 2βJ/3)r

1 + 8(2βJ − 1)(1 − 2βJ/3)
. (21)

Additionally, the temperature must be below Tc = (1 −√
22/8)−1 � 2.417. For ε = 0, the transition between the gas

phase (M = 0) and the liquid phase (M > 0) is discontinu-
ous at density ρ∗. For ε > 0, a first-order liquid-gas phase
transition occurs, with a phase separation made by a liquid
stripe on a gas background. Two kinds of phase-separated
profiles can be observed: a transverse or longitudinal band
motion for which the liquid phase is mainly populated by one
state, and a jammed state formed by two locked liquid bands
mainly populated by oppositely moving states (σ = 1, 3 or
σ = 2, 4). Figure 14(a) shows a numerically obtained jammed
density profile, for β = 0.75, ρ0 = 2, ε = 2.7, and MPS = 5.
For x < 0, the liquid band is mainly populated by the right
state σ = 1, while for x > 0 it is mainly populated by the left
state σ = 3, explaining why the band is jammed.

Figure 14(b) shows the velocity-density phase diagram de-
termined by the numerical solutions of Eq. (19) for MPS = 6
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FIG. 14. (a) Jammed density profile for the hard-core rAPM with
MPS = 5, for β = 0.75, ρ0 = 2, ε = 2.7, obtained numerically with
FreeFEM++ for N = 75, �t = 0.02, and tmax = 1000. (b) Velocity-
density phase diagram for the hard-core rAPM, computed with the
numerical solutions of Eq. (19), for β = 0.75 and MPS = 6 in a
square domain of linear size L = 50.

and β = 0.75. The topology of this phase diagram agrees well
with the what we obtained for the microscopic model shown
in Fig. 7(b), with jammed state at large velocities and densi-
ties, and flocking band motion at low velocities and densities
(transverse band motion for ε < 1.9 and longitudinal band
motion for ε > 1.9). Note that the difference in the relevant
density ρ0 region is due to the different MPS values used
[MPS = 20 in Fig. 7(b), MPS = 6 here].

In Appendix G we perform the linear stability analysis
of the disordered and ordered homogeneous solutions of
Eq. (19). These eigenvalues allow the determination of the
velocity for which the reorientation transition occurs, denoted
ε∗, as a function of MPS and T < Tc. ε∗ is a decreasing func-
tion of MPS, meaning that ε∗ increases with the restriction.
However, the existence of the jammed state cannot be derived
from the linear stability analysis of a homogeneous solution.

C. Soft-core restriction

For soft-core rAPM, with f (ρ) = exp(−sρ), Eq. (12) be-
comes

∂tρσ = D‖∂‖[exp(−sρ)(∂‖ρσ + sρσ ∂‖ρ)]

+ D⊥∂⊥[exp(−sρ)(∂⊥ρσ + sρσ ∂⊥ρ)]

− v∂‖[exp(−sρ)ρσ ] +
∑
σ ′ �=σ

Kσσ ′ (ρσ − ρσ ′ ), (22)

with Kσσ ′ defined in Eq. (15) and s = 2βU . The homogeneous
solutions, given by the solutions of Kσσ ′ (ρσ − ρσ ′ ) = 0, are
those of the unrestricted APM derived in Refs. [26,27], as
well as those explained for the hard-core rAPM in Sec. IV B.
Similarly, a first-order liquid-gas phase transition occurs, with
a phase-separation made by a liquid stripe on a gas back-
ground. The same two kinds of phase-separated profiles can
be observed: a transverse or longitudinal band motion for
which the liquid phase is mainly populated by one state, and
a jammed state formed by two locked liquid bands mainly
populated by oppositely moving states (σ = 1, 3 or σ = 2, 4).
Figure 15(a) shows a numerically obtained jammed density
profile, for U = 1 β = 0.75, ρ0 = 2, ε = 2.7. For x < 0, the
liquid band is mainly populated by the right state σ = 1,
while for x > 0 it is mainly populated by the left state σ = 3,
explaining why the band is jammed.
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FIG. 15. (a) Jammed density profile for the soft-core rAPM with
U = 1, for β = 0.75, ρ0 = 2, ε = 2.7, obtained numerically with
FreeFEM++ for N = 75, �t = 0.1, and tmax = 5000. (b) Velocity-
density phase diagram for the soft-core rAPM, computed with the
numerical solutions of Eq. (22), for β = 0.75 and U = 0.25 in a
square domain of linear size L = 50.

Figure 15(b) shows the velocity-density phase diagram de-
termined by the numerical solutions of Eq. (22), for β = 0.75
and U = 0.25. The topology of this phase diagram agrees
well with what we obtained for the microscopic model shown
in Fig. 11(b), with a jammed state at large velocities and
densities, and flocking band motion at low velocities and
densities (transverse band motion for ε < 2.1 and longitudinal
band motion for ε > 2.1). Note that the difference in the
relevant density ρ0 region is due to the different U values used
[U = 0.07 in Fig. 11(b), U = 0.25 here].

In Appendix H we perform the linear stability analysis
of the disordered and ordered homogeneous solutions of
Eq. (22). These eigenvalues allow the determination of the
velocity for which the reorientation transition occurs, denoted
ε∗, as a function of U and T < Tc. ε∗(U ) increases for small
U and decreases to zero at large U . Again, the existence of
the jammed state cannot be derived from the linear stability
analysis of a homogeneous solution.

V. SUMMARY AND DISCUSSION

To summarize, we have analyzed a discretized flocking
model with volume exclusion and showed that the interplay
between alignment and on-site repulsion produces a vast spec-
trum of self-organized patterns ranging from jammed clusters
or bands, and we have argued that they are a manifestation of
MIPS, which relies on the reduction of particle velocity with
increasing local density [42]. Generally, it has been observed
that velocity alignment interactions promote MIPS [34,43]. In
the rAPM considered here, alignment is even necessary for
MIPS to occur, since the jammed clusters disappear in the
gas phase for T → ∞, i.e., vanishing alignment. For increas-
ing alignment, i.e., small T , either orientationally ordered
domains appear in the jammed clusters, arranged in such a
way that the cluster configuration is kinetically arrested (up
to fluctuations), or, depending on density and self-propulsion
strength, the jammed clusters dissolve into a orientationally
ordered liquid phase, both manifestations of flocking.

The phase diagrams of the rAPM with MPS = 1 and those
for MPS > 1 or soft-core repulsion turn out to be different due
to the absence of alignment interactions for MPS = 1. The
latter model is equivalent to an active lattice gas with persis-
tent walkers instead of diffusing particles. Consequently, the

rAPM with MPS = 1 is always in an orientationally disor-
dered (gas) phase in which various MIPS or jammed states
occur. For MPS > 1 or soft-core repulsion in addition to vari-
ous jammed states the three typical flocking phases occur: the
orientationally disordered gas, liquid-gas coexistence (flock-
ing phase), and the orientationally ordered liquid.

Part of the phenomenology we describe in our paper has
been seen in an experiment of a colloidal-roller system [42],
where the system undergoes a phase transition from a gas
phase to a solid jam phase via flocking as the packing fraction
of the rollers is increased. It would be interesting to study the
effects of volume exclusion on the transport and jamming of
active particles in disordered landscapes. Quenched disorder
is abundant in all natural systems and is known to reduce the
effect of local interactions. The altered composition may have
an impact on the universal behavior of unrestricted systems, in
both equilibrium and out-of-equilibrium conditions [50–52].
It is also known that active matter systems with random
quenched disorder undergo activity-induced jamming [53,54].
Preliminary results for the restricted and the unrestricted APM
with quenched disorder reveal interesting emergent collective
behaviors [55]. Another extension of our research would be
to look into the influence of soft-core constraints on active
systems with continuous symmetry, such as the Vicsek model
where initial investigation suggests an arrest of the flocking
state with the emergence of MIPS jammed clusters.
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APPENDIX A: MEAN-SQUARED DISPLACEMENTS
(MSDS) OF PARTICLES IN THE JAMMED STATE

Here we explore the appearance of arrested states through
measurements of the MSD of individual particles. The MSD
of N number of particles in the system at time t (which
quantifies how the particles move from their initial positions
under various volume exclusion effects) is defined as

R2(t ) = 1

N

N∑
i=1

|ri(t ) − ri(0)|2, (A1)

where ri(t ) is the instantaneous position of the ith particle
at time t . For ballistic motion, R2 ∼ t2, while for diffusive
motion R2 ∼ t . For an arrested or jammed state, however,
MSD is proportional to t x with x ∼ 0 [56].

In Fig. 16(a) we show R2 vs t (on a log-log scale) for
the unrestricted APM [26] as a function of β (T −1). At
small β, which physically signifies the gaseous phase, the
system obeys the diffusive growth R2 ∼ t , whereas, for small
temperature, where the system exhibits the liquid phase, we
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FIG. 16. MSD R2(t ) vs t (on a log-log scale) for several β.
(a) Unrestricted APM and (b) rAPM with hard-core repulsion.

observe two distinct regimes in the MSD. The small t limit
is characterized by a diffusive regime with R2 ∼ t growth,
whereas a ballistic growth regime characterized by the power
law R2 ∼ t2 is observed at large t . In the liquid phase, advec-
tive force (self-propulsion) plays a crucial role as the system
exhibits the ballistic growth regime, which is a collision-free
regime in which particles travel freely after a majority of the
particles switch in the same state.

MSD for the rAPM with hard-core repulsion is shown in
Fig. 16(b). At small β, the MSD shows a diffusive growth
as the system is in the gas phase. For large β, the system
exhibits the liquid phase, and we observe a crossover from
the diffusive growth at small t to a ballistic growth at large
t . For intermediate β, the small t diffusive growth regime is
followed by a plateau in the MSD at large t , which signifies a
jammed or arrested state. A similar crossover in MSD can be
seen for a random walker confined in a box, where the MSD
crosses over from a diffusive growth (R2 ∼ t) to a plateau once
the walker sticks to the walls [56].

The MSD plots signifying the jammed phase describe the
fact that initially the particles (the system is initially prepared
homogeneous) do not feel the effect of the hopping restric-
tions and move diffusively, but as the system coarsens with
time, particles feel the restricted environment, and finally, the
system reaches the steady state jammed phase.

APPENDIX B: STRUCTURAL CHARACTERISTICS AND
TRANSFORMATION OF A JAMMED PHASE

Figure 17 displays the temperature-dependent structural
changes of a jammed cluster. The jammed phase observed in

this study is a kinetically arrested phase due to MIPS, where
the particles cease to move due to steric repulsion. The active
particles in this study interact only repulsively (when the
MPS is reached or when dealing with soft-core), and as local
density increases, the speed of the motile particles decreases,
which results in a phase-separated state with a dilute active gas
coexisting with a dense jammed cluster. At low temperatures,
this jammed cluster comprises four orientationally ordered
subdomains in a completely gridlocked position, but as tem-
perature is increased, the overall area of the jammed cluster
shrinks and the internal structure of the cluster becomes ori-
entationally disordered. This happens because as the on-site
ferromagnetic alignment strength between the particles de-
creases with temperature, the flipping probability increases,
which helps the particles to change their predominant hopping
direction and break from the gridlock.

APPENDIX C: EFFECT OF SOFT-CORE REPULSION ON
ACTIVE MODELS IN CONTINUUM

Our results are not artifacts of the discrete space we con-
sider, and to establish that we investigate the effect of soft-core
repulsion on active models which are defined on an off-lattice
geometry such as the ACM [28] and the VM [19]. We take
the four-state ACM with density-dependent motility where
particle hopping is allowed with a probability exp(−βUni ) (U
is the strength of the steric repulsion and ni is the number of
particles in the unit neighborhood of particle i which is trying
to propel). For such a setup, a jamming transition reminiscent
of the rAPM is observed from a flocking phase to a MIPS in-
duced jammed phase as the repulsion strength U is increased.
The MIPS state of four-state ACM with a soft-core repulsion
is shown in Fig. 18(a), where the particle orientations signify
that the internal structure of the cluster is disordered. With
an off-lattice geometry, the domain boundaries of the jammed
cluster are not as sharp as one observes with the lattice geom-
etry, but apart from this apparent difference, the underlying
physics of jamming is the same.

Our findings can also be extended to continuum to the
active XY model (q → ∞) [28] or the VM [19] with soft-core
repulsion. For instance, our study of the VM with soft-core
repulsion, where the particle velocity is modified as v0 →
v0 exp(−Uni ), demonstrates that such a configuration pro-
duces circular or elliptical high-density jammed clusters with
particle orientation continuously distributed between [−π, π ]
[see Fig. 18(b)]. This jammed phase is a MIPS cluster typical

FIG. 17. Morphological characteristics and transformation of jammed clusters in the rAPM with soft-core interactions as a function of
temperature. Parameters: U = 0.16, ε = 2.7, and ρ0 = 4.
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FIG. 18. Jammed clusters in the active clock model and Vicsek model with soft-core repulsion: (a) four-state ACM [28] (β = 0.9, ρ0 = 3,
ε̄ = 0.9, and U = 0.05) and (b) Vicsek model [19] (noise η = 0.2, ρ0 = 2, v0 = 0.5, and U = 0.07). Colorbar represents particle orientation,
which for four-state ACM particles can have only four discrete orientations: 0, π/2, π , and 3π/2, whereas for VM, a particle can have any
orientation in [−π, π ].

of repulsively interacting active Brownian particles (ABP)
[57] and happens above a threshold value of U , below which
the system exhibits flocking behavior. A similar kind of
density-dependent velocity was introduced in a model of ac-
tive Brownian particles with alignment interaction [58], where
at large restriction the system was shown to exhibit an aster-
like jammed stationary phase. In both cases the origin lies in
the slowdown of particles due to crowding jamming.

APPENDIX D: ZERO ACTIVITY (ε = 0) LIMIT
OF THE RAPM

In Fig. 19 we show the late-stage representative snapshots
of the rAPM with soft-core repulsion in the U − ρ0 plane for
the zero velocity (ε = 0) limit where particle movement is
controlled by diffusion (particles hop without any bias). For
small repulsion, the system goes through a direct gas-liquid
phase transition without a coexistence regime similar to the
unrestricted APM [26]. With strong repulsion, however, the
system exhibits orientational disorder at high densities, where
the system forms a domain state without any long-range order
because at large density and strong repulsion, particle hopping
is impeded (“jammed”) and particles align their states in small
clusters. The average size of these domains does not grow in
time, i.e., the system reaches a stationary state with a specific
average domain size which can be quantified following a
characteristic length scale analysis.

Note that at large U and the ρ0 limit, the active particles
become nearly immobile, and at this limit our model is equiv-
alent to the equilibrium four-state Potts model on a random 2D
graph, which should show a long-range order, but our model

clearly does not exhibit that. This is because the equilibrium
four-state Potts model is defined with nearest-neighbor in-
teraction, which helps in domain coarsening, whereas in the
soft-core rAPM with large U and ρ0, the probability that
an edge is present between nodes in the network following
the soft-core hopping acceptance probability exp(−2βUρ0)
is nearly zero. Therefore, at this limit, the system behaves
as a disconnected random 2D graph and does not display
long-range order.

We have also checked that the order parameter at ε = 0 for
small U values (U = 0.05, 0.1, 0.15) shows a discontinuous
jump at a critical density (ρ∗ ∼ 3.5 for β = 0.7) similar to the
unrestricted APM.

APPENDIX E: DERIVATION OF HYDRODYNAMIC
EQUATIONS

In this section we will derive the hydrodynamic equa-
tions for the q-state rAPM. In Ref. [27] we presented the
detailed hydrodynamic description of the unrestricted APM
and their numerical solutions. In the rAPM, as we have
modified only the rule of hopping dynamics of the parti-
cles (keeping the flipping rule unchanged), we present here
the derivation of the hydrodynamic equations only for the
hopping term in detail. To represent the different hopping
restrictions, we introduce a function f (ni ) where i denotes the
arrival site. The form of this function is f (ρ) = 1 − sρ for
MPS = 1/s, and f (ρ) = exp(−sρ) for the soft-core rAPM
where s = 2βU .

The master equation writes

nσ
i (t + dt ) = nσ

i (t )

⎡
⎣1 − dt

∑
p

Whop(σ, p) f (ni+p) − dt
∑
σ �=σ ′

Wflip(σ → σ ′)

⎤
⎦

+ dt
∑

p

Whop(σ, p)nσ
i−p(t ) f (ni ) + dt

∑
σ �=σ ′

nσ ′
i (t )Wflip(σ ′ → σ ). (E1)
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FIG. 19. U−ρ0 phase diagram of the rAPM with soft-core repulsion with snapshots at t = 105 for ε = 0 and β = 0.7. For small U , similar
to the unrestricted APM, we observe a phase transition from a disordered gaseous phase to an ordered liquid phase as density is increased.
Due to q = 4, a steady-state liquid phase can be formed by any of the four states, and the color code for the liquid phase is red (q = 1), green
(q = 2), blue (q = 3), and black (q = 4). Arrows indicate the direction of motion. At large U , particles can segregate only locally into small
clusters forming a orientationally disordered phase at large spatial scales.

Taking the limit dt → 0, we get

∂t n
σ
i =

∑
p

Whop(σ, p)
[
nσ

i−p f (ni ) − nσ
i f (ni+p)

]+
∑
σ ′ �=σ

[
nσ ′

i Wflip(σ ′, σ ) − nσ
i Wflip(σ, σ ′)

]
. (E2)

In the following, we decompose the r.h.s of this equation into two terms: the hopping term Ihop and the flipping term Iflip,
unchanged under hopping restrictions. We then have ∂t nσ

i = Ihop + Iflip. Using the definition of Whop, given by Eq. (5), we obtain

Ihop = D

(
1 − ε

q − 1

)∑
p

[
nσ

i−p f (ni ) − nσ
i f (ni+p)

]+ qDε

q − 1

[
nσ

i−σ f (ni ) − nσ
i f (ni+σ )

]
. (E3)

We consider the Taylor expansion of the function Gi+p as

Gi+p = Gi + a∂pGi + a2

2
∂2

pGi + O(a3), (E4)

which leads to the expression

Gi−pHi − GiHi+p = −a∂p[GiHi] + a2

2

(
Hi∂

2
pGi − Gi∂

2
pHi

)+ O(a3). (E5)
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Knowing that the sum of the derivatives of any function F are

q∑
p=1

∂pF =
q∑

p=1

(ep · ex)∂xF +
q∑

p=1

(ep · ey)∂yF = 0, (E6)

q∑
p=1

∂2
pF =

q∑
p=1

(ep · ex)2∂2
x F + 2

q∑
p=1

(ep · ex)(ep · ey)∂x∂yF +
q∑

p=1

(ep · ey)2∂2
y F = q

2
∇2F, (E7)

we finally get
q∑

p=1

(Gi−pHi − GiHi+p) = qa2

4
(Hi∇2Gi − Gi∇2Hi ) + O(a3). (E8)

Equation (E3) becomes

Ihop = D

(
1 − ε

q − 1

)
a2
[

f (ni )∇2nσ
i − nσ

i ∇2 f (ni )
]+ qDε

q − 1

{
−a∂σ

[
f (ni )n

σ
i

]+ a2

2

[
f (ni )∂

2
σ nσ

i − nσ
i ∂σ f (ni )

]}
. (E9)

We can decompose a2∇2 = ∂2
‖ + ∂2

⊥ and a∂σ = ∂‖, and denote ρσ = 〈nσ
i 〉 as well as ρ = 〈ρi〉, which leads to the expression

〈Ihop〉 = D‖[ f (ρ)∂2
‖ρσ − ρσ ∂2

‖ f (ρ)] + D⊥[ f (ρ)∂2
⊥ρσ − ρσ ∂2

⊥ f (ρ)] − v∂‖[ f (ρ)ρσ ], (E10)

with

D‖ = D

(
1 + ε

q − 1

)
, D⊥ = D

(
1 − ε

q − 1

)
and v = qDε

q − 1
. (E11)

Note that we can decompose

f (ρ)∂2
i ρσ − ρσ ∂2

i f (ρ) = ∂i[ f (ρ)∂iρσ − ρσ ∂i f (ρ)], (E12)

and ∂i f (ρ) = f ′(ρ)∂iρ, which yields the drift term of the rAPM equation

〈Ihop〉 = D‖∂‖[ f (ρ)∂‖ρσ − f ′(ρ)ρσ ∂‖ρ] + D⊥∂⊥[ f (ρ)∂⊥ρσ − f ′(ρ)ρσ ∂⊥ρ] − v∂‖[ f (ρ)ρσ ]. (E13)

The current is then

Jσ ‖ = −D‖[ f (ρ)∂‖ρσ − f ′(ρ)ρσ ∂‖ρ] + v f (ρ)ρσ , (E14)

Jσ ⊥ = −D⊥[ f (ρ)∂⊥ρσ − f ′(ρ)ρσ ∂⊥ρ], (E15)

or in the vectorial form, Jσ i = f (ρ)J0
σ i − λiρσ ∂iρ, where J0

σ is the current without restriction, and λi a positive constant since
f (ρ) is a strictly decreasing function. The first term corresponds to the current without restriction multiplied by f (ρ), while the
second term corresponds to an additional current from high to low densities.

For MPS = 1, the flipping term Iflip is calculated according to Wflip(σ → σ ′) = γ , which gives

〈Iflip〉 = γ
∑
σ ′ �=σ

(ρσ ′ − ρσ ). (E16)

For MPS > 1 and soft-core rAPM, the flipping term Iflip is calculated according to Eq. (4), and equal to the flipping term of the
unrestricted APM derived in Ref. [27]:

〈Iflip〉 =
∑
σ ′ �=σ

[
4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2

]
(ρσ − ρσ ′ ), (E17)

with α = 8(βJ )2(1 − 2βJ/3).
The hydrodynamic equation for the rAPM is then

∂tρσ = −∂‖Jσ‖ − ∂⊥Jσ⊥ +
∑
σ ′ �=σ

Kσσ ′ (ρσ − ρσ ′ ), (E18)

where Jσ‖ and Jσ⊥ are given by Eqs. (E14) and (E15), respectively, and the flipping interaction term is Kσσ ′ = −γ for MPS = 1
and

Kσσ ′ = 4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2
, (E19)

for MPS > 1 and soft-core rAPM.
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APPENDIX F: LINEAR STABILITY ANALYSIS AND BINODAL CALCULUS FOR MPS = 1

For MPS = 1, the hydrodynamic equation is

∂tρσ = D‖∂‖[(1 − ρ)∂‖ρσ + ρσ ∂‖ρ] + D⊥∂⊥[(1 − ρ)∂⊥ρσ + ρσ ∂⊥ρ] − v∂‖[(1 − ρ)ρσ ] − γ (4ρσ − ρ). (F1)

Using dimensionless coordinates τ = γ t and X = √
γ /Dx, the hydrodynamic equation rewrites

∂τρσ = D‖∂‖[(1 − ρ)∂‖ρσ + ρσ ∂‖ρ] + D⊥∂⊥[(1 − ρ)∂⊥ρσ + ρσ ∂⊥ρ] − Pe∂‖[(1 − ρ)ρσ ] − (4ρσ − ρ), (F2)

with D‖ = 1 + ε/3, D⊥ = 1 − ε/3, and the Péclet number Pe = v/
√

Dγ . The only homogeneous solution is ρσ = ρ0/4 for all
states σ .

1. Linear stability analysis

We consider a linear stability analysis for ρσ = ρ0/4 + δρσ , where δρσ � ρ0 is a small perturbation. Keeping only the
first-order terms in δρσ , the hydrodynamic equation becomes

∂τ δρσ =
[(

1 − 3ρ0

4

)
(D‖∂2

‖ + D⊥∂2
⊥) − Pe

(
1 − 5ρ0

4

)
∂‖ − 3

]
δρσ +

[
ρ0

4
(D‖∂2

‖ + D⊥∂2
⊥) + Pe

ρ0

4
∂‖ + 1

]∑
σ ′ �=σ

δρσ ′ . (F3)

Performing a Fourier transform in space, we obtain

∂τ δρσ = A(k‖, k⊥)δρσ + B(k‖, k⊥)
∑
σ ′ �=σ

δρσ ′ , (F4)

with

A(k‖, k⊥) =
(

1 − 3ρ0

4

)
(−D‖k2

‖ − D⊥k2
⊥) + ıPe

(
1 − 5ρ0

4

)
k‖ − 3, (F5)

B(k‖, k⊥) = ρ0

4
(−D‖k2

‖ − D⊥k2
⊥) − ıPe

ρ0

4
k‖ + 1. (F6)

The stability of the homogeneous solution is then given by the eigenvalues of the matrix

M =

⎛
⎜⎜⎜⎜⎝

A(kx, ky) B(kx, ky) B(kx, ky ) B(kx, ky)

B(ky,−kx ) A(ky,−kx ) B(ky,−kx ) B(ky,−kx )

B(−kx,−ky) B(−kx,−ky ) A(−kx,−ky) B(−kx,−ky)

B(−ky, kx ) B(−ky, kx ) B(−ky, kx ) A(−ky, kx )

⎞
⎟⎟⎟⎟⎠. (F7)

With the help of Mathematica [59], we get that three eigenvalues are always negative, and the fourth eigenvalue writes

λ = 1
8 [−4(D‖ + D⊥) + Pe2(1 − ρ0)(2ρ0 − 1)]

(
k2

x + k2
y

)+ O
(
k2

x , k2
y

)
. (F8)

Using D‖ + D⊥ = 2, the homogeneous solution is then stable if and only if (1 − ρ0)(2ρ0 − 1) < 8/Pe2, leading to the spinodals
ϕ±:

ϕ± = 3

4
± 1

4

√
1 − 64

Pe2 , (F9)

and a critical Péclet number Pec = 8, to observe the MIPS.

2. Derivation of the binodals

Now we derive the expression of the binodals, denoted as ρlow and ρhigh, following the demonstration made in Ref. [37], for
an active lattice gas with a slightly different hydrodynamic equation. At steady state, Eq. (F2) writes

0 = D‖∂‖[(1 − ρ)∂‖ρσ + ρσ ∂‖ρ] + D⊥∂⊥[(1 − ρ)∂⊥ρσ + ρσ ∂⊥ρ] − Pe∂‖[(1 − ρ)ρσ ] − (4ρσ − ρ). (F10)

We define ρx = ρ1 + ρ3, ρy = ρ2 + ρ4, and the magnetization vector m = (mx, my) with mx = ρ1 − ρ3 and my = ρ2 − ρ4. From
Eq. (F10), the equation for ρ writes

0 = D‖{∂x[(1 − ρ)∂xρx + ρx∂xρ] + ∂y[(1 − ρ)∂yρy + ρy∂yρ]} + D⊥{∂y[(1 − ρ)∂yρx + ρx∂yρ] + ∂x[(1 − ρ)∂xρy + ρy∂xρ]}
− Pe{∂x[(1 − ρ)mx] + ∂y[(1 − ρ)my]}. (F11)
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From microscopic simulations and numerical solutions of Eq. (F2), we suppose the relation ρx = ρy = ρ/2. After simplifications
and using the relation D‖ + D⊥ = 2, the equation for ρ becomes

0 = ∇2ρ − Pe∇ · [(1 − ρ)m] = −∇ · J. (F12)

Since we observe a MIPS state, there is no steady current, J = 0, and then the steady-state magnetization is

m = ∇ρ

Pe(1 − ρ)
. (F13)

From Eq. (F10), the equation for mx writes

0 = D‖∂x[(1 − ρ)∂xmx + mx∂xρ] + D⊥∂y[(1 − ρ)∂ymx + mx∂yρ] − Pe

2
∂x[(1 − ρ)ρ] − 4mx. (F14)

Using mx = ∂xρ/Pe(1 − ρ), we get

0 = ∂x

[
D‖
Pe

∂xxρ + 2D‖(∂xρ)2

Pe(1 − ρ)
− Pe

2
(1 − ρ)ρ + 4

Pe
ln(1 − ρ)

]
+ ∂y

[
D⊥
Pe

∂xyρ + 2D⊥(∂xρ)(∂yρ)

Pe(1 − ρ)

]
. (F15)

From Eq. (F10), the equation for my writes

0 = D‖∂y[(1 − ρ)∂ymy + my∂yρ] + D⊥∂x[(1 − ρ)∂xmy + my∂xρ] − Pe

2
∂y[(1 − ρ)ρ] − 4my. (F16)

Using my = ∂yρ/Pe(1 − ρ), we get

0 = ∂y

[
D‖
Pe

∂yyρ + 2D‖(∂yρ)2

Pe(1 − ρ)
− Pe

2
(1 − ρ)ρ + 4

Pe
ln(1 − ρ)

]
+ ∂x

[
D⊥
Pe

∂xyρ + 2D⊥(∂xρ)(∂yρ)

Pe(1 − ρ)

]
. (F17)

Performing ∂x (F15)−∂y (F17), we get

0 = (∂xx − ∂yy)

{
D‖
2Pe

(∂xx + ∂yy)ρ + D‖
Pe(1 − ρ)

[(∂xρ)2 + (∂yρ)2] − Pe

2
(1 − ρ)ρ + 4

Pe
ln(1 − ρ)

}

+ (∂xx + ∂yy)

{
D‖
2Pe

(∂xx − ∂yy)ρ + D‖
Pe(1 − ρ)

[(∂xρ)2 − (∂yρ)2]

}
. (F18)

We take the new coordinates u = x + y and v = x − y, for which ∂x = (∂u + ∂v )/2 and ∂y = (∂u − ∂v )/2. We get

0 = ∂u∂v

{
D‖
8Pe

(∂uu + ∂vv )ρ + D‖
4Pe(1 − ρ)

[(∂uρ)2 + (∂vρ)2] − Pe

2
(1 − ρ)ρ + 4

Pe
ln(1 − ρ)

}

+ 1

4
(∂uu + ∂vv )

{
D‖
2Pe

∂uvρ + D‖
Pe(1 − ρ)

[∂uρ∂vρ]

}
. (F19)

The solution is then symmetric under the transformation u ↔ v, as observed from numerical solutions. If we choose a solution
such that ∂vρ = 0, the quantity

g(u) = − D‖
8Pe

∂uuρ − D‖
4Pe(1 − ρ)

(∂uρ)2 + Pe

2
(1 − ρ)ρ − 4

Pe
ln(1 − ρ) (F20)

is constant. We define the quantities κ (ρ), �(ρ), and g0(ρ) such that

g = −κ (ρ)∂uuρ + �(ρ)(∂uρ)2 + g0(ρ). (F21)
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TABLE I. Theoretical values of the binodals for MPS = 1 for
several Péclet numbers.

Pe 8 9 10 11 12 13 14

ρlow 0.75 0.491 0.389 0.321 0.271 0.234 0.204
ρhigh 0.75 0.896 0.927 0.944 0.955 0.963 0.969

Since g is constant, we have a first relation between the two
binodals: g = g0(ρhigh ) = g0(ρlow). A second relation has to
be found to determine the values of ρhigh and ρlow. We consider
the quantity

I =
∫ uhigh

ulow

dug(u)∂uR(u) (F22)

integrated between the regions of low densities and high
densities, where R(ρ) is a monotonic function to determine.
Since R(ρ) is monotonic, we can calculate the quantity I
by doing a change of variable, and we get I = g[R(ρhigh ) −
R(ρlow)]. Using the definition of g(u) given by Eq. (F21), we
obtain

I = �(Rhigh ) − �(Rlow) + 1

2

∫ uhigh

ulow

du[2R′(ρ)�(ρ)

+ κ (ρ)R′′(ρ) + R′(ρ)κ ′(ρ)](∂uuρ)3, (F23)

with �′(R) = g0(R). Choosing the function R(ρ) such that
(κR′)′ = −2R′�, the remaining integral vanishes, and I =
�(Rhigh ) − �(Rlow). We may then define a second relation
h0(ρhigh ) = h0(ρlow) with h0(R) = g0(R)R − �(R). Using the
definitions κ (ρ) = D‖/8Pe and �(ρ) = −D‖/4Pe(1 − ρ),
we can take the monotonic function

R(ρ) = 1

(1 − ρ)3
. (F24)

After simplifications, we get the relations g0(ρhigh ) =
g0(ρlow) and h0(ρhigh ) = h0(ρlow), with

g0(ρ) = Pe

2
(1 − ρ)ρ − 4

Pe
ln(1 − ρ), (F25)

h0(ρ) = Pe

4

3 − 4ρ

(1 − ρ)2
+ 4

3Pe

1

(1 − ρ)3
. (F26)
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FIG. 20. Spinodals and binodals of the rAPM with MPS=1.
(a) The dotted lines show the spinodal lines given by Eq. (F9),
and the solid lines show the binodals calculated from the relations
g0(ρhigh ) = g0(ρlow) and h0(ρhigh ) = h0(ρlow), with Eqs. (F25) and
(F26). The dash-dotted lines display the asymptotic value of the
binodals at large Péclet number, given by Eqs. (F28) and (F29).
(b) Relative error between the binodal densities and their asymptotic
values at large Péclet number.

Table I shows the values of ρlow and ρhigh for small Pe
values. At the large Péclet number, we derive the asymp-
totic expression of ρlow and ρhigh as follows. We know the
leading order: ρlow = 0 and ρhigh = 1. For ρlow = 0, we get
the value h0(0) � 3Pe/4. We search the subleading order as
ρhigh � 1 − ξ , with ξ � 1. At leading order, we get

h0(1 − ξ ) � − Pe

4ξ 2
+ 4

3Peξ 3
� 3Pe

4
, (F27)

which says that the diverging terms in ξ must cancel: ξ =
16/3Pe2. Then we have

ρhigh � 1 − 16

3Pe2 . (F28)

For ρlow � 1, we find that g0(ρlow) � Peρlow/2. Since
g0(ρhigh ) � −(4/Pe) ln(16/3Pe2), we get

ρlow � − 8

Pe2 ln
16

3Pe2 . (F29)

Figure 20(a) shows the spinodals given by Eq. (F9) and the
binodals calculated with Eqs. (F25) and (F26). The asymp-
totic value of the binodals at large Péclet number, given by
Eqs. (F28) and (F29), is also represented. Figure 20(b) shows
the relative error between the binodal densities and their
asymptotic values at large Péclet number, decreasing to zero
when Pe → ∞.

APPENDIX G: LINEAR STABILITY ANALYSIS FOR MPS > 1

For soft-core rAPM, the hydrodynamic equation is

∂tρσ = D‖∂‖[(1 − sρ)∂‖ρσ + sρσ ∂‖ρ] + D⊥∂⊥[(1 − sρ)∂⊥ρσ + sρσ ∂⊥ρ] − v∂‖[(1 − sρ)ρσ ]

+
∑
σ ′ �=σ

[
4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2

]
(ρσ − ρσ ′ ), (G1)

with α = 8(βJ )2(1 − 2βJ/3) and s = 1/MPS. The homogeneous solutions are given by

Iflip(σ, σ ′) =
[

4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2

]
(ρσ − ρσ ′ ) = 0 (G2)

and are then those of the unrestricted rAPM [27]. The disordered homogeneous solution is ρσ = ρ0/4, and the ordered
homogeneous solution (supposed along state σ = 1) is ρ1 = ρ0(1 + 3M )/4 and ρ2,3,4 = ρ0(1 − M )/4 with the magnetization
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M following the equation

2βJ (1 + M ) − 1 − r

ρ0
− αM2 = 0, (G3)

or M = M0 ± M1δ with M0 = βJ/α, M1 = √
r/αρ∗ and δ = √

(ρ0 − ρ∗)/ρ0, where ρ∗ defined by

ρ∗ = 8(1 − 2βJ/3)r

1 + 8(2βJ − 1)(1 − 2βJ/3)
(G4)

is the critical density below which the ordered homogeneous solution does not exist, for a temperature below Tc = (1 −√
22/8)−1 � 2.417.

1. Linear stability analysis for the disordered homogeneous solution

We take ρσ = ρ0/4 + δρσ and ρ = ρ0 + δρ, with δρ = ∑
σ δρσ . The hopping term writes

Ihop �
[(

1 − 3sρ0

4

)
(D‖∂2

‖ + D⊥∂2
⊥) − v

(
1 − 5sρ0

4

)
∂‖

]
δρσ + sρ0

4
[D‖∂2

‖ + D⊥∂2
⊥ + v∂‖]

∑
σ ′ �=σ

δρσ ′ , (G5)

and the flipping term writes Iflip(σ, σ ′) � μ0(δρσ − δρσ ′ ), with μ0 = 2βJ − 1 − r/ρ0. Then, in the Fourier space, the hydrody-
namic equation becomes

∂tδρσ = [A(k‖, k⊥) + 3μ0]δρσ + [B(k‖, k⊥) − μ0]
∑
σ ′ �=σ

δρσ ′ , (G6)

with

A(k‖, k⊥) =
(

1 − 3sρ0

4

)
(−D‖k2

‖ − D⊥k2
⊥) + ık‖v

(
1 − 5sρ0

4

)
, (G7)

B(k‖, k⊥) = sρ0

4
[−D‖k2

‖ − D⊥k2
⊥ − ık‖v]. (G8)

The stability of the homogeneous disordered solution is then given by the eigenvalues of the matrix

Mgas =

⎛
⎜⎜⎝

A(kx, ky) + 3μ0 B(kx, ky) − μ0 B(kx, ky) − μ0 B(kx, ky) − μ0

B(ky,−kx ) − μ0 A(ky,−kx ) + 3μ0 B(ky,−kx ) − μ0 B(ky,−kx ) − μ0

B(−kx,−ky) − μ0 B(−kx,−ky ) − μ0 A(−kx,−ky) + 3μ0 B(−kx,−ky) − μ0

B(−ky, kx ) − μ0 B(−ky, kx ) − μ0 B(−ky, kx ) − μ0 A(−ky, kx ) + 3μ0

⎞
⎟⎟⎠. (G9)

Supposing kx = k and ky = 0 (since no preferred direction), at leading order in k � 1, the eigenvalues, calculated with
Mathematica [59], are λ1,2,3

gas � 4μ0 and

λ4
gas �

[
−D‖ + D⊥

2
+ (1 − sρ0)(1 − 2sρ0)

v2

8μ0

]
k2. (G10)

The disordered homogeneous solution is then stable if μ0 < 0 and

λgas = −D + (1 − sρ0)(1 − 2sρ0)
v2

8μ0
< 0. (G11)

In Fig. 21(a) we have represented the velocity-density stability diagram for β = 0.75 and MPS = 2 according to the sign of
this eigenvalue. Note that the last inequality is always fulfilled when s = 0, meaning that μ0 < 0 impacts only the spinodals:
ϕgas(s = 0) = r/(2βJ − 1), independent of ε. However, we cannot extract an analytical expression for the spinodal ϕgas for all
MPS values.

2. Linear stability analysis for the ordered homogeneous solution

We consider the ordered solution along the right state, and we take ρ1 = ρ0(1 + 3M )/4 + δρ1, ρ2,3,4 = ρ0(1 + 3M )/4 +
δρ2,3,4 and ρ = ρ0 + δρ, with δρ = ∑

σ δρσ . The hopping term of the right state σ = 1 writes

I (1)
hop �

{[
1 − 3sρ0

4
(1 − M )

]
(D‖∂2

‖ + D⊥∂2
⊥) − v

[
1 − sρ0

4
(5 + 3M )

]
∂‖

}
δρσ + sρ0

4
(1 + 3M )

[
D‖∂2

‖ + D⊥∂2
⊥ + v∂‖

] ∑
σ ′ �=σ

δρσ ′ ,

(G12)
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FIG. 21. (a), (b) Velocity-density stability diagram of the rAPM with hard-core repulsion for the disordered and ordered homogeneous
solution for β = 0.75 for MPS = 2. (a) The stability region of the disordered solution is plotted in blue, according to the eigenvalue λgas given
by Eq. (G11). (b) The stability region of the ordered solution is plotted in blue, according to the eigenvalues λ‖ and λ⊥ given by Eqs. (G26)
and (G27), respectively. The ordered solution is unstable only under longitudinal perturbations (λ‖ > 0) in the light blue region, and under
transverse perturbations (λ⊥ > 0) in the light red region. (c) ε∗ value for which the reorientation transition occurs in the rAPM with MPS >,
as a function of MPS for several temperatures T = β−1.

and the hopping term of the other states σ �= 1 writes

I (2)
hop �

{[
1 − sρ0

4
(3 + M )

]
(D‖∂2

‖ + D⊥∂2
⊥) − v

[
1 − sρ0

4
(5 − M )

]
∂‖
}
δρσ + sρ0

4
(1 − M )

[
D‖∂2

‖ + D⊥∂2
⊥ + v∂‖

] ∑
σ ′ �=σ

δρσ ′ .

(G13)

We may note that for M = 0 we recover the expression of Ihop, given by Eq. (G5), calculated for the disordered solution.
The flipping terms implying the right state write

Iflip(1, σ ′) � M

{
(4βJ − 2αM )δρ1 + (4βJ + 2αM )δρσ ′ −

[
2βJ (1 + M ) − r

ρ0
− 2αM2

]
δρ

}
. (G14)

Using Eq. (G3), we get

Iflip(1, σ ′) � M[(4βJ − 2αM )δρ1 + (4βJ + 2αM )δρσ ′ + (αM2 − 1)δρ] ≡ γ1δρ1 + γ2δρσ ′ + γ3δρ. (G15)

The flipping terms which do not imply the right state write

Iflip(σ, σ ′) � M(αM − 4βJ )(δρσ − δρσ ′ ) ≡ γ4(δρσ − δρσ ′ ). (G16)

Then we have the terms

∑
σ ′ �=σ

Iflip(σ, σ ′) �
{

3(γ1 + γ3)δρσ + (γ2 + 3γ3)
∑

σ ′ �=σ ρσ ′ , if σ = 1,

−(γ1 + γ3)δρ1 + (−γ2 − γ3 + 2γ4)δρσ − (γ3 + γ4)
∑

σ ′ �={1,σ } ρσ ′ , if σ �= 1.
(G17)

Then, in the Fourier space, the hydrodynamic equation becomes

∂tδρσ =
{

[A1(k‖, k⊥) + 3μ]δρσ + [B1(k‖, k⊥) + ν]
∑

σ ′ �=σ δρσ ′ , if σ = 1,

[A2(k‖, k⊥) + κ]δρσ + [B2(k‖, k⊥) − μ]δρ1 + [
B2(k‖, k⊥) − κ+ν

2

]∑
σ ′ �={1,σ } δρσ ′ , if σ �= 1,

(G18)

with μ = γ1 + γ3 = M(4βJ − 2αM + αM2 − 1), ν = γ2 + 3γ3 = M(4βJ + 2αM + 3αM2 − 3), κ = −γ2 − γ3 + 2γ4 =
M(−12βJ − αM2 + 1), and

A1(k‖, k⊥) =
[

1 − 3sρ0

4
(1 − M )

]
(−D‖k2

‖ − D⊥k2
⊥) + ık‖v

[
1 − sρ0

4
(5 + 3M )

]
, (G19)

B1(k‖, k⊥) = sρ0

4
(1 + 3M )[−D‖k2

‖ − D⊥k2
⊥ − ık‖v], (G20)

A2(k‖, k⊥) =
[
1 − sρ0

4
(3 + M )

]
(−D‖k2

‖ − D⊥k2
⊥) + ık‖v

[
1 − sρ0

4
(5 − M )

]
, (G21)

B2(k‖, k⊥) = sρ0

4
(1 − M )[−D‖k2

‖ − D⊥k2
⊥ − ık‖v]. (G22)
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The stability of the homogeneous ordered solution is then given by the eigenvalues of the matrix

Mliq =

⎛
⎜⎜⎝

A1(kx, ky) + 3μ B1(kx, ky) + ν B1(kx, ky ) + ν B1(kx, ky) + ν

B2(ky,−kx ) − μ A2(ky,−kx ) + κ B2(ky,−kx ) − (κ + ν)/2 B2(ky,−kx ) − (κ + ν)/2
B2(−kx,−ky) − μ B2(−kx,−ky) − (κ + ν)/2 A2(−kx,−ky ) + κ B2(−kx,−ky) − (κ + ν)/2
B2(−ky, kx ) − μ B2(−ky, kx ) − (κ + ν)/2 B2(−ky, kx ) − (κ + ν)/2 A2(−ky, kx ) + κ

⎞
⎟⎟⎠. (G23)

First, we consider a perturbation in the x direction (ky = 0). At leading order in kx � 1, the real part of the eigenvalues,
calculated with Mathematica [59], is λ1,2

liq,x = (3κ + ν)/2, λ3
liq,x � (3μ + ν), and

λ4
liq,x � −

[
(D‖ + 2D⊥)μ − D‖ν

3μ − ν
+ D‖ − D⊥

2(3μ − ν)
[μ(1 + 3M ) + ν(1 − M )]sρ0 + (c1 + c2sρ0)(1 − sρ0)

(3μ − ν)3(3κ + ν)
v2

]
k2

x , (G24)

with c1 = 4μ[−3μ2 + ν(2μ + 4κ + ν)], and

c2 = κν2(1 − M ) + μ[3μ2(7 − 3M ) − 2κν(11 + 3M ) − ν2(3 + 5M ) + 9κμ(1 + 3M ) + 2μν(−7 + 9M )].

Now we look at a perturbation in the y direction (kx = 0). At leading order in ky � 1, the real part of the eigenvalues,
calculated with Mathematica [59], is λ1,2

liq,y = (3κ + ν)/2, λ3
liq,y � (3μ + ν), and

λ4
liq,y �

[−(2D‖ + D⊥)μ + D⊥ν

3μ − ν
+ D‖ − D⊥

2(3μ − ν)
[μ(1 + 3M ) + ν(1 − M )]sρ0 + (d1 + d2sρ0)(1 − sρ0)

(3μ − ν)(3κ + ν)
v2

]
k2

y , (G25)

with d1 = 4μ, and d2 = μ(−7 + 3M ) + ν(1 − M ).
The ordered homogeneous solution is then stable if 3κ + ν < 0 and 3μ − ν < 0 for the two different perturbations. This

result was already observed for the unrestricted APM [26] and allows the selection of the position magnetization solution:
M = M0 + M1δ. However, the stability of the two different perturbations differs from λ4

liq,x and λ4
liq,y. The perturbation along x

is stable only if

λ‖ = λ4
liq,x

k2
x

= −D +
[

μ + ν

3μ − ν
(1 − sρ0) − Msρ0

]
Dε

3
− (c1 + c2sρ0)(1 − sρ0)

(3μ − ν)3(3κ + ν)

(
4Dε

3

)2

(G26)

is negative and the perturbation along y is stable only if

λ⊥ = λ4
liq,y

k2
y

= −D −
[

μ + ν

3μ − ν
(1 − sρ0) − Msρ0

]
Dε

3
+ (d1 + d2sρ0)(1 − sρ0)

(3μ − ν)(3κ + ν)

(
4Dε

3

)2

(G27)

is negative. We may note that these eigenvalues are those obtained in Ref. [26] for s = 0. In Fig. 21(b) we have represented
the velocity-density stability diagram for β = 0.75 and MPS = 2 according to the sign of these two eigenvalues. Here we have
not derived an analytical expression of ε∗, for which the reorientation transition occurs, but we have computed a numerical
estimation in Fig. 21(c). ε∗ is an decreasing function of MPS, meaning that ε∗ increases with a strong repulsion.

APPENDIX H: LINEAR STABILITY ANALYSIS FOR THE SOFT-CORE RAPM

For soft-core rAPM, the hydrodynamic equation is

∂tρσ = D‖∂‖[exp(−sρ)(∂‖ρσ + sρσ ∂‖ρ)] + D⊥∂⊥[exp(−sρ)(∂⊥ρσ + sρσ ∂⊥ρ)] − v∂‖[exp(−sρ)ρσ ]

+
∑
σ ′ �=σ

[
4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2

]
(ρσ − ρσ ′ ), (H1)

with α = 8(βJ )2(1 − 2βJ/3) and s = 2βU . The homogeneous solutions are given by

Iflip(σ, σ ′) =
[

4βJ

ρ
(ρσ + ρσ ′ ) − 1 − r

ρ
− α

(ρσ − ρσ ′ )2

ρ2

]
(ρσ − ρσ ′ ) = 0 (H2)

and are then those of the unrestricted rAPM [27]. The disordered homogeneous solution is ρσ = ρ0/4, and the ordered
homogeneous solution (supposed along state σ = 1) is ρ1 = ρ0(1 + 3M )/4 and ρ2,3,4 = ρ0(1 − M )/4 with the magnetization
M following the equation

2βJ (1 + M ) − 1 − r

ρ0
− αM2 = 0, (H3)

or M = M0 ± M1δ with M0 = βJ/α, M1 = √
r/αρ∗ and δ = √

(ρ0 − ρ∗)/ρ0, where ρ∗ is defined by

ρ∗ = 8(1 − 2βJ/3)r

1 + 8(2βJ − 1)(1 − 2βJ/3)
, (H4)
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FIG. 22. (a), (b) Velocity-density stability diagram of the rAPM with soft-core repulsion for the disordered and ordered homogeneous
solution for β = 0.75 and U = 0.5. (a) The stability region of the disordered solution is plotted in blue, according to the eigenvalue λgas given
by Eq. (H11). (b) The stability region of the ordered solution is plotted in blue, according to the eigenvalues λ‖ and λ⊥ given by Eqs. (H26)
and (H27), respectively. The ordered solution is only unstable under longitudinal perturbations (λ‖ > 0) in the light blue region, and under
transverse perturbations (λ⊥ > 0) in the light red region. (c) ε∗ value for which the reorientation transition occurs, as a function of U for several
temperatures T = β−1.

is the critical density below which the ordered homogeneous solution does not exist, for a temperature below Tc = (1 −√
22/8)−1 � 2.417.

1. Linear stability analysis for the disordered homogeneous solution

We take ρσ = ρ0/4 + δρσ and ρ = ρ0 + δρ, with δρ = ∑
σ δρσ . The hopping term writes

Ihop � exp(−sρ0)

[(
1 + sρ0

4

)
(D‖∂2

‖ + D⊥∂2
⊥) − v

(
1 − sρ0

4

)
∂‖

]
δρσ + exp(−sρ0)

sρ0

4
[D‖∂2

‖ + D⊥∂2
⊥ + v∂‖]

∑
σ ′ �=σ

δρσ ′ , (H5)

and the flipping term writes Iflip(σ, σ ′) � μ0(δρσ − δρσ ′ ), with μ0 = 2βJ − 1 − r/ρ0. Then, in the Fourier space, the hydrody-
namic equation becomes

∂tδρσ = [A(k‖, k⊥) + 3μ0]δρσ + [B(k‖, k⊥) − μ0]
∑
σ ′ �=σ

δρσ ′ , (H6)

with

A(k‖, k⊥) = exp(−sρ0)

[(
1 + sρ0

4

)
(−D‖k2

‖ − D⊥k2
⊥) + ık‖v

(
1 − sρ0

4

)]
, (H7)

B(k‖, k⊥) = exp(−sρ0)
sρ0

4
[−D‖k2

‖ − D⊥k2
⊥ − ık‖v]. (H8)

The stability of the homogeneous disordered solution is then given by the eigenvalues of the matrix

Mgas =

⎛
⎜⎜⎝

A(kx, ky) + 3μ0 B(kx, ky) − μ0 B(kx, ky) − μ0 B(kx, ky) − μ0

B(ky,−kx ) − μ0 A(ky,−kx ) + 3μ0 B(ky,−kx ) − μ0 B(ky,−kx ) − μ0

B(−kx,−ky ) − μ0 B(−kx,−ky) − μ0 A(−kx,−ky ) + 3μ0 B(−kx,−ky ) − μ0

B(−ky, kx ) − μ0 B(−ky, kx ) − μ0 B(−ky, kx ) − μ0 A(−ky, kx ) + 3μ0

⎞
⎟⎟⎠. (H9)

Supposing kx = k and ky = 0 (since no preferred direction), at leading order in k � 1, the eigenvalues, calculated with
Mathematica [59], are λ1,2,3

gas � 4μ0 and

λ4
gas � exp(−sρ0)

[
−(1 + sρ0)

D‖ + D⊥
2

+ (1 − sρ0) exp(−sρ0)
v2

8μ0

]
k2. (H10)

The disordered homogeneous solution is then stable if μ0 < 0 and

λgas = −(1 + sρ0)D + (1 − sρ0) exp(−sρ0)
v2

8μ0
< 0. (H11)

In Fig. 22(a) we have represented the velocity-density stability diagram for β = 0.75 and U = 0.5 according to the sign of
this eigenvalue. Note that the last inequality is always fulfilled when U = 0, meaning that μ0 < 0 impacts only the spinodals:
ϕgas(U = 0) = r/(2βJ − 1), independent of ε. However, we cannot extract an analytical expression for the spinodal ϕgas for all
U values.
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2. Linear stability analysis for the ordered homogeneous solution

We consider the ordered solution along the right state, and we take ρ1 = ρ0(1 + 3M )/4 + δρ1, ρ2,3,4 = ρ0(1 + 3M )/4 +
δρ2,3,4 and ρ = ρ0 + δρ, with δρ = ∑

σ δρσ . The hopping term of the right state σ = 1 writes

I (1)
hop � exp(−sρ0)

{[
1 + sρ0

4
(1 + 3M )

]
(D‖∂2

‖ + D⊥∂2
⊥) − v

[
1 − sρ0

4
(1 + 3M )

]
∂‖

}
δρσ

+ exp(−sρ0)
sρ0

4
(1 + 3M )[D‖∂2

‖ + D⊥∂2
⊥ + v∂‖]

∑
σ ′ �=σ

δρσ ′ , (H12)

and the hopping term of the other states σ �= 1 writes

I (2)
hop � exp(−sρ0)

{[
1 + sρ0

4
(1 − M )

]
(D‖∂2

‖ + D⊥∂2
⊥) − v

[
1 − sρ0

4
(1 − M )

]
∂‖

}
δρσ

+ exp(−sρ0)
sρ0

4
(1 − M )[D‖∂2

‖ + D⊥∂2
⊥ + v∂‖]

∑
σ ′ �=σ

δρσ ′ . (H13)

We may note that for M = 0 we recover the expression of Ihop, given by Eq. (H5), calculated for the disordered solution.
The flipping terms implying the right state write

Iflip(1, σ ′) � M

{
(4βJ − 2αM )δρ1 + (4βJ + 2αM )δρσ ′ −

[
2βJ (1 + M ) − r

ρ0
− 2αM2

]
δρ

}
. (H14)

Using Eq. (H3), we get

Iflip(1, σ ′) � M[(4βJ − 2αM )δρ1 + (4βJ + 2αM )δρσ ′ + (αM2 − 1)δρ] ≡ γ1δρ1 + γ2δρσ ′ + γ3δρ. (H15)

The flipping terms which do not imply the right state write

Iflip(σ, σ ′) � M(αM − 4βJ )(δρσ − δρσ ′ ) ≡ γ4(δρσ − δρσ ′ ). (H16)

Then we have the terms

Iσ =
∑
σ ′ �=σ

Iflip(σ, σ ′) �
{

3(γ1 + γ3)δρσ + (γ2 + 3γ3)
∑

σ ′ �=σ ρσ ′ , if σ = 1,

−(γ1 + γ3)δρ1 + (−γ2 − γ3 + 2γ4)δρσ − (γ3 + γ4)
∑

σ ′ �={1,σ } ρσ ′ , if σ �= 1.
(H17)

Then, in the Fourier space, the hydrodynamic equation becomes

∂tδρσ =
{

[A1(k‖, k⊥) + 3μ]δρσ + [B1(k‖, k⊥) + ν]
∑

σ ′ �=σ δρσ ′ , if σ = 1,

[A2(k‖, k⊥) + κ]δρσ + [B2(k‖, k⊥) − μ]δρ1 + [
B2(k‖, k⊥) − κ+ν

2

]∑
σ ′ �={1,σ } δρσ ′ , if σ �= 1,

(H18)

with μ = γ1 + γ3 = M(4βJ − 2αM + αM2 − 1), ν = γ2 + 3γ3 = M(4βJ + 2αM + 3αM2 − 3), κ = −γ2 − γ3 + 2γ4 =
M(−12βJ − αM2 + 1), and

A1(k‖, k⊥) = exp(−sρ0)

{[
1 + sρ0

4
(1 + 3M )

]
(−D‖k2

‖ − D⊥k2
⊥) + ık‖v

[
1 − sρ0

4
(1 + 3M )

]}
, (H19)

B1(k‖, k⊥) = exp(−sρ0)
sρ0

4
(1 + 3M )[−D‖k2

‖ − D⊥k2
⊥ − ık‖v], (H20)

A2(k‖, k⊥) = exp(−sρ0)

{[
1 + sρ0

4
(1 − M )

]
(−D‖k2

‖ − D⊥k2
⊥) + ık‖v

[
1 − sρ0

4
(1 − M )

]}
, (H21)

B2(k‖, k⊥) = exp(−sρ0)
sρ0

4
(1 − M )[−D‖k2

‖ − D⊥k2
⊥ − ık‖v]. (H22)

The stability of the homogeneous ordered solution is then given by the eigenvalues of the matrix

Mliq =

⎛
⎜⎜⎜⎜⎝

A1(kx, ky) + 3μ B1(kx, ky) + ν B1(kx, ky) + ν B1(kx, ky) + ν

B2(ky,−kx ) − μ A2(ky,−kx ) + κ B2(ky,−kx ) − (κ + ν)/2 B2(ky,−kx ) − (κ + ν)/2

B2(−kx,−ky) − μ B2(−kx,−ky) − (κ + ν)/2 A2(−kx,−ky) + κ B2(−kx,−ky ) − (κ + ν)/2

B2(−ky, kx ) − μ B2(−ky, kx ) − (κ + ν)/2 B2(−ky, kx ) − (κ + ν)/2 A2(−ky, kx ) + κ

⎞
⎟⎟⎟⎟⎠.

(H23)
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In the following we will denote D‖ = D‖ exp(−sρ0), D⊥ = D⊥ exp(−sρ0) and v = v exp(−sρ0). First, we consider a
perturbation in the x direction (ky = 0). At leading order in kx � 1, the real part of the eigenvalues, calculated with Mathematica
[59], is λ1,2

liq,x � (3κ + ν)/2, λ3
liq,x � (3μ + ν) and

λ4
liq,x � −

[
(D‖ + 2D⊥)μ − D‖ν

3μ − ν
+ D‖(1 + M ) + D⊥(1 − M )

2
sρ0 + c1 + c2sρ0

(3μ − ν)3(3κ + ν)
v2

]
k2

x , (H24)

with c1 = 4μ[−3μ2 + ν(2μ + 4κ + ν)], and c2 = (3μ − ν){3μ[κ (1 + 3M ) + μ(1 − M )] − ν[κ (1 − M ) + μ(1 − 5M )]}.
Now we look at a perturbation in the y direction (kx = 0). At leading order in ky � 1, the real part of the eigenvalues,

calculated with Mathematica [59], is λ1,2
liq,y � (3κ + ν)/2, λ3

liq,y � (3μ + ν), and

λ4
liq,y �

[
−(2D‖ + D⊥)μ + D⊥ν

3μ − ν
− D‖(1 − M ) + D⊥(1 + M )

2
sρ0 + d1 + d2sρ0

(3μ − ν)(3κ + ν)
v2

]
k2

y , (H25)

with d1 = 4μ, and d2 = −(1 − M )(3μ − ν).
The ordered homogeneous solution is then stable if 3κ + ν < 0 and 3μ − ν < 0 for the two different perturbations. This

result was already observed for the unrestricted APM [26] and allows the selection of the position magnetization solution:
M = M0 + M1δ. However, the stability of the two different perturbations differs from λ4

liq,x and λ4
liq,y. The perturbation along x

is stable only if

λ‖ = λ4
liq,x

k2
x exp(−sρ0)

= −D(1 + sρ0) +
[

μ + ν

3μ − ν
− Msρ0

]
Dε

3
− (c1 + c2sρ0) exp(−sρ0)

(3μ − ν)3(3κ + ν)

(
4Dε

3

)2

(H26)

is negative and the perturbation along y is stable only if

λ⊥ = λ4
liq,y

k2
y exp(−sρ0)

= −D(1 + sρ0) −
[

μ + ν

3μ − ν
− Msρ0

]
Dε

3
+ (d1 + d2sρ0) exp(−sρ0)

(3μ − ν)(3κ + ν)

(
4Dε

3

)2

(H27)

is negative. We may note that these eigenvalues are those obtained in Ref. [26] for s = 0. In Fig. 22(b) we have represented
the velocity-density stability diagram for β = 0.75 and U = 0.5 according to the sign of these two eigenvalues. Here we have
not derived an analytical expression of ε∗, for which the reorientation transition occurs, but we have computed a numerical
estimation in Fig. 22(c). ε∗(U ) increases for small U and decreases to zero at large U .
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