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Abstract
We numerically study a discretized Vicsek model (DVM) with particles orienting in q possible
orientations in two dimensions. The study investigates the significance of anisotropic orientation
and microscopic interaction on macroscopic behavior. The DVM is an off-lattice flocking model
like the active clock model (ACM; Chatterjee et al 2022 Europhys. Lett. 138 41001) but the
dynamical rules of particle alignment and movement are inspired by the prototypical Vicsek model
(VM). The DVM shows qualitatively similar properties as the ACM for intermediate noise strength
where a transition frommacrophase to microphase separation of the coexistence region is observed
as q is increased. But for small q and noise strength, the liquid phase appearing in the ACM at low
temperatures is replaced in the DVM by a configuration of multiple clusters with different
polarizations, which does not exhibit any long-range order. We find that the dynamical rules have a
profound influence on the overarching features of the flocking phase. We further identify the
metastability of the ordered liquid phase subjected to a perturbation.

1. Introduction

Active matter systems represent a fascinating class of materials composed of self-propelled entities that
convert energy into mechanical motion, leading to complex and often out-of-equilibrium behaviors [1–4].
The emerging phenomena in active matter systems have gained significant attention in recent years due to
their potential applications in various physical, biological, and engineering systems [2, 5, 6]. Active matter
exhibits dynamic behaviors such as collective motion [2], pattern formation [7, 8], and even the ability to
exhibit controlled transport [9]. These systems encompass a wide range of physical, chemical, and biological
entities, from swimming bacteria [10], mammalian herds [11], fish schools [12, 13], and sterling flocks to
amoeba and bacteria colonies [14], to the cooperative behavior of cytoskeletal filaments and molecular
motors in living cells [9, 15, 16] or in vitro environments to synthetic colloidal particles equipped with
motors [17, 18]. To understand and unravel the fundamental principles governing active matter systems, new
models [8] have been developed in the last two decades.

The Vicsek model (VM), introduced by Vicsek and collaborators in 1995 [19], provides a fundamental
framework for studying the collective behavior of particles under aligning interactions. In this model,
particles adjust their velocities to align with the average velocities of neighboring particles, leading to the
emergence of coherent motion and ordered patterns. VM has played a crucial role in advancing our
understanding of flock dynamics [20–23]. At low particle density or high noise, the particles move in
random directions, and no long-range order (LRO) is observed. The transition from the gas phase at high
noise and low density to the polar ordered Toner–Tu phase at low noise and high density, displaying LRO by
a coherent motion of all particles, is first order [24]. But, in contrast to conventional first-order phase
transition scenarios, the coexistence phase of the VM can manifest as either multiple bands of particles
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moving collectively, a phenomenon known as microphase separation [23, 25], or a polar-ordered cross sea
phase [26], primarily driven by giant number fluctuations (GNF) [23].

Nevertheless, it is important to note that the VM posits a continuous range of possible directions for the
motion of particles. However, when considering a scenario in which particles are constrained to discrete,
equidistant angular orientations within a two-dimensional plane, such as in the active clock model
(ACM) [27, 28], the VM-inspired dynamical principles governing particle alignment and movement remain
uncharted territory. In a recent study on the ACM [27], it was revealed that in large systems, any values of
discrete orientations result in significant changes in phenomenology when compared to the VM. These
changes include the loss of long-range correlations, the pinning of global order, and the transformation of
coexistence bands into a single moving domain. Additionally, another study on the ACM [28] with different
dynamical rules shows that for a small number of directions, the ACMmirrors the active Potts model
(APM) [29, 30], exhibiting macrophase separation of the coexistence region and reorientation transition of
the ordered band from transverse to longitudinal motion as bias velocity is increased. Conversely, with more
directions, the ACM transitions towards the VM, displaying microphase separation and transversely moving
bands without the reorientation transition. Remarkably, the transition in the q→∞ limit of ACM [28],
known as the active XY model, shares the same universality class as the VM. Motivated by these findings, in
this paper, we undertake an extensive computational investigation that examines in detail a q-state
discretized version of the Vicsek model (DVM) where the rules of particle alignment and movement follow
the Vicsek protocol.

We ask several intriguing questions that persist within the context of the DVM, e.g. (a) How does
discretizing the directions of particles in the VM, affect the overall diverse collective dynamics and
steady-state phases? (b) What is the impact of q and system size on the coexistence region (micro- or
macro-phase separation)? (c) How do the behavior of the density fluctuations, the direction of the system’s
global order, and the behavior of correlation functions in the liquid phase correspond with the self-organized
patterns in the phase-coexistence region? (d) What is the nature of the DVM liquid phase as a function of q?
To answer these questions, we study the DVM in an off-lattice domain, focusing on the three key factors: the
anisotropy and degeneracy parameter q, noise level η, and system size.

The paper is organized as follows: after introducing the model in section 2, we present our numerical
results in section 3. Finally, we summarize and discuss the implications of our findings in section 4.

2. Model

We consider N self-propelled particles within a two-dimensional off-lattice domain of size Lx × Ly (Lx > Ly
for rectangular domain and Lx = Ly = L for square domain) with periodic boundary conditions. Akin to the
two-dimensional VM, each point particle i is endowed with an off-lattice position vector ri = (xi,yi) and
moves with a constant speed v0 in individual directions given by a unit orientation vector σi = (cosθi, sinθi)
with an orientation angle θi ∈ (0,2π) where

θi =
2πni
q

, (1)

and ni = {0,1,2, . . . ,(q− 1)} denote discrete orientations of the particles. q denotes the ground state
degeneracy where each particle can only have discrete orientations allowed by the q value and therefore, the
continuous U(1) symmetry of the VM is replaced by the discrete Zq symmetry.

At each discrete time step∆t= 1, a particle i with velocity v0 moves a fixed distance v0∆t and interacts
withNi neighboring particles within a circle of unit radius around it. The position evolves in the following
way:

rt+∆t
i = rti + v0σ

t+∆t
i ∆t , (2)

while the new orientation is determined by a projection of the updated orientation proposed by the Vicsek
rule onto one of the q allowed directions:

θt+∆t
i = P

(
θ̄ti + ηξti

)
, (3)

where P is the projection and θ̄ti is the orientation angle of a spin-weighted sum

σ̄t
i =

∑
j∈Ni

σt
j, (4)
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Figure 1. Schematic of the DVM for q= 4. (a) Four allowed orientations for the particle are 0,π/2,π, and 3π/2 with θti = 0. The

circular neighborhood (of radius R) of particle i contains neighboring particles to calculate θt+∆t
i . (b) The new orientation

proposed by the Vicsek rule (blue dotted arrow) will be projected either along θ1 = 0 or θ2 = π/2 probabilistically.

of orientation vectors of neighboring particles. ξti ∈ [−π,π] is a scalar noise uniformly distributed and
uncorrelated for all sites and times. Such noise is often called white since it has a flat Fourier spectrum. η is
the noise amplitude.

We define the projection onto the allowed directions probabilistically by

P(θ) =

{
θ1 with probability 1− p ,

θ2 with probability p ,
(5)

where θ1 and θ2 are the two allowed directions which are closest to θ, such that θ1 = 2πn/q< θ and
θ2 = 2π (n+ 1)/q> θ for some n. The probability p ∈ [0,1] is given by p= q

2π (θ− θ1), i.e. minimal (0) for θ
close to θ1 and maximal (1) for θ close to θ2 (cf figure 1). Note that then for all particles going into the
direction, say, θ1, the probability to turn stochastically into another direction, say θ2, is of the order∼ q

2η,
i.e. small for small q and noise η.

Notice that the dynamical rules governing DVM are different from the q-state ACM [28]. The q-state
ACM [28] is a natural discretization of the VM in 2d where particles move in q equidistant angular directions
with an alignment interaction inspired by the ferromagnetic equilibrium clock model. In the ACM, the
hopping rate of a particle in state θ along any direction ϕ is D(1− ε) for ϕ ∈ [0,2π] and Dε for ϕ = θ. Here ε
is the self-propulsion ‘velocity’ which indicates asymmetric diffusion and D is the diffusion constant. On the
contrary, in the DVM, the hopping probability of a particle with orientation angle θ along another discrete
direction ϕ is zero as the particle always follows its orientation (see equation (2)). Hence, while the likelihood
of hopping in non-preferred directions remains nonzero within the ACM (and also depends on the
self-propulsion velocity of the particle), such movement is impossible within the DVM. It should also be
noted that for ε= 0, the ACM [28] transforms to a (diffusive) Brownian clock model whereas the v0 = 0 limit
makes the DVM purely passive and the q-state DVM reduces to the equilibrium q-state clock model. In light
of the above discussion, it is then evident that the transverse fluctuations say in q= 4 ACM, are stronger than
the q= 4 DVM. Transverse fluctuations in the ACMmainly originate from the nonzero hopping probability
of a particle along its non-preferred directions where thermal fluctuation, through the inverse temperature
β, also plays an important role as it controls the flipping dynamics. However, in the large β limit of the ACM,
similar to the small η limit of the DVM, the probability that all particles moving in a particular direction will
flip their orientation to another direction is also very small. But, unlike DVM, an ACM particle can move
along a direction different than its orientation angle. This crucial difference in the hopping dynamics, as we
will see, plays an essential role in the steady-state pattern formation of the DVM at low η and q.

DVM control parameters are the average particle density ρ0 = N/LxLy, noise strength η, particle velocity
v0 = 0.5 (unless mentioned otherwise), and the measure of anisotropy q. According to equation (1) a large q
signifies weak anisotropy while a small q signifies strong anisotropy.

We performed numerical simulations of the stochastic process with parallel updates. The initial
configuration is prepared homogeneously by assigning random orientations and positions to the particles as
defined in equations (1) and (2), respectively. After the initialization, we let the system evolve under various
control parameters for teq to reach the steady state followed by measurements of various quantities until the
maximum simulation time tmax. teq and tmax are functions of system size, η, and q. In our simulation, the
maximum system size considered is 10242 and we have observed that for this square domain, teq = 105 is
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Figure 2. Snapshots on a square domain of size 10242 exhibiting the four phases of the DVM for q= 9. (a) Polar ordered liquid
phase (η= 0.1). (b) Cross-sea state (η= 0.3). (c) Band state (η= 0.35). (d) Disordered gas phase (η= 0.5). Dark color represents
high particle density and red arrows indicate the average direction of motion. Parameters: ρ0 = 2, v0 = 0.5.

sufficient for the system to reach the steady state irrespective of η and q. So we take teq = 105 as the steady
state time and perform steady state analysis up to a maximum time tmax = 106.

3. Numerical results

Collective motion & phase diagram.We present the typical non-equilibrium steady-state configurations of
the DVM in figure 2 for q= 9 and density ρ0 = 2. The system exhibits phases of polar ordered liquid (a),
liquid–gas coexistence (b) and (c), and disordered gas (d) as noise strength η is increased from 0.1 to 0.5. The
phase-coexistence region is characterized by a low-noise cross-sea phase (b) and a high-noise band phase (c).
The cross-sea phase has particle density much higher at the crossing points than anywhere else and has
recently been reported as the fourth phase of the VM [26]. We notice that such patterns assemble
spontaneously without an external drive at certain parameter values. Conversely, the band phase is a
collection of high-density bands moving parallelly along a specific direction at a constant speed. Polar flocks
(the homogeneous ordered liquid phase shown in figure 2(a)) can be observed in a large class of active
matter systems and have been considered robust to fluctuations. But recent studies have argued that liquid
polar flocks are metastable to the presence of a small obstacle [31] or to the nucleation of an opposite-phase
droplet [32] and triggers counter-propagating dense clusters leading to the reversal of the liquid flow. In light
of these observations, in the subsequent part of this paper, we will investigate the stability of the DVM liquid
phase. Figure 2 suggests that the system exists in distinct phases, which we will characterize next.

The non-equilibrium steady-state behavior of the DVM is illustrated by representative late-stage
snapshots as a function of noise strength η and anisotropy parameter q (see figure 3). We observe six distinct
self-organized patterns in the (q, η) plane which completely describe the DVM. At low noise and q, we
observe a locally ordered cluster phase. Although each cluster is highly dense and polar, the system as a whole
does not possess any net polarization (see appendix A). This cluster phase, which has not been observed
earlier in any flocking models, appears only for small q and η when the system is strongly discretized and the
impact of fluctuation is insignificant.

The appearance of a cluster phase in the q= 4 DVM for small (q,η) and high density instead of a polar
ordered phase similar to the 4-state APM [29, 30] and ACM [27, 28] can be attributed to the absence of
transverse fluctuations through hopping. In DVM, particle movement is solely controlled by the orientation
θ similar to the VM (see equation (2)). Therefore, q= 2 DVM only manifests one-dimensional movement
(along the x-axis) of high-density clusters of self-propelled particles having orientations θ= 0 and θ = π. We
observe that these clusters never coalesce due to the lack of transverse fluctuations and thus never form a
band or polar liquid phase. Similar observations are made when the constant transverse diffusion is switched
off in the two-dimensional active Ising model (AIM) [33], although the one-dimensional AIM [34] exhibits a
flocking state consisting of a single dense ordered aggregate. Unsurprisingly, analogous to q= 2 and q= 4, for
small η, we observe a cluster phase also for the q= 3 DVM. We do not observe any band formation similar to
q= 4 even when noise is increased. For larger noise strengths, cluster size reduces, and the system exhibits a
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Figure 3. η− q phase diagram of the DVM illustrated by snapshots on a 10242 domain at time t= 105. As a function of η and q,
we observe six distinct self-organized patterns: cluster (η= 0.1, q= 4), macrophase (η= 0.3, q= 4), microphase (η= 0.4,
q= 6→ 16), cross-sea (η= 0.3, q= 8→ 10), ordered liquid (η= 0.2, q= 6→ 16), and disordered gas (η= 0.5, q= 4→ 16).
Parameters: ρ0 = 2, v0 = 0.5.

disordered gas phase. For fixed noise, an increase in density only increases the cluster size without changing
the system morphology. This signifies that diffusion along the non-preferred hopping directions plays a
crucial role in forming large liquid domains. For APM and ACM at large β and small q and DVM with small
η and q, the probability of transverse flipping is very small since fluctuations are weak. However, the nonzero
finite hopping rates along the unbiased directions facilitate the formation of large liquid domains in the APM
and ACM; whereas the absence of unbiased hopping gives rise to a cluster phase in the DVM. Thus, in
principle, the interplay of q and η determines the fate of the cluster phase. If q is small but fluctuation is large,
the rigid cluster phase can relax and form a large ordered domain (see the snapshot for q= 6 and η= 0.2).
On the contrary, if η is small but q is large, the weak anisotropy helps the cluster phase merge into a large
ordered domain (see the snapshot for q= 10 and η= 0.1). This also explains why the cluster size increases
with q for a fixed η (see the snapshots for η= 0.1).

Beyond the cluster phase, for η= 0.2, we observe the emergence of the polar ordered liquid phase
(q⩾ 6). For intermediate noise strength (η = 0.3− 0.4), a transition is observed from macrophase
separation (q= 4, a single liquid band moving through the gaseous background) to microphase separation
(multiple bands moving parallelly or in a cross-sea pattern through the gas phase) in the coexistence region
where the number of bands increases with q. This is a consequence of having more particle orientations
allowed through q. The cross-sea phase, where interactions become more intense due to the characteristics of
the band structure, appears between the polar liquid phase and the parallel band state [35] for a fixed q. This
phase is not simply a superposition of waves of inclined bands, but an independent self-organized complex
pattern with an inherently selected crossing angle. It is worth noting that a single cross-sea pattern typically
involves the crossing of at least two bands, where the crossing angle is approximately∼ π/4 [26]. We have
observed that this crossing angle remains consistent regardless of q. For a fixed η= 0.3, as q is increased from
q= 7 to q= 16, we observe that the self-organized patterns change from bands (q= 7) to cross-sea pattern
(q= 8, 9, 10) followed by a polar liquid phase (q= 16). For the same values of the control parameters, the
VM (q→∞) exhibits features similar to the q= 16 DVM where the phase point on the (η,ρ0) diagram
almost lies on the liquid binodal [23]. This happens because the anisotropy becomes weaker with q and, for
q⩾ 16, the characteristic of the system becomes similar to the VM. The VM does exhibit a cross-sea phase
but at a different parameter regime [26]. For a large noise, e.g. η= 0.5, we observe a disordered gas phase
irrespective of q.
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Since the origin of different phases in the DVM depends on the spatial anisotropy, in appendix B, we
show that the cluster phase is ubiquitous for small (q,η) and present a cluster size analysis of the q= 4 DVM
for varying noise. For finite system size, we found that the steady-state DVM exhibits bistability of the
cross-sea phase and the band phase a within a range of the noise amplitude which results in a hysteresis (see
appendix C). In appendix C, we further discussed the stability of the cross-sea phase. See also appendices D
and E for more discussions on the DVM phases with spatial anisotropy (rectangular domain).

Based on the above discussion, we can quantify the DVM phase diagram. We observe four different
phases in figure 3 [26]: the ordered phase, the cross-sea phase, the band phase, and the disordered gas phase.
It is, however, challenging to define the phase boundaries by visual inspection.

Previously, phase-separated density profiles were used to identify binodals that delimit the gas and liquid
phases from the co-existence region [23]. Yet, this technique can not differentiate between the distinct
self-organized patterns we observe in the coexistence region (i.e. macrophase separation, microphase
separation, and cross-sea) of the DVM. One might also want to distinguish different structures in terms of
the global polar order parameter or the global magnetization defined as:

m= |m|= 1

N

∣∣∣∣∣∑
i

σi

∣∣∣∣∣ . (6)

The polar order parameter can be used to study the transition between the disorder gas phase and the band
states but can not differentiate between the band and the cross-sea states [26]. The Binder cumulant
constructed from this order parameter shows only the transition between the disordered phase and the band
state [26]. The polar order parameterm is also insensitive around the cross-sea state. Thus, for precise
quantification of different phases and their boundaries, we compute the structural order parameter C2 [26,
35, 36] as follows:

C2 = N2

ˆ
G2 (r1,r2)dr1dr2Θ(R− |r1|)Θ(R− |r2|)

=

(
N

L2

)2ˆ
R2

[g(|r1 − r2|)− 1]

×Θ(R− |r1|)Θ(R− |r2|)dr1dr2 , (7)

where G2(r1,r2) = P2(r1,r2)− P1(r1)P2(r2) for one- and two-particle probability density functions P1 and
P2,Θ is the Heaviside step function, and R is the distance around an arbitrary fixed point in space. For
macroscopically isotropic systems, G2 can be expressed in terms of the pair correlation function g(r) which
physically signifies the probability of finding a particle at a distance r relative to that of a given reference
particle and provides a statistical description of the local packing and particle density of the system. It has
been shown [26, 36] that C2 performs better thanm in capturing the structural change and the Binder
cumulant of C2 is also more efficient in distinguishing different features than the Binder cumulant of the
order parameterm. In practice, to compute C2, we take all pairs of particles, draw circles of radius R around
them, and calculate the overlap area of the two circles. The overlap area is given by
Aoverlap = 2R2 cos−1

(
d
2R

)
− d

2

√
4R2 − d2 [36], where d is the distance between the centers of the circles.

The dependence of the time-averaged structural order parameter ⟨C2⟩ with respect to η for different q is
shown in figure 4. The value of ⟨C2⟩ is the lowest for disorder gas and becomes maximum when particles are
clustered. For the band phase, ⟨C2⟩ values for macrophase separation are larger than the microphase
separation and cross-sea phase. Between microphase separation and the cross-sea phase,
⟨C2⟩cross > ⟨C2⟩micro. Although a change in ⟨C2⟩ is not very significant in these two phases, it is still a better
candidate for distinguishing the cross-sea from the microphase separation than the traditional polar order
parameter. In figure 5, we plot the η− q phase diagram by computing ⟨C2⟩ for the six different phases where
in the coexistence region, ⟨C2⟩macro > ⟨C2⟩cross > ⟨C2⟩micro. This phase diagram complements figure 3, which
has been constructed using the density field and depicts the nature of phase separation in the DVM as a
function of q. The phase diagram of figure 5 has been constructed on a large square domain of dimension
10242. For this system size, one can expect that the finite size effect is relatively small and figure 5 will remain
qualitatively the same in the thermodynamic limit. As discussed in appendix C, the DVMmight show the
bistability of two different coexistence states at the steady state for a particular noise amplitude. However, we
believe the system will evolve to a definite steady-state phase at the thermodynamic limit (L→∞).

Now, the nature of the coexistence region for any finite, large q has been a subject of discussion in the
context of q-state ACM [27, 28]. It was argued in [27] that spatial anisotropy plays a crucial role in
determining the macro/microphase separation of the coexistence region in the ACM and one should observe
a macrophase separation of the coexistence region for a finite q beyond a characteristic length scale which

6
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Figure 4. The structural order parameter ⟨C2⟩ versus the noise amplitude η for several values of q. The dotted curves between two
successive points are approximated using spline interpolation. Parameters: L= 1024, v0 = 0.5, and ρ0 = 2.

Figure 5. η− q phase diagram of the DVM by computing ⟨C2⟩. The colorbar represents the range of ⟨C2⟩ values for different
phases. Colorbar represents the range of ⟨C2⟩ values for different phases. ⟨C2⟩gas: 12→ 15, ⟨C2⟩liquid: 15→ 18, ⟨C2⟩microphase:
18→ 21, ⟨C2⟩cross-sea: 21→ 24, ⟨C2⟩macrophase: 24→ 27, ⟨C2⟩cluster: 27→ 60. Parameters: L= 1024, v0 = 0.5, and ρ0 = 2.

diverges for large q. ACM with a different set of dynamical rules than [27] was studied in [28] where the
flocking transition in the ACM was argued to be equivalent to the VM at large q. The q-state DVM is
governed by a completely different set of microscopic rules than both the models of the ACM [27, 28] and we
will therefore investigate next the impact of microscopic rules on the DVM steady-state as a function of q. We
plan to do this through the analysis of number fluctuations, the pinning-unpinning property of the system’s
global order, and the structure factor manifesting the correlation of polarization.

Number fluctuations.—It is known that fluctuations play an essential role in selecting the
phase-separated patterns in flocking models. In the AIM [33], the density fluctuation∆n2 = ⟨n2⟩− ⟨n⟩2
(where n is the number of particles in a box of size< L) in the liquid phase was found to be normal
(∆n2 = n) and the AIM coexistence region shows a macrophase separation with a single liquid domain
moving on a gaseous background. In the VM [23], on the contrary, giant density fluctuations (∆n2 = n1.6)
are observed which break large liquid domains and prevent the bands from coarsening further. This results in
a microphase-separated coexistence region. Giant density fluctuations of the homogeneous ordered phase
have also been evaluated in other flocking models [24, 37–42]. In the q-state ACM [27, 28], which can be
thought of as a bridge between the discrete AIM and the continuous VM, density fluctuations show a
transition from normal to giant fluctuation as q increases and can be explained as a transition from AIM
physics to VM physics. As the DVM also exhibits a transition from macrophase to microphase (and
cross-sea) separation of the coexistence region as q increases, it is thus useful to investigate the density
fluctuation in the DVM.

We show the number fluctuations∆n2 versus average particle number ⟨n⟩ in figure 6, computed in the
ordered liquid phase of the DVM for various q. n(ℓ) is the number of particles in boxes of different sizes ℓ
included in a 3002 domain (with ℓ⩽ 150), with ⟨n⟩= ρ0ℓ

2. As shown in table 1, the number fluctuation

7
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Figure 6. Number fluctuations∆n2 = ⟨n2⟩− ⟨n⟩2 versus average particle number ⟨n⟩ for several q values in a 3002 domain.
Parameters: η= 0.3, v0 = 0.5, and ρ0 = 6.

Table 1.Number fluctuation exponents ξ for several values of q, reported from figure 6. The typical error on the fluctuation exponents is
0.03.

q 4 5 6 7 8 9 10 16

ξ 1.22 1.28 1.41 1.48 1.67 1.64 1.64 1.64

behaves like ⟨n⟩ξ with the fluctuation exponent ξ increasing with q, from ξ ≃ 1.22 for q= 4 to ξ ≃ 1.64 for
large q. This transition from normal fluctuations for small q to giant fluctuations for larger q was also
observed in the ACM [27, 28] although ξ for q= 4 and 5 are moderately larger in the DVM than the ACM.
The increase in density fluctuations with q can be attributed to the fact that, for large q, particles have more
rotational degrees of freedom due to the weak anisotropy and therefore more directional freedom to propel.
The existence of GNF and its connection with microphase separation in the VM was hypothesized in [23]. It
was argued that GNF (ξ ≃ 1.6) breaks bulk liquid domains and produces a smectic-like microphase
separation in the coexistence regime whereas the system stabilizes in the bulk phase when the density
fluctuations are normal (ξ ≃ 1) [33]. Using the same logic for ACM [28], it was argued that GNF is
responsible for microphase separation in the coexistence regime for q⩾ 8, although a direct relation between
the existence of GNF in the ordered phase and the microphase separation in the coexistence phase is still
ambiguous. Nonetheless, if we compare ξ in table 1 and the snapshots in figure 3, we observe a
correspondence between the fluctuation exponent and the pattern formation in the coexistence region of
DVM. For q< 8, although the difference in ξ(q) is small, the exponents change continuously with varying q,
similar to the ACM [28].

One should also consider the finite size effect on the fluctuation exponents as discussed in [28]. In
figure 6, the data can be fitted to two different power-law regimes (the extracted exponents depend on the
interval along the x-axis to which the fits are restricted): (a) ξ tabulated in table 1 in the interval [103,5× 104]
and (b) a smaller ξ in the interval [5× 104,105]. Around the second interval, the plot shows a ‘saturation’
because ξ must decrease with increasing ⟨n⟩ due to the finite-size cut-off at ⟨n⟩= N= ρ0L2, where∆n2

vanishes.
Pinned property of the order parameter.—The global order parameter defined in equation (6) quantifies

the overall ordering of the particles in the system. In the ACM [27], at finite size, the direction of the global
polar order Φ ≡ arg⟨m⟩ exhibits distinct behaviors in the liquid phase depending on the value of q: it
displays AIM-like properties (pinned along an angle) for small q and VM-like behavior (unpinned over time)
for large q. However, for a particular q, an unpinning to pinning transition is observed as the system size is
increased which indicates the sensitivity of the ACM [27] steady-states on system size and a possible
transition from micro to macro phase separation of the coexistence region beyond a length scale. We
therefore are interested in analyzing this property for the DVM.

In figure 7(a), we show the time evolution of Φ(t) in the DVM liquid phase for varying q. Similarly to the
observation made in the ACM [27], Φ(t) begins wandering slowly with q and becomes an unpinned variable
of t for large q. In other words, for weak anisotropy, the global ordering does not remain constrained to a
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Figure 7. (a) Time series of the orientation of global polar orderΦ in the liquid phase showing a transition from unpinned to
pinned as q increases (η= 0.3, ρ0 = 6, v0 = 0.5, and L= 200). (b)Φ shows an unpinning to pinning transition as a function of
system size L for q= 9 (η= 0.3, v0 = 0.5 and ρ0 = 6).

specific orientation. While, for small q, Φ(t) remains pinned and tends to exhibit a stable global ordering.
Microscopically, this refers to a picture in which, at large q, a proportional number of degrees of freedom
allows the particles to choose between adjacent directions facilitated by fluctuation, while it is not the
obvious choice for particles in small q that require a significantly larger jump to switch directions.
Translating this to the global polar order parameter and comparing figure 7(a) with figure 6 we propose that
GNF corresponds to the unpinned behavior of Φ(t). Likewise, the unpinning nature of the direction of the
global polar order is a characteristic of microphase separation.

In addition to q, the finite system size also affects the evolution of Φ(t) (as was also shown in reference
[27]), which is shown in figure 7(b) for q= 9. Similar to the ACM [27], we observe a transition from
unpinned behavior to pinned behavior in Φ(t) as the system size increases. In larger systems with polar
order, a particle interacts with more particles in the neighborhood and correlates over longer distances.
Higher connectivity promotes stronger alignment and cooperative motion among the particles. As a result,
the direction of the global order becomes more pronounced and persistent in larger systems, leading to the
pinned state. Figure 7(b) further indicates that if Φ(t) is pinned for L= 300, it must also be pinned for
L= 1024. This is inconsistent with the microphase separation and the cross-sea patterns observed in the
coexistence region of the q= 9 DVM (figure 3). Evidently, the correlation proposed earlier between the
pinned property of the system’s ordered liquid phase and the system morphology observed in the coexistence
region (macro/micro/cross-sea) is not conclusive in the DVM (see appendix F for more details).

Structure factor.—To understand the system’s behavior for different q, investigation of the magnetization
correlation function which analyzes how the particle’s orientations are correlated as a function of q is a good
measure. In the ACM [27], it was observed that the structure factor (Fourier transform of the orientation
correlation function) converges to finite values at large wavelengths beyond a crossover length scale. This
length scale is a function of q which signifies the crucial impact of the system size on anisotropy.

To explore the correlation among particle polarizations, we consider the transverse magnetization
structure factor S⊥(k) = ⟨m⊥(k)m⊥(-k)⟩ [27] against wavelength k and plot it in figure 8. The structure
factor has been calculated in the liquid phase on a 3002 domain for (a) various q values (the same behavior is
observed for the structure factor of the density field) and (b) for a fixed q= 9 but for various system sizes.
The results presented in figure 8(a) show that for small q, the structure factor S(k) converges to finite values
as the wave vector k→ 0. This convergence indicates an AIM-like behavior or a macrophase separation of the
coexistence region [27]. However, one can notice that this convergence is achieved only beyond certain
length scales and these length scales are functions of q. The structure factor captures the correlations between
particle orientations and therefore the magnitude of ordering at different length scales. A saturation of S(k)
for small q when k approaches zero thus signifies a strongly correlated liquid domain whereas for large q, due
to weak anisotropy or more allowed orientations for ordering, particles inside the liquid domain are not as
strongly correlated as for small q. Figure 8(b) shows S(k) for several system sizes and manifests that with
larger system sizes (L⩾ 300), S(k) tends to converge to a finite value when k→ 0. Our earlier argument that
stronger interactions between particles (with larger L) promote robust ordering also applies here. Comparing
figure 8 with figure 7, we conclude that the pinning behavior (unpinning behavior) of Φ(t) and the
saturation of S(k) (algebraic scaling of S(k)) compliment each other and convey the same physics.

It was argued in reference [27] considering the pinning properties of the order parameter and behavior of
the structure factor in the liquid phase that for large q ACM, VM behavior (microphase separation) will be
observed only up to large finite sizes. But the asymptotic large length scale behavior will be AIM-like
(macrophase separation) where the length scale diverges with q as exp(q2). reference [27] also showed that in
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Figure 8. Structure factor S⊥(k) vs k= (k∥,0) in the ordered liquid phase for (a) several q values (L= 300) and (b) varying
system size (q= 9). Parameters: η= 0.3, ρ0 = 6, and v0 = 0.5.

Figure 9. Order parameter distributions of the q= 9 DVM for the liquid phase. Parameters: η= 0.3, v0 = 0.5 and ρ0 = 6.
Ring-like distributions for smaller system sizes (L= 50 and L= 100) in (a) and (b) change to distinct isolated spots for larger
system sizes (L= 200 and L= 300) in (c) and (d), which correspond to the ordered liquid phase’s q-fold degeneracy.

the phase coexistence region of the ACM, a microphase to macrophase transition occurs when the linear
system size increases along the transverse direction at fixed q, which we do not observe (in the DVM, multiple
bands do not merge to a single band when Ly is increased for a fixed Lx). We observe a similar behavior of
Φ(t) and S(k) as reference [27] but can not draw a conclusive correspondence between the large length-scale
liquid phase behavior of Φ(t) and S(k) to the phase-coexistence behavior of the DVM as shown in figure 3.

In figure 3, the snapshots on a large square domain (without any spatial anisotropy) show the existence of
a microphase separation and cross-sea patterns (for which one needs at least two bands) of the
phase-coexistence region for large q values. The number fluctuation plotted in figure 6 corroborates this
observation by exhibiting GNF for those large q values. The large length scale asymptotic behavior (for large
q) of the direction of global order Φ(t) (figure 7) and the structure factor S(k) (figure 8) in the ordered liquid
phase respectively shows a pinned behavior and saturation for k∥ = 0 which as argued in reference [27]
signifies an AIM phenomenology. However, our numerical investigation of the DVM does not show a
cross-over from micro- to macrophase separation for higher q values as observed in the ACM [27] although
matches with the observation of another model of ACM [28] with different dynamical rules. Therefore, we
argue that the impact of dynamical rules governing flipping and hopping in a flocking model has a
significant influence over the system dynamics.

Order parameter distribution.—In Vicsek-like models, where particles are active and move with a
constant velocity, the ordered state exhibits a true LRO in two dimensions because of a spontaneous
symmetry breaking due to the out-of-equilibrium nature of the models. In figure 9, we show the time- and
ensemble-averaged distribution of the order parameterm= (mx,my) for increasing system sizes, where

mx =
1
N

∑N
i=1 cosθi andmy =

1
N

∑N
i=1 sinθi. In figures 9(a) and (b), ring-like distributions (unpinned
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Figure 10. Time evolution snapshots of the orientation field showing the reversal of the initial ordered liquid phase in (a) q= 6
and (b) q= 16-state DVM following the introduction of a tiny counter-propagating high-density droplet (motion of direction is
denoted by black arrows, t= 1) of radius rd = 5 and density ρd0 = 10ρ0. Colorbar represents particle orientation field. Parameters:
L= 1024, η= 0.4, v0 = 1 and ρ0 = 2.

orientations) are the characteristic of the quasi long–range ordered (QLRO) phase. However, this occurs due
to the finite-size effect and is similar to the impact of finite-size on Φ(t) and S(k). We recover the LRO for
larger system sizes (L= 200 and L= 300) where the distributions display nine distinct isolated spots (pinned
orientations) that correspond to the 9-fold degeneracy of the ordered liquid phase, each spot having equal
probability. One can expect that the finite size effect will be much weaker for L= 1024 and the spread of the
distribution in the LRO phase around the allowed ordering angles will also be more precise.

The DVM for large q exhibits a QLRO phase when v0 = 0 (see appendix G). We argue that DVM with
immobile particles reduces to the two-dimensional q-state clock model (with a quenched bond-disorder as
only particles within a fixed distance interact) which approaches the XY model for large q with vanishing
LRO regime [43]. For v0 > 0 and a fixed L, as flocking directions increase with q, we again observe ring-like
distributions for large q (see appendix G) but beyond a length scale which is proportional to q, the order
parameter distributions for large q show q isolated spots characteristic of the LRO phase. This is similar to
the unpinned to the pinned transition of Φ(t) and convergence of S(k) to a finite value at k→ 0 for large q
values as the system size is increased. In the VM (q→∞), even for a large L, the order parameter
distribution shows a ring-like structure because of the continuous symmetry.

Stability of the ordered liquid phase.—As discussed in the context of figure 2, here we present a brief
analysis of the stability of the DVM ordered liquid phase by inserting a small high-density
counter-propagating liquid droplet. Initially, the average direction of the particles in the polar liquid phase is
aligned along the direction Φliq = π, and the average particle orientation of the liquid droplet is Φd = 0. The
radius of the droplet is rd and density is ρd0 and it is inserted in an ordered phase of density ρ0 (ρd0 ≫ ρ0). We
take several q values and calculate the probability (Prev) that the droplet grows against the main order and
reverses the ordered phase as a function of η, rd, and ρd0. The simulation protocol follows [32], where the
initial configuration is prepared by particles with θ = π and we let the system evolve up to a certain time t to
reach the steady state. The system retains the average global polarization in the direction θ = π. Then, a
circular region of radius rd centered at (L/2,L/2) is selected and an additional∆N= (ρd0 − ρ0)π r2d number
of particles are added to make a high-density circular droplet. Finally, the orientation of all the particles
within the droplet is changed to θ= 0.

In figure 10, we study the fate of polar flocks in q= 6 and 16-state DVM by introducing a small
high-density counter-propagating droplet against the initial polar ordered liquid phase of the main flow and
observe the subsequent time evolution. One should note here that the perturbation through the droplet is
very small i.e. the ratio of droplet diameter to the linear length of the simulation box is∼10−2 (rd = 5,
L= 1024). We observe, similar to [31], that the droplet grows with time leaving behind a dilute region
(t= 102) and adds more and more particles as it moves along forming a principal dense, curved band
(followed by several other curved bands) that invades the whole system ballistically (t= 103 and t= 104). In
the final stage, this principal curved band connects itself over the system boundaries and widens until a
steady state liquid phase of a different Φliq emerges (at t= 105), signifying the metastability of the DVM
liquid phase. The time-evolution is similar for both small and large q, which signifies that both discrete and
continuous-symmetry flocks are metastable.
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Figure 11. (a) Reversal probability Prev versus noise η for q= 16 and two different droplet radius rd = 5 and 10. (b) rd − ρd0/ρ0
phase diagram for η= 0.45 and q= 16. The colorbar represents reversal probability Prev. (c) Prev versus q for various noise,
rd = 5. Parameters: L= 400, ρd0 = 10ρ0 (a & (c), v0 = 1 and ρ0 = 2.

The growth pattern of the DVM droplet is similar to the VM [31] but distinct from the AIM [32]. In the
DVM, after its introduction, the droplet front interacts with the liquid particles outside and creates a curved
band of particles having several different orientations (impact of q). In this process, the droplet seizes to exist
and it is this high-density curved band that destroys the initial flow. In AIM [32], the droplet grows along the
direction transverse to the propagation (due to the constant transverse diffusion) creating a comet-like trail
of disordered particles that can not be observed in the DVM.

Figure 11 quantifies Prev, the probability of reversing the main flow upon the introduction of a given
droplet, for several control parameters. For each set of control parameters, we have taken 20 independent
realizations to calculate Prev. Akin to [31], we observe that the noise strength η has a strong influence on the
reversal dynamics and Prev increases from 0 to 1 as η is increased (figure 11(a)). This is because for small η,
the ordered phase is very stable, and thus, the counter-propagating dense bands find it difficult to reverse its
flow. For large η, fluctuations are stronger, and therefore, the probability of reversal increases. Figure 11(a)
also exhibits that the transitional value of η (Prev =

1
2 ) above which a droplet triggers a reversal is a decreasing

function of rd although there is a critical η (η ∼ 0.35), below which no droplet can trigger a reversal
irrespective of its density. The rd − ρd0 phase diagram in figure 11(b) has been constructed by calculating Prev
for several (rd,ρd0). Unsurprisingly, large rd combined with large ρd0 are shown to facilitate the reversal of the
initial liquid phase. The droplet-induced reversal of the liquid flow is found independent of q where Prev is
found to behave similarly for each q under certain values of η (figure 11(c)).

In addition, a study of the metastability of the DVM liquid phase on rectangular geometry
(Lx = 800,Ly = 100), produces a similar outcome. One can also consider droplet movement in other
directions than opposite to the global flow, e.g. transversely propagating droplets with Φd = π/2 for q= 8 or
Φd = 2π/3 for q= 6 and perform a similar analysis to check whether the liquid phase is susceptible to
droplets irrespective of their propagation direction.

4. Discussion

Our study motivated by the ACM [27, 28], considers a true q-state discrete version of the Vicsek model where
q defines the strength of orientation anisotropy. At small q, the system is highly anisotropic, which, however,
vanishes in the limit q→∞ when we recover the Vicsek model. The DVM shows qualitatively similar
features as the ACM [28] for intermediate noise strength η where a transition from macrophase to
microphase separation is observed in the coexistence region as q increases. But for small q and η, the liquid
phase appearing in the ACM at low temperatures is replaced in the DVM by a cluster phase. The cluster
phase consists of multiple clusters with different polarization (see figure 12) which does not exhibit a
long-range order. The clusters grow and merge with increasing q leading to a homogeneous ordered phase at
large q. For small q, a long-range ordered phase can be achieved by increasing the noise strength. At low noise
and small q, the flipping probability is very small, and in addition, transverse fluctuations through hopping
are also absent. The combined influence of these factors results in clusters failing to grow continuously at
small η and q, preventing the system from reaching a homogeneous liquid state. Therefore, the polar ordered
phase which is ubiquitous in discretized flocking models (such as the AIM, APM, and the small q limit of the
ACM) for small noise has been replaced by a cluster phase in the DVM and is a consequence of the strong
anisotropy through q. The DVM recovers the ordered phase for small noise at the large q limit, which
signifies the DVM to be in the same class as the VM (q→∞ DVM).
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Figure 12. Steady-state snapshots (b), (c) and (e), (f) from two different initial conditions: (a) random disordered and (d) polar
ordered. (b), (e) η= 0.1 and (c), (f) η= 0.2. The colorbar represents particle orientations. Parameters: q= 4, L= 300, v0 = 0.5,
and ρ0 = 6.

The self-organized patterns in the coexistence region of the discretized VM indicate a transition from
AIM-like patterns to VM-like patterns as anisotropy becomes weaker. This observation is corroborated by
the giant density fluctuations for large q. However, the large length scale behavior of the direction of global
order Φ(t), the structure factor S(k), and the order parameter distribution in the liquid phase do not
correspond with the phase-coexistence patterns of the large q DVM. The DVM without any spatial
anisotropy and at large length scales shows a transition from a macrophase-separated coexistence region to a
coexistence region having microphase or cross-sea pattern with increasing q. This is similar to the
observation made in the q-state ACM [28] which also approaches the VM at the large q limit.

We also find that the DVM liquid phase is susceptible to perturbation applied through a
counter-propagating droplet. The liquid phase reorients and propagates along the direction of the droplet.
The reversal dynamics is significantly impacted by the noise strength η [31] but remains independent of q.
The stability of the high-density flocking ordered phase at low noise is still an open problem and will be
addressed in a subsequent study [44].

As a final remark, we add that the rotational flexibility of the particles and microscopic details of the
dynamical rules can significantly impact the macroscopic properties of the ordered phase. It would be
interesting to compare the model predictions of the DVM with suitable experiments where anisotropy in the
particle orientation may be controlled by a finite number of motility directions.
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Appendix A. Dependency of the cluster phase on the initial condition

Snapshots in figures 12(b), (c) and (e), (f) illustrate the steady state behavior of the q= 4 DVM starting from
two different initial conditions: (a) random disordered and (d) polar ordered. In the top panel, the system
exhibits cluster phase for q= 4 for both values of η when starting from an unbiased random configuration.
The initial coarsening process forms clusters, but they do not merge to create a single large ordered domain
due to the absence of transverse fluctuations as discussed in the context of figure 3. In the bottom panel, this
observation changes for the lowest noise strength when starting from a polar-ordered initial configuration.
For η= 0.1, the steady state remains in an ordered liquid phase (similar to the steady state behavior of the
4-state APM or ACM at low temperature) signifying that the fluctuation is weak to alter the broken
symmetry phase into a cluster phase. However, with an increase in the noise (η= 0.2), the steady-state cluster
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Figure 13. Probability distribution P(S) of cluster size S for different noise level. Parameters: q= 4, Lx = 800,Ly = 100,ρ0 = 2,
and v0 = 0.5.

phase appears again. This also suggests that for DVM with weak anisotropy and fluctuations, the cluster
phase is the non-equilibrium steady-state and the well-known small η or large β ordered liquid phase can
only be achieved by taking a strongly polarized ordered initial condition. It is worth noting that the number
of clusters in (c) is higher than in (b) due to more relaxation via the noise. A further increase of the noise will
lead to a single large ordered domain as shown in the phase diagram of figure 18.

Appendix B. Cluster size analysis for q= 4

The cluster size analysis for q= 4 is shown in figure 13 for a rectangular domain of size 800× 100. We use a
box-counting method to find a cluster which is described below:

If Lx and Ly are the linear sizes of a rectangular domain, Lx × Ly is the total number of boxes we consider.
For a box i, ni is the number of particles in that box and ci is the cluster label of the box. If the box does not
contain any particles ci = 0 i.e. it is not part of any cluster. Then we use the Depth-first search (DFS)
algorithm to find the connected boxes that are not void of particles and label them as a single cluster. For
each cluster label cj, we calculate the size of the cluster Sci as following:

Sci =

LxLy∑
j=1

δci,cj × nj , (B1)

where δci,cj is the Kronecker delta function that equals 1 if ci = cj, and 0 otherwise. Then we calculate the
cluster size probability distribution denoted as P(S):

P(S) =
Number of clusters with size S

Total number of clusters
. (B2)

Figure 13 illustrates that for small noise, the probability of larger cluster formation is high. This is
because reduced fluctuation in the system facilitates the formation of high-density clusters. However, with
noise (η= 0.3), the cluster phase vanishes and the q= 4 DVM exhibits a macrophase separation, resulting in
a decrease in the probability of obtaining large clusters. At large noise (η ⩾ 0.4), the system becomes
disordered, leading to a lesser probability of formation of large clusters. We would also like to mention that
for a fixed noise, P(S) versus S for various orientations (θ = 0,π/2,π,3π/2) shows almost identical
distributions signifying no preference in orientation in the cluster formation.

Appendix C. Stability of the DVM steady-state phases

In this section, we analyze the stability of the different DVM steady-state phases. Figure 14(a) illustrates the
stability of the cross-sea phase where we ask if one starts with a band state in the cross-sea regime, will the
system evolve to a cross-sea pattern? The figure shows that the system initially configured in a high-density
single band (visualized as a vertical stripe of aligned particles), evolves into a cross-sea phase after a long time
(t= 131072). A similar observation is made with microphase-separated initial bands in figure 14(b),
suggesting that the steady-state phases of the DVM are independent of the initial configurations. However, as
observed in [35] for the VM, in the DVM also, phase boundaries between the two neighboring phases, the
cross-sea phase and the microphase, are not always distinct. For a finite system size, bistability between these
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Figure 14. Stability of the cross-sea phase. (a) and (b) Starting from a high-density macrophase and microphase-separated
coexistence band, the system finally exhibits the cross-sea phase at a large time respectively. Parameters: L= 1024, q= 9, η= 0.3,
ρ0 = 0.63, v0 = 1.

Figure 15. Steady-state snapshots of the DVM (q= 9) at different noise amplitudes. (a) and (b) Ordered phase at η= 0.1 and 0.2;
(c) and (d) Bistable phase at η= 0.3 and η= 0.35 [(i) cross-sea phase, and (ii) microphase]; (e) microphase at η= 0.4 [(i) fully
developed microphase, and (ii) partial microphase]; (f) disordered phase at η= 0.45. System size L= 1024. Parameters:
ρ0 = 0.63, v0 = 1.

two neighboring phases can be observed, as shown in figure 15. At low noise (η= 0.1), the system exhibits a
homogeneous high-density ordered phase, where particles move mainly in a uniform direction. With a small
increase of the noise (η = 0.2), the cross-sea phase starts to appear, and at high noise amplitude (η= 0.45),
the system transitions to a disordered phase, where particles show random orientations. Interestingly, in the
intermediate noise amplitudes (∼ η = 0.28−0.35), the system exhibits bistability where both cross-sea and
microphase features can be found depending upon the initial conditions. In the VM, bistability was observed
between the ordered phase and cross-sea phase and also between the microphase and disordered phase [35].
This bistability arises due to the fluctuation at relatively higher noise amplitudes and finite system size. We
therefore expect the system to evolve to a specific stable steady-state phase for a particular noise amplitude at
the thermodynamic limit (L→∞). The bistability between the cross-sea phase and the microphase as a
function of noise amplitude is further demonstrated by a hysteresis loop in figure 16. The hysteresis loop is
obtained by plotting ϕcs as a function of noise η keeping the density (ρ0) and particle velocity (v0) constant.
Where ϕcs is either 1 or 0, corresponding to cross-sea and microphase, respectively. In the low noise limit, we
evolve an initially disordered configuration into a steady state coexistence phase by slowly varying the noise
amplitude by (∆η = 0.02). The cross-sea phase demonstrated by ϕcs = 1 starts∼η = 0.2 and is retained up
to a large noise (red curve). At∼η = 0.35, the cross-sea switches to the microphase and remains steady for
up to∼η = 0.4. While reducing the noise from this high value (blue curve), the microphase bands (ϕcs = 0)
sustain for a wide range of η stretching significantly below the cross-sea to microphase transition point
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Figure 16. Hysteresis loop in the q= 9 DVM between the cross-sea phase and microphase-separated band phase where ϕcs

denotes the presence of a cross-sea phase (ϕcs = 1). System size L= 1024. Parameters: ρ0 = 0.63, v0 = 1.

Figure 17. η− q phase diagram of the DVM illustrated by snapshots on a rectangular domain (Lx = 800, Ly = 100). Parameters:
ρ0 = 2, v0 = 0.5. As a function of η and q, we observe five distinct self-organized patterns: cluster (η= 0.1, q= 4), macrophase
separation (η= 0.3, q= 4), microphase separation (η= 0.4, q= 7→ 16), ordered liquid (η= 0.2, q= 7→ 16), and disordered
gas (η= 0.5, q= 4→ 16).

(∼η = 0.35). Finally, the microphase switches back to the cross-sea phase around (∼η = 0.28). As shown in
figure 16, both the transitions (at small and large η) between these two phases appear to be discontinuous.

Appendix D. Impact of spatial anisotropy: steady-states for rectangular domain

In figure 17, we investigate how spatial anisotropy influences the non-equilibrium steady-state behavior of
the DVM if we switch from a square domain to a rectangular domain by analyzing late-stage representative
snapshots as a function of noise strength (η) and discretization parameter (q). When noise is low and q is
small, we observe the emergence of a locally ordered cluster phase similar to our finding for the square
domain. However, when q is small and fluctuations are pronounced, those cluster phases relax and transform
into a larger, organized domain (see the snapshot for q= 4 and η= 0.3) akin to the figure 3. Conversely,
when η is small and q is large, weak anisotropy facilitates the merger of the cluster phase into a larger,
well-organized domain (see the snapshot for q⩾ 8 and η= 0.1) which is observed at q= 10 in the absence of
spatial anisotropy (see figure 3). An increase in the fluctuation for small qmight exhibit multiple bands but
those are connected by the periodic boundary conditions and should be considered a single band (see the
snapshot for q= 5 and η = 0.2,0.3). However, no cross-sea phase is observed with the rectangular geometry,
which is seen in [26] probably due to larger particle velocity (v0 = 1). An increase in anisotropy q also
increases the no. of bands in the coexistence region at intermediate noise (η= 0.4) because with q, the density
fluctuation increases along with the magnetization fluctuation which prompts the breaking of large domains.

Appendix E. (η− ρ0) phase diagram of the DVM

In figure 18, we plot the noise-density (η− ρ0) phase diagrams computed on a rectangular domain of
800× 100 for various q. The clustering phase is very prominent for small q values (q= 4, 5) and exists for
high densities. As q is increased, the conventional ordered liquid phase appears at high densities and for
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Figure 18. Phase diagrams on η− ρ0 plane computed on a rectangular domain of 800× 100 for various q. A macrophase
separation similar to AIM in (a) and (b) transforms to a Vicsek-like phase separation (microphase) in the coexistence region in
(c) and (d) at intermediate densities. v0 = 0.5.

q⩾ 8, the cluster phase disappears and we notice the emergence of the typical η− ρ0 diagram observed for
Vicsek-like systems (figure 18(d)). These Vicsek-like phases are characterized by a more global alignment of
the particles, leading to coherent motion and the absence of distinct clusters or bands. In this regime, the
behavior of the system is predominantly governed by the alignment interactions between the particles rather
than the specific value of q. It shows clear boundaries between different phases based on varying values of q
and η. At small q and intermediate densities, a macrophase separation similar to AIM is observed. However,
as q exceeds a threshold (e.g. q⩾ 8), the system transitions to a Vicsek-like phase separation in the
coexistence region.

Appendix F. Direction of global order in the coexistence region

Here, we analyze the pinned property of the system in the coexistence region and directly compare the
outcome with the steady-state snapshots. In figure 19, the time series of the orientation of global order Φ is
shown for fixed L= 512 and various q (figure 19(a)) and for fixed q= 9 and several L (figure 19(b)). When
the system size is fixed, we observe pinning to unpinning transition with q whereas for fixed q, the reverse
transition happens as the system size increases. Both observations are similar to the observations made
regarding the time evolution of Φ in the DVM polar ordered phase (figure 7). The snapshots shown in
figures 19(c) and (d) without any spatial anisotropy exhibit a coexistence region with multiple bands
signifying a microphase-separated region. Comparing the snapshots with the time evolution of Φ we notice
that both the unpinning behavior of the DVM for q= 16 and the pinning behavior for q= 9 shows flocking
with multiple parallelly moving bands.

Appendix G. Nature of the DVM ordered phase

In figure 20, we show the order parameter (m) distribution on the (mx,my) plane for v0 = 0. At this limit,
particles can no longer move but modify their orientation according to equation (3) and the q-state DVM
reduces to the two-dimensional q-state clock model which shows two distinct phase transitions, one from
disordered to QLRO phase at a higher temperature and the other from QLRO to LRO phase at a lower
temperature for q⩾ 5 [43]. At large q, the LRO phase gradually starts to vanish, and for the two-dimensional
XY model (q→∞), only one phase transition occurs (Kosterlitz-Thouless phase transition) from the
disordered phase to the QLRO phase. As shown in figure 20, at the zero activity limit, the order parameter
distribution shows q distinct isolated spots (signifying LRO) for small q but as q increases (q⩾ 7), ring-like
distributions characteristic of the QLRO phase appears. These ring-like distributions become more
pronounced as the system size is increased for large q. In contrast, for v0 > 0 (see figure 21), the order
parameter distribution exhibits LRO through isolated points of phase ordering as activity facilitates the
broken symmetry phase. For q> 7, a comprehensible LRO phase is observed at a large length scale limit as
shown in figure 9.

To understand better the nature of ordering of the DVM liquid phase, we show the order parameter ⟨m⟩
against increasing system size L for several q in figure 22. The data presented are averaged over time and
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Figure 19. Time evolution of the direction of global orderΦ in the coexistence region for (a) L= 512 and various q and (b) q= 9
and several values of L. (c), (d) Snapshots showing multiple bands moving parallelly constituting a microphase-separated
coexistence region for q= 9 and q= 16, respectively. System size L= 512. Parameters: η= 0.3, ρ0 = 1.5, v0 = 0.5.

Figure 20. Zero-activity limit of the order parameter distributions of the DVM with varying q in the liquid phase. Parameters:
L= 100,η = 0.3, and ρ0 = 6. Distinct isolated spots in (a)–(c) indicate LRO while ring-like distributions in (d)–(f) are
characteristic of the QLRO phase.

Figure 21. Order parameter distributions of the DVM at constant activity v0 = 0.5 with varying q in the liquid phase. Parameters:
L= 100,η = 0.3, and ρ0 = 6.

several initial configurations. We note that, ⟨m⟩ remains independent of the system size L (actually,m scales
with L asm∼ L−λ, decays much slower than a power law) for all q for v0 = 0.5 (figure 22(a)) signifying LRO.
As a result, the liquid phase of the constant-speed DVM is LRO and the direction of the order parameter
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Figure 22. Order parameter ⟨m⟩ versus system size L for varying q in the ordered liquid phase. (a) ⟨m⟩ is independent of L for
v0 = 0.5 signifying LRO. (b) ⟨m⟩ decays algebraically with L signifying QLRO in the zero-activity limit. Parameters: η= 0.3,
ρ0 = 6.

exhibits a pinned behavior. For v0 = 0, shown in figure 22(b), however, ⟨m⟩ is expected to algebraically decay
to zero for L→∞ and this effect is more pronounced for larger q because, for large q, the v0 = 0 DVM
approaches the two-dimensional XY model where the low-temperature phase is a QLRO phase.
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