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Stationary particle currents in sedimenting active matter wetting a wall
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Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational
field would rise against gravity up a confining wall or inside a thin capillary—in spite of repulsive particle-wall
interactions [Phys. Rev. Lett. 124, 048001 (2020)]. In this paper we confirm this prediction with sedimenting
active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation
of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with
the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined
by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength
increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a
box: already the stationary state of ideal (noninteracting) ABPs without gravitation displays circular currents that
arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration
downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls.
Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation
(MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex
upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization
of scalar active matter that forms stationary particle currents being able to perform visible work against gravity
or any other external field, which we predict to be observable experimentally in active colloids under gravitation.
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I. INTRODUCTION

Active matter is constituted of self-propelled particles, like
motile microorganism, bacteria, cells, animals, or active col-
loids, which consume energy at small scales and convert it
into a persistent motion, driving the system out of equilibrium
[1-3]. This energy is often redistributed as thermal agitation
[4], but a deeper understanding of these active energy flows
is needed to extract a valuable work [5]. Experiments and nu-
merical evidence reported in recent literature show that active
matter gives rise to nontrivial nonequilibrium steady states in
presence of boundaries and obstacles, such as accumulation
at walls [6-9], ratchet effects [10], and long-range depletion
interactions [11]. Sperm, E. Coli bacteria, or microalgae con-
fined to an observation chamber have been found to strongly
adhere to the walls [12-15].

Several minimal models and plausible mechanisms have
been proposed so far to explain and predict this behavior.
For example, the minimal model consists of spherically sym-
metric, active Brownian particles (ABPs) without alignment
but with excluded volume interaction [16,17], belonging to
the class of scalar active matter, like run-and-tumble parti-
cles [18] and active lattice gas [19,20]. These active particles
behave like a passive fluid with particle-particle attractive
interactions, since the collisions between them slow down the
dynamics, and therefore effectively attract each other. Conse-
quently, ABPs separate into low-speed (dense) and high-speed
(dilute) phases, a phenomenon called motility-induced phase
separation (MIPS) [21]. Although being a dynamically ar-
rested phase, the dense active phase seems not to be a glassy
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phase [22]. This phenomenon is now well characterized in
the context of ABPs [23], also in presence of attraction be-
tween particles [24], or with polydisperse particles [25]. The
mechanism leading to MIPS is also responsible for the wall
accumulation of active particles [6,7], due to the adhesion of
ABPs on repulsive walls.

However, the effect of boundaries and steric interaction
forces on active matter in the presence of an external force is
not yet well understood. Experiments and Brownian dynamics
simulations have shown that a system of dilute self-propelled
particles—chemically powered colloids—sediment under an
external gravitational field [26-29]. The sedimentation length
increases quadratically with the swimming velocity of the
ABPs, and active particles can partially swim against the grav-
ity [27]. Exact steady-state solutions have been also derived
in the context of two-dimensional (2d) and three-dimensional
(3d) ideal active sedimentation [30,31]. However, it is not
obvious how the combination of an external gravitational field
and wall interactions might affect the steady state of a system
of interacting active particles.

Recently, in the context of understanding the phenomenon
of capillary action and spontaneous imbibition of liquids in
porous media, a minimal active lattice gas model consisting of
self-propelled hard-core particles in an external gravitational
field had been introduced [32]. By inserting a thin capillary
tube into the bulk-sedimented phase of the active particles, ac-
tive matter exhibits capillary action even with purely repulsive
particle-wall interaction. Contrary to the notion of classical
passive fluids, where phenomena such as wall wetting and
capillary action originate in wall-liquid adhesive forces and
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intermolecular cohesive forces inside the liquid, an active
scalar fluid is able to mimic such a behavior in absence of
any attractive forces within the system. However, due to the
inherent out-of-equilibrium nature of active matter [33], a
quantity analogous to surface tension cannot be defined in
passive equilibrium systems and, hence, the simple intuition
underlying capillary action based on the balance between gain
in surface energy and gravitational energy of the liquid col-
umn fails here. A recent study has shown that self-propelled
Janus colloids exhibit unexpected adhesion and alignment of
particles at the wall [34], which enhance the capillary action
by enabling active particles to climb up a wall against gravity.

Several studies have shown the presence of stationary parti-
cle currents in the context of scalar active matter. Although no
alignment mechanism is present, persistent cooperative mo-
tion of particles has been observed in the dense phase of ABPs
[35], where an effective velocity alignment is observed in
presence of MIPS due to the interplay between steric repulsion
and activity [36,37]. Active particles arrange in vortex-like ge-
ometry with a size increasing with the self-propulsion velocity
[36], and dense assembly of polydisperse particles move in
irregular turbulent flows [38]. Recently, similar stationary
currents have been observed for motile cells in an isolated
ellipsoidal compartment [39], for active microrobots in a box
[40], or for ABPs at boundary inhomogeneities [41,42]. In the
context of ABPs in a box, a universal relation between the
nonequilibrium probability flux of the motion and the global
geometric properties, via the boundary’s curvature, has even
been established [39].

In this paper, we employ a minimal model of interacting
ABPs under gravity inside a two-dimensional rectangular box
to characterize the wall-wetting mechanism of an active sed-
imenting fluid. First we intend to confirm that capillary rise
is also present in the ABP system as it has been predicted
for the active lattice gas model [32] and to scrutinize quan-
titative similarities and discrepancies. Then, our main goal
is to relate the capillary rise or wall wetting with stationary
particle currents in the system and to study how it varies with
the particle-particle interaction strength, down to the ideal,
noninteracting case.

The paper is organized as follows: We first describe our
model in Sec. II and present a detailed analysis of the density
profiles in Sec. III. Section IV contains our results on the
characterization of the current field and the vortices. Section V
presents the evolution of wetting height and vortices when
tuning the particle-particle interaction, and Sec. VI discusses
about our results on noninteracting ABPs. Finally, in Sec. VII
we conclude with a discussion that elucidates our understand-
ing of the system and proposes future directions.

II. MODEL

Active Brownian particles serve as simple yet powerful
tools for modeling the behavior of motile matter in different
biological environments. Our model is motivated by experi-
ments on self-propelled colloidal particles sedimenting under
gravity [28,29] confined to a two-dimensional plane. We con-
sider N circular, self-propelled, Brownian particles in a 2d
box of size (L, x L,) with reflecting boundary conditions
along x and y directions, subject to a gravitational force along

—§. The particles propel themselves forward with a constant
propulsion speed v, and their orientations perform a rotational
diffusion with diffusion constant D, such that all motion is
restricted to the (x, y) plane. The particles are considered to be
smooth spheres such that there is no hydrodynamic coupling
and interchange of angular momentum leading to systematic
torques that might aid alignment interactions. Configuration
of the system at each instant of time # is given by the positions
and self-propulsion directions {r;(z), 6;(¢)} of all N particles
that obey the following equations:

. . . F
I, = v€; — vy + —, (D
Y
6 =/2D,1. 2)

The motion of each particle i is governed by a self propul-
sion velocity of constant magnitude v, directed along é; =
(cos 8;, sin 0;), the sedimentation velocity v, due to the grav-
itational force along —¥, and a repulsive interaction force
F; on the ith particle due to its m neighbors with the drag
coefficient y. 1 is a Gaussian white noise with zero mean and
unit variance.

We consider polydisperse ABPs with radii R; uniformly
distributed in [0.4,0.6], resulting in a mean diameter of a =
1. The particles interact repulsively with a springlike force
such that the force exerted on particle i is given by F; =
S Fy + FL with

F.. — k(R,'-f-Rj—}",‘j)f'ij, VV,'j<R,'+Rj (3)
Y0, otherwise,
and F¥all = —vy™all(r;) the repulsive particle-wall force de-

rived from truncated Lennard-Jones potentials along the four
walls, diverging at x =0, L,, y =0, L, and with range R;.
Note that particle i and j only interact when they overlap,
which means their distance r;; = |r; — r;| is smaller than the
sum of their radii, R; + R;. Without any loss of generality, we
also choose the unit time as #p = a/v; = 1. The global packing
fraction is given by ¢ = po >, nRiz/N, where pg = N/L,Ly is
the global number density of ABPs.

We define the swimming Péclet number of the active par-
ticles Pe; = vs/aD,, the ratio of the sedimentation velocity
and the swimming velocity a = v,/v,, the gravitational Pé¢-
clet number Pe, = oPe; and the particle-particle repulsion
strength Fy = ka/yvs. We choose Fy such that the overlap
between adjacent ABPs does not exceed ~1% of the particle
diameter. L, and L, are chosen to be larger than all persistence
length scales of the system and we also set L, >> L, so that
the probability of accumulation of the particles on the upper
plate is negligible and the particles sediment on the lower plate
forming a dense layer at the bottom with a dilute layer of
ABPs on top.

To integrate Eqgs. (1) and (2) we employ a forward Euler
method with a step size dt = 0.001 which implies that it takes
T = 1/dt steps for each particle to move through a distance of
one mean particle diameter. We focus here on the stationary
state of the stochastic dynamics defined in Eqgs. (1) and (2).
We start with randomly distributed ABPs within the box and
run the simulation until a stationary state is reached (foq =
10%). Then, we measure steady-state quantities averaged over
at least 5000 configurations with a waiting time of Ar =1
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FIG. 1. Stationary state of ABPs in a box with reflecting walls.
Box dimension is 100 x 400, particle number is 5000, gravity is in
—¥ direction, Fy = 100, Pe; = 30, and Pe, = 6. Shown quantities
are time-averaged. (a) Particle density p(x,y). (b) Modulus of the
current density |J(x, y)|. (c) Curl amplitude A(x,y) together with
arrows indicating current orientation ¢, (x,y). (d) Average particle
orientation 8 (x, y).

between two successive realizations, and over at least 100
initial distributions. A corresponding video file of the time
evolution of N = 5000 active particles in a 100 x 400 box is
attached in the Supplemental Material [43] as Movie 1; for
the parameters: Pe; = 30, « = 0.2, and Fy = 100. The C++
code used to compute the numerical solutions of Egs. (1) and
(2) is available in Ref. [44].

III. PARTICLE- AND CURRENT-DENSITY PROFILES

As can be seen from an exemplary stationary density pro-
file shown in Fig. 1(a), the sedimenting ABPs form a meniscus
at the vertical walls, in spite of the repulsive particle-wall
interactions. Here, we have considered N = 5000 active par-
ticles in a 100 x 400 box—the global number density is py =
0.125 and the global packing fraction is ¢ &~ 0.098—with the
following parameters: Fp = 100, Pe; = 30, and Pe, = 6. This
capillary rise, which is absent in passive systems with repul-
sive particle-wall interactions, emerges due to the propensity
of self-propelled particles to accumulate at confining walls in
combination with the gravitational force pulling the particles
downwards, analogous to what happens in the active lattice
gas [32].

A closer look at the particle current in the stationary state
reveals the proper mechanism underlying the formation of the
meniscus. We define the particle current density J(r) as

N

1
) = = D (03 — i), )

i=1

where I;(7) denotes the velocity of the ith particle and (-), de-
notes an average over time and noise. From J(r) we extract the
time-averaged orientation ¢,;(x,y) via J o (cos ¢y, sin¢y),
and the curl amplitude A(x, y) = 9,J, — 0,J,. The magnitude
and the orientation of the current vector field show a complex
structure near the two boundary walls at x =0 and x = L,

and the liquid-gas isodensity line, as shown in Figs. 1(b) and
1(c). One sees that the current field due to the ABPs in the
wetting layer near the walls is aligned along —¥ direction
and away from the walls, the flow field realigns in such a
way it supports a large vortex near the isodensity line, as
indicated by arrows in Fig. 1(c). Note that in ordinary capillary
action, particles climb up a wall against gravity, whereas here
they appear to climb down instead. This is a consequence of
self-propelled particles accumulating at confining walls and
the effect of gravitation pulling them down. The flow field is
mirror-symmetric about x = L, /2 and one observes two large
vortices and curl-clusters concentrated near the left and right
boundaries. Thus, contrary to naive expectation, particles do
not move upwards along the wall, but downwards close to the
wall and upwards—in a circular current—at some distance to
the wall.

We also calculate the time-averaged polarization vector of
ABPs, defined as

N

1
P(r) = = > (&3 = ri(0))r. 5)

i=1

Figure 1(d) shows the mean orientation 6 of the ABPs, given
by P o (cos 8, sin ). The particles have an effective align-
ment towards the nearest wall, in the wetting layer and close
to the liquid-gas interface (defined further below), from which
the wall-accumulation arises.

In the Supplemental Material [43], we show a view of
the entire domain (Fig. S1), a plot of the velocity V= J/p
(Fig. S2) and the temporal fluctuations (Fig. S3) of the quan-
tities presented in Fig. 1.

To analyze the wetting height, we can consistently define a
liquid-gas isodensity interface at piso = (07 + pg)/2, Where p
and p, are the densities of the dense and dilute phase, respec-
tively. Figure 2(a) shows that the scaled height profiles (x)
of the isodensity curves collapse on a master curve, which can
be fitted by a double-exponential given by [A(x) — hg] /Pef ~
aexp(—x/A1) + bexp(—x/A,), where hy is the height of the
bulk phase measured with respect to the bottom plate and x
is the distance from the wall in the direction transverse to
gravity.

The density of the dilute phase decays with vertical dis-
tance y from the isodensity line defined above as p(y) ~
exp(—y/Ased), as shown in Fig. 2(b), where Ayq is the sed-
imentation length which scales as Ageq ~ Pef/Peg for large
activity Pe; [4,17,28], as shown in Fig. 2(c).

In Fig. 2(d), we plot density profiles po(xya,y) and
0 (Xpulk, ¥) of the ABPs as a function of y, where xy.; =0
(xwan = L) is situated very close to the left (right) walls and
Xpulk = L, /2 is situated at the middle of the box. At x = Xyan,
the wetting density profile is observed, while at x = xpy,
the density profile behaves like in a passive sedimenting
system of purely repulsive Brownian particles. We subtract
these two densities o (xwan, y) and p(Xpuix, y)—the bulk den-
sity is expected to decay faster than the wall density—and the
maximum wetting height AA™* is measured by estimating
the difference between two y values which correspond to
0 (Cwal, ¥) — o (Ko, ¥) S 0.01 as shown in Fig. 2(d).

We further study the dependence of the maximum wetting
height Ah™* of the wetting profiles as a function of Pey, Pe,
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FIG. 2. (a) Decay of the isodensity profile (x), scaled by Pe?, as
a function of distance from the wall x, for different Pe, and Pe,. The
collapsed curves have been fitted to a double-exponential function,
shown in solid line. (b) Density profile p(y) ~ exp(—y/Asea) of the
dilute layer, for three different sets of (Pey, o). (¢) Scaling plot for the
sedimentation length extracted from panel (b): Ageq ~ Pef /Pe,, such
that Agq0r ~ Pe, (with @ = Pe,/Pe,) is linear in Pe,. The size of the
simulation box is 200 x 800 and the particle density is pyp = 0.125.
(d) The wall and bulk density profiles p(xy., ¥) (black), p(Xpux, ¥)
(red) are respectively shown for the parameter set Fy = 20, Pe; = 50,
and o = 0.4. The wetting height AZ™* is estimated from the differ-
ence curve p(y, Xyan) — PV, Xpuk ) (green) from the y values where it
decays to a value smaller than 0.01, as indicated schematically in the
plot.

and find a scaling behavior AR™* ~ Pe; /Peg with v ~ 4
and B ~ 2.1. In Fig. 3(b) we show Al as a function of
Asea and find a superlinear scaling dependence Al ~ )»i,‘ed
with u = 1.8. Note that this agrees roughly with the scaling
reported in Fig. 3(a) after inserting Ageq ~ Pe? /Pe,. Note that,
in a previous study of capillary rise in an ALG setting [32],
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FIG. 3. (a) Maximal wetting height AA™* as a function of Pe,
for different Pe,. The scaling Ah™* ~ Pe? /Pe?l is shown in solid
line. (b) Maximal wetting height AZ™* as a function of Agy for
different Pe;. The scaling AR™* ~ Aléﬁ is shown in solid line. A4 for
each set of (Pe,, Pe,) has been estimated separately. Box dimension
is 200 x 500 and particle number is 2 x 10*.
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FIG. 4. (a) Enstrophy plotted against Pe, for a fixed Pe, = 35
shows a decrease with increasing gravitational force. (b) Enstrophy
increases as a function of Pe, for fixed Pe, = 8.

the value of the exponent u was found to be 1.3. The wetting
properties also depend on the strength of the particle-particle
repulsion Fy. It turns out that the maximum wetting height
decreases with Fy and the meniscus width increases with F.
We discuss our results for varying Fy in Sec V.

IV. PARTICLE CURRENT AND VORTICES

The particle current density J(r), depicted in Fig. 1(c),
indicates the formation of the meniscus, including its height
and width, which is mainly caused by the large circular
current—or vortex—emerging at the base of the meniscus.
Therefore we quantify, in this section, the size and strength
of the emerging vortex and its dependence on activity and
gravity.

First, we calculate the total vorticity in the systems, mea-
sured by the enstrophy

e= / dxdy |A(x, y)I?, (6)
P> Piso

where A is the numerically computed curl of J(x, y) and the
integral is computed over the entire liquid bulk phase of ABPs
below the liquid-gas isodensity line. Figure 4 shows that the
enstrophy increases with Pe;, and decreases with Pe,. A major
contribution to the vorticity or total curl in the system comes
from the shear band along the wall [cf. Fig. 1(c)], where parti-
cles move downwards under the influence of the gravitational
force. To quantify the size and strength of the big vortex at
the base of the meniscus, alternative methods must then be
applied.

A. Flux line analysis

First we consider the trajectories of a virtual tracer particle
Tacer () under the influence of a vector field defined by the
current density

I"tracer =J (rlracer)- (7)

With the stationary current density field J that we determined
above, we integrate numerically the differential equation (7)
from a given initial position ry. If the initial position ry of a
tracer particle lies on a vortex loop, then the mean displace-
ment Oyacer = |Tuacer () — To| shows oscillations as a function
of time and one can estimate the size of the loop from the
maximum amplitude of Gycer, as shown in Fig. 5(a). Note that
the period of the oscillations in Fig. 5(a) can be identified with
a turnover time of the vortex and is around 300 time units for
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FIG. 5. (a) Representative plot for the mean displacement Oyycer
of a tracer particle on a vortical loop. From the peak value of oyacer
one can read off the size of the loop. The largest peak value among all
the oscillatory tracer particle trajectories gives the size of the largest
vortex. (b) The largest amplitude in oy, is plotted as a function of
Pe, for three different Pe, values. (c) Area integral W (r) = f sAdS,
where S is the area of a circle of radius » drawn around the center
of the largest vortex. W(r) vs r is plotted for different values of
Pe,, Pe,. (d) The saturation value of W (r) is plotted against Pe; for
two different values of Pe,.

the Péclet number considered there, which is slow compared
with the velocity of the particles.

We search for the largest closed loop in the velocity field
using the maximum amplitude of oy,cer as a measure of the
mean radius of the two large vortices in the system. We denote
the maximal amplitude of the mean displacement of a tracer
in the current J(r) as max[0iacer], to provide a first estimate
of the spatial extension of the vortex. Figure 5(b) shows this
maximum max|[Oy,eer] as a function of Peg and Pe,. For a
fixed Pe, the mean radius depends nonmonotonically on the
swimming Péclet number Pe;, which we can rationalize as
follows: the vortex emerges due to the self-propulsion of the
particles, for which reason one expects the size and strength of
the circular current to increase with swimming Péclet number
Pe,, which is indeed the case for small Pe,. However, for
larger Pe, the escape probability of the ABPs supersedes
the gravitational force such that the outer flow lines of the
vortex do not close and hence max[oy.cer ] decreases. For even
larger Pe; values, one does not find a closed vortex in the
flow field. For small Peg, with increasing gravitational force
Pe,, the wetting height decreases and the vortex gets more
concentrated towards the walls. Consequently, the vortex size
decreases with Pe, for lower Pey. However, as Pe; increases, a
larger gravitational pull is required for the flow fields to close
and give rise to a vortex and hence, for larger Pe;, max[oiacer]
increases with Pe,.

Finally, the strength of the vortex can be quantified by an
integral over the curl, W(r) = f sAdS, where § is a circle of
radius r around the center of the largest vortex. As shown in
Fig. 5(c), W (r) increases with r and saturates at the boundary
of the vortex at a value Wp,x, which we identify with its
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FIG. 6. Areas of the largest curl clusters (a) Sy, and (b) Spux
plotted against Pe, for three different values of Pe,. Sy and Sy
show power-law behavior ~Pe; with v = 3 and v = 2, respectively.

strength. Figure 5(d) shows that the vortex strength increases
and saturates with Pe; and decreases with Pe,.

B. Curl cluster analysis

As a measure of the spatial extent of the vortices, we
perform a cluster analysis of the curl amplitude A(x, y). By
introducing a small threshold value Ay = 0.01 for the curl
strength, we can identify connected clusters in which all sites
have a curl strength larger than this threshold A(r) > Ag. The
largest curl clusters can be distinguished into two regions: the
shear zone close to the wall where the wetting takes place and
the other close to the liquid-gas isodensity line close to the left
and right boundary walls where the vortices form. The layer
of ABPs wetting the wall experiences a repulsion due to the
reflecting wall and hence undergoes a slow re-orientation as
a result of the collisions with the wall. This mechanism gives
rise to a large magnitude of curl in the wetting layer close
to the wall. The area of the large cluster in the wetting layer
close to the wall is denoted Sy, and the area of the cluster
close to the isodensity line (but outside the wetting layer) is
denoted Sy, both of which provide an alternative estimate of
the spatial extent of the vortices.

Figure 6 shows Sy and Spyx as functions of Peg for
three different values of Pe,. The cluster size increases with
Pe, since with higher swimming persistence the ABPs wet
the walls more (see Fig. 3) and have a higher escape rate
probability from the liquid-gas interface. Syay and Spux show
power-law behavior ~Pe} with v =3 and v = 2, respec-
tively. However, the cluster size decreases with Peg, due
to increased gravitational persistence, the maximum wetting
height decreases and so does the escape rate from the liquid-
gas isodensity interface. As a consequence, with increasing
Pe,, the flow gets more concentrated towards the walls, thus
decreasing the effective area of the vortices.

Furthermore, we measure the density function for the curl
amplitude and define a two-state variable 1 such that n(x, y) =
1 for |A(x,y)| > 1072 and n(x, y) = 0 otherwise. We exclude
the wall shear zone from our density calculation so that the
high curl values due to the wetting layer do not dominate the
signal from the vortices. Figure 7(a) shows the curl density
oa(ro) = (n(x,y)) as a function of ry = (x> + y*)!/2. The in-
terval where the curl density remains zero indicates that the
curl is very small, implying there is no significant current
in this region. The curl density becomes positive at ro & 50,
roughly indicating the distance from the bottom corners at
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FIG. 7. (a) Density ps for the curl variable as a function of
the distance ry measured from the lower corners of the box. Since
the density profiles are symmetric about x = L/2, we average over
the left and right halves of the box for measuring p4. (b) Length scale
ry plotted against Pe; for three different Pe, values. (c) Two-point
correlation function of the curl amplitude C, plotted against r, for
five sets of Pey, Pe,. (d) Correlation length ¢ estimated for C4 using
an exponential fit, as a function of Pey, for three different values of

Pe,.

which the vortex centers are located. Since the numerical cal-
culation has been carried out by excluding the shear wetting
zone, one can interpret the length scale r; where the curl
density is high as an estimate of the linear dimension of the
largest curl cluster exclusively due to the vortex. Figure 7(b)
shows that r; increases linearly with Peg, in accordance with
the quadratic dependence of the vortex area Sp,x on Pe; shown
in Fig. 6(b). However, note that there is no nonmonotonicity
with increasing Pe; similar to that found in the vortex sizes
obtained from the tracer particle analysis, as presented in
Fig. 5(b). Indeed, when the vortex loops do not close, there
can be significant curl due to the turbulence in the current field
and one ends up observing curl clusters larger than the size of
the closed vortices for same set of parameters.

Finally, we measure the two-point correlation function for
the curl A(x, y):

Ca(8x, 8y) = (A(xo, yo)A(xo + 8x, o + 6¥)xpy0,  (8)

averaged over all space points (xg, yg) in the domain. We
again exclude the wetting layer such that the length scales
of the vortices can be extracted from the density and cor-
relation functions of the flow fields. Figure 7(c) shows the
two-point correlation function C4(rp) as a function of ry =
(6x* + 8y*)!/2. We observe short-range correlations which
arise only due to the two large vortices that form near the left
and right boundary walls. Figure 7(d) shows the correlation
length ¢ estimated for the correlation function C4 using an
exponential fit. ¢ shows a power-law dependence on Pe;,
with an exponent depending weakly on Pe,. For Pe, = 5 we
find that ¢ ~ Pe,, while for Pe, = 10 the correlation length
follows ¢ ~ Pe!2.
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FIG. 8. (a) Maximum wetting height AA™* plotted against Fy
indicates that the wetting height decreases as interparticle repulsion
is increased and approaches a constant value for large Fy. (b) Total
number of particles N(y > y;,) elevated above isodensity line scaled
by the total number of particles in the system plotted against Fp.
(c) Width of the meniscus plotted against Fy. The width of the
meniscus W, increases as a function of Fy. (d) Maximum amplitude
of Oyucer plotted as a function of F.

V. INTERACTION-STRENGTH DEPENDENCE

Varying the repulsive particle-particle interaction strength
Fy changes the effective hard-core diameter of the ABPs and
the bulk phase behaves like a more compressible fluid as F
is decreased. Figure 8(a) shows the maximum wetting height
AWM decays with Fy and approaches a constant value for
sufficiently large interparticle repulsion strengths.

We also measure the total number of particles N(y > yiso)
elevated above the isodensity line scaled by the total num-
ber of particles in the system as a function of Fy, shown
in Fig. 8(b). As a consistency check, the height of the bulk
isodensity line yjs, is estimated using two methods: (1) piso
is set to 0.5 uniformly for all Fy, (2) Fig. 2(d) shows two
inflection points in p(y) that we label as p; and p,. For the
second method we consider pj, = (0, + 07)/2. Both meth-
ods show that the total mass elevated above yj;s, decreases
with Fy. Figure 8(c) shows the width of the meniscus Wpe,
plotted against Fp and defined as the smallest distance to the
walls where the density o(Wien, ¥) = 0 (Xpuik, ¥). The menis-
cus width increases as a function of F. As the ABPs become
harder, the wetting layer behaves like an incompressible fluid
and hence for nearly equal number fraction of ABPs elevated
above yjso, the meniscus width increases with F.

Figure 8(d) shows the size of the vortex also depends on
the strength of the particle-particle repulsion Fp, for fixed Pe;
and Peg. Small values of Fy mean that the particles have a
soft-core interaction and the bulk behaves like a compressible
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FIG. 9. Current lines and curl amplitude for fixed Pe; = 30
and Pe, = 6 (¢ = 0.2), and decreasing interparticle repulsive force:
(a) Fy = 100, (b) Fy = 3, (¢) Fp = 0.3, and (d) Fy = 0. Box dimen-
sion is 100 x 400, and particle number is 5000.

fluid, which increases the vortex size in comparison to the less
compressible, jammed fluid at large values of Fj.

Figure 9 shows the evolution of the current density lines
and the curl amplitude of the current with decreasing inter-
particle repulsive force from Fy = 100 to Fy = 0, for fixed
Pe; = 30 and Pe, = 6, in a 100 x 400 box. For Fy = 10, the
interparticle force is strong enough to create the liquid phase
observed in Fig. 1, and the main vortex is located at the
base of the meniscus, characterized in Sec. IV. For Fy < 10,
the particles are no more phase-separated and a system of
three vortices is observed at the lower-left corner (with two
counterclockwise and one clockwise rotating current) and at
the lower-right corner (with one counterclockwise and two
clockwise rotating current), characterized in Sec. VI in the
limit Fp — 0. Hence, the morphology of the stationary par-
ticle current and the vortex arrangement changes substantially
as soon as MIPS ceases to exist at lower interaction strength
Fo.

VI. NONINTERACTING ACTIVE BROWNIAN
PARTICLES (F, = 0)

The existence of the stationary currents in the system and
the vortices in the left and right lower corners can be traced
back to the specific geometry of the particle confinement,
which can be seen most clearly in the absence of particle-
particle interactions, Fp = 0. For this reason we formulate in
this section the hydrodynamic theory for a system of nonin-
teracting active Brownian particles under gravity. Without any
interaction between particles, the position and self-propulsion
direction of the particles obey the equations

I = v,ey — Ugg’ ++v2D;7,, 9
9 = ZD,«T]Q, (10)

equivalent to Egs. (1) and (2) for interacting ABPs. The mo-
tion is governed by a self propulsion velocity of constant
magnitude v, directed along ey = (cos 6, sin6) and the sed-
imentation velocity v, due to the gravitational force along

—¥. D, and D, are translational and rotational diffusivities,
respectively. 5, and ny are independent Gaussian white noise
with zero mean and unit variance. From these Langevin equa-
tions (9) and (10), the probability density function p(r, 8;¢)
for a particle to be at position r = (x, y) with an orientation 6
at time ¢ follows the Fokker-Planck equation

dp=V-ID,Vp— (vyes — v §)pl + D, 0;p. (1)

We numerically solve the steady state of this equation using
FreeFEM++ [45], a software package based on the finite-
element method [46]. Writing Eq. (11) under the form 9,p =
—V - jr — 09 jp, defining the currents j. = —D,;Vp + (vpeg —
v§)pand j, = —D,dyp, the stationary state satisfies the equa-
tion

V. jr+09jo =0. (12)

The weak formulation of Eq. (12) is the integral equation
/ drdd w(V - jr + g js) =0, (13)
Q

for any arbitrary integrable function w(r, 6), over a 3d cubic
space Q2 = [—L,/2, L;/2] x [0, Ly] x [0, 2 ]. Integrating by
parts, we have

/drd@ (Vw - jr + dow js) = O, (14)
Q

due to the zero-flux boundary condition in x and the periodic
boundary condition in 6. This integral equation is solved over
the cubic space €2 divided into a 500 x 500 x 16 tetrahedral
mesh-grid. The probability is then calculated at the nodes of
the mesh-grid and interpolated linearly over the space with
Lagrange polynomials. From this numerical solution for the
probability density function p(r,8), we extract three inte-
grated functions: the particle density p(r) = f do p(r, 9), the
polarization vector P(r) = f do eyp(r,0), and the current
density J(r) = fd@ jr(r, 0). With Eq. (11), the current den-
sity is written

J=-D,Vp+v,P — v, (15)

in terms of the density and the polarization vector. We further
define the curl amplitude of the current as

A(x,y) = 0cJy — 0yJy = vp[0emy — Oymy] — vgdcp.  (16)

Without any loss of generality, we set D, =1 and D, = 1
defining the scales of time and length, respectively. The re-
maining parameters are then the swimming Péclet number
Peg; = vy/+/D;D,, the ratio of velocities & = v,/v; = Pe,/Pe;
and the system size Ly x L,. The FreeFEM++ code used to
compute the numerical solutions is available in Ref. [44].
Figure 10 shows numerically obtained steady-state density,
polarization, and current-density profiles for noninteracting
ABPs with Pe; =2 and a = 0.25 in a 20 x 20 box. The
density profile shown in Fig. 10(a) establishes the existence of
a capillary rise near the vertical walls where the particles are
mainly oriented towards the wall, as shown in Fig. 10(b), with
the mean orientation 6(x, y) calculated from the polarization
vector as P oc (cos 6, sin ). The wetting height is calculated
from isodensity lines, as presented in Fig. 10(a) for p =1
by a solid black line. Despite the absence of any particle
interactions, the current field is nonzero and forms vortices
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FIG. 10. Steady-state density, polarization and current-density
profiles for noninteracting ABPs with Pe; =2 and ¢ = 0.25 in a
20 x 20 box, obtained numerically with FreeFem++-. (a) Steady-
state density p(x,y). The isodensity line p = 1 is shown by a solid
black line. (b) Mean orientation 6(x, y) obtained from the steady-
state polarization P(x, y). (c) The current-density lines ¢, (x, y) are
shown by arrows, and the curl amplitude A(x, y) is represented by the
color bar. (d) Zoomed-in version of the bottom-left corner of panel
(c). Three main vortices are observed: vortex 1 and vortex 3 along
the bottom and left walls, respectively, and antivortex 2 at the corner.

at the bottom corners of the box, as shown in Figs. 10(c) and
10(d), where the current-density lines ¢, (x, y) are calculated
from the current as J o (cos ¢y, sin¢;) and the curl ampli-
tude A(x, y) is calculated with Eq. (16). Note that the current
field predicted by the Fokker-Planck equation for ideal ABPs
agrees with the one obtained for the microscopic model with
interaction Fy = 0, as shown in Fig. 9(d). Figure 10(d) depicts
the presence of three main vortices at the bottom-left corner,
with two counterclockwise rotating currents along the bottom
and left walls, and one clockwise rotating current at the corner.
Far from the top and bottom walls, the density is written
p(x,y) = f(x)exp (—y/Asea)s a7
with the sedimentation length Agq =~ Pef /Peg, in the limit of
large swimming Péclet numbers [29]. Figure 11(a) shows the
density at the center of the box puyk(y) = p(0,y) and near
the vertical wall py.(y) = p(£L,/2,y) with Pe; =2 and
o = 0.251ina25 x 25 box. They present an exponential decay
regime, as expected in the middle region, and the wetting
height is then independent of the choice of the isodensity
line for a dilute system. Figure 11(b) shows the sedimentation
length A4 as a function of Pe; for several Pe,. In the small and
large Pe; limits, we obtain the asymptotic expressions: Ageq ~
1/Peg and Ageq ~ Pef /2Peg, respectively. Merging these two
limits, the sedimentation length can be approximated by

_ 1+0.5Pe;

Ased = , 18
sed Peg ( )

shown in Fig. 11(b) with dashed line, and valid for not
too large Peg' Deﬁning fbulk = f(o) and fwall = f(j:Lx/z) in

2
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FIG. 11. (a) Density profile at the center of the box pp,x and
near the vertical wall py,, for noninteracting ABPs with Pe; = 2 and
o = 0.25in a 25 x 25 box, obtained numerically with FreeFem+-+-.
For an isodensity line chosen in the exponential decay regime, the
wetting height is always Ah = 6.1. (b) Sedimentation length Ageq
as a function of Pey, for several Pe,. (c) and (d) Wetting height Ah
as a function of Pe; and Pe? /Pe,, respectively, for several Pe,. It is
calculated with the isodensity line p = 1 in a 100 x 100 box. The
dotted line represents the fitted curve for all presented data.

Eq. (17), the wetting height is written

Ah = Ased In (fwall/fbulk)- (19)

Figures 11(c) and 11(d) show the wetting height A# as a func-
tion of Pe, and Pe?/ Pe,, respectively, for several gravities and
calculated for the isodensity line p = 1 in a 100 x 100 box.
The wetting height follows the power laws Ah ~ Pe?? /Pe,,
from Fig. 11(c), and

Ah ~ (Pe?/Pe,)" ~ L]

sed?

(20)

from Fig. 11(d), which are both equivalent. This power-law is
different from the result obtained for interacting ABPs where
Ah ~ )»iég, meaning that the interactions between particle in-
crease the wetting of particles on vertical walls.

Figure 12 shows the current-density lines and the curl
amplitude of the current with Pe; = 2 and increasing gravity
from ¢ = 0 to o = 0.75, in a 10 x 10 box. Without gravity,
Fig. 12(a), the currents self-organize in a way that is com-
patible with maximum particle accumulation in the corners:
incoming flux along the diagonal and outgoing flux parallel to
the wall. This eight vortices structure is fully determined by
the boundary’s geometry, similar to what has been observed
for ABPs in an elliptical geometry [39]. Under gravity, the two
vortices in the upper-left and -right corner are pulled down, re-
sulting (a) in a downward flux along the vertical walls, and (b)
in big counterclockwise and clockwise rotating currents at the
bottom close to the lower-left and -right corners, cf. Fig. 10(d).
In addition, the curl amplitude increases with gravity despite
the extension of the vortices decrease. Two corresponding
video files are attached in the Supplemental Material [43]
as Movie 2a and Movie 2b, showing the evolution of the
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FIG. 12. Current-density lines ¢, (x, y) for noninteracting ABPs
with Pe; =2 and (a) « = 0, (b) « = 0.25, (¢) « = 0.5, and (d) @ =
0.75, numerically calculated with FreeFEM~++ in a 10 x 10 box.
The color bar represents the curl amplitude of the current A(x, y).

particle density and current-density lines, respectively, under
increasing gravity.

Figures 13(a)-13(c) show the vortex area of the three vor-
tices described in Fig. 10(d) and as a function of Pe; and «,
in a 10 x 10 box. Figure 13(a) shows the vortex area S; of
the counterclockwise rotating current near the bottom wall.
The area is calculated such that the curl amplitude satisfies
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FIG. 13. (a)—(c) Vortex area S; as a function of Pe; for noninter-
acting ABPs with several @ and in a 10 x 10 box. (d)—(f) Circulation
W, = '[Si AdS of the corresponding vortices. The labels 1, 2, and 3
correspond to the vortices described on Fig. 10(d).

|A] > 0.001A,.x, Where Ay is the local maximum of |A].
This vortex area decreases with swimming Péclet number
and gravity. Figure 13(b) shows the vortex area S, of the
clockwise rotating current at the corner. This vortex area has
nonmonotonic evolution with swimming Péclet number, but
increases with gravity. Figure 13(c) shows the vortex area S
of the counterclockwise rotating current near the left wall.
This vortex area decreases with swimming Péclet number and
the gravity has low impact on it. Without gravity, i.e., ¢ =
0, the current lines of these vortices are antisymmetric [see
Fig. 12(a)] and then S| = S, = 83 < L,L,/8. This vortex area
decreases with swimming Péclet number. When the gravity is
increased, the current lines are deformed in the —¥ direction,
telling that S; decreases and S, increases with gravity, while
S3 is globally not impacted. S; and S; remain decreasing
functions of Pe; when S» has a nonmonotonic behavior with
Pe;.

Figures 13(d)-13(f) show the circulation of the corre-
sponding vortex, calculated as W; = [, s AdS calculated over
the area S;. The circulation of the vortices along the bottom
and left walls, W) and W3, respectively, increases with both Pe;
and Peg, as shown in Figs. 13(d) and 13(f), respectively. Sim-
ilarly, the absolute circulation of the antivortex W, increases
with Pe,, but has a nonmonotonic behavior with «, as shown
in Fig. 13(e).

VII. DISCUSSION

We have shown that a system of active Brownian parti-
cles in the phase separated (or MIPS) phase, which sediment
in a homogeneous force field, form a wetting meniscus at
a confining wall, in spite of repulsive particle-wall interac-
tions. Increasing the activity, measured by the swimming
Péclet number Pe; = v;/aD,, increases the height of the
meniscus Ah, and increasing force field, measured by
the gravitational Péclet number Pe, = (vg/vs)Pe;, decreases
the meniscus height. Quantitatively, As grows monotonically
with the sedimentation length Aeq ~ Pe?/ Pe,, approximately
like Ah ox A%, for strongly repelling particles and roughly
linear with Asq4 for noninteracting ABPs. We also find a non-
trivial dependence of the meniscus dimensions on the particle
interaction strength or particle softness: softer particles (de-
creasing Fp) increase the meniscus height and decrease the
meniscus width, but increase the total elevated mass.

The formation of the meniscus is determined by the forma-
tion of a circular particle current, a vortex, centered at the base
of the meniscus, which can easily be seen in the movie for
interacting ABPs in the Supplemental Material [43], as Movie
1: in the gas region above the isodensity line close to the
walls there is a net particle current towards the wall. Particles
colliding with the wall stay accumulate there and start to sink
towards the liquid region due to the force field. This produces
a strong downward particle flow along the wall, which then
gets deflected away from the wall when it hits the denser
liquid region. Thus, below the liquid-gas interface particles
flow away from the wall, and particles reaching the interface
have an upward orientation and the circular current closes.
Note that there are two walls and therefore two vortices: one
in the lower-right and one in the lower-left corner.
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The flow lines of the particle current indicate that each
vortex extends over one half of the system, cf. Fig. 1(c),
but it is strongest close to the wall and the meniscus, and
very weak far from it, see Fig. 1(b). It turns out that the
total strength of the vortex, measured by its total curl in a
concentric disk, increases monotonically with the activity or
the swimming Péclet number Pe;. Analogously the region in
which the current is strongest increases with the Pey, too,
such that the system’s activity determines the size and strength
of the circular particle current together with the meniscus or
wetting height determined by it.

Interestingly, the origin of the two major vortices can be
traced back to the presence of the confining walls of the
system: noninteracting (ideal) ABPs in a quadratic area with
repulsive walls form stationary probability currents already
without a force field. Those are organized according to the
fourfold symmetry of the system, namely, in each quadrant
two vortices, one above and one below the diagonal emanating
from the corner. The circulation of each vortex pair in one
quadrant is such that the current along the diagonal is directed
towards the corner, leading to the well-known accumulation of
self-propelled particles in corners or regions, where boundary
curvature is high [15,39,47]. Switching on the force field
(gravity) breaks the fourfold symmetry, squeezes the vortices
in the lower quadrants, and expands those in the upper half.
The two elongated vortices at the walls in the ideal ABP
system, one counterclockwise at the left wall, one clockwise
rotating at the right wall, are those that have their counterpart
in the interacting ABP system described above.

Concerning the experimental observability of what we
have reported in this paper we would like to note that re-
cently the capillary rise along (or active wetting of) a wall
in a system of active colloids under a gravitational force has
been reported [34] and also the emerging particle currents
have been discussed. So, in principle the original prediction
of Ref. [32] as well as what we have reported here have
been experimentally confirmed. A few differences should be
noted, though: first, the particle activity reached in Ref. [34]
was, for experimental reasons, much lower than the activities
considered here. Therefore, their system was sedimenting but
gaseous (i.e., not in the MIPS region). Second, the observed
meniscus (or wetting layer) was much thinner than what we
obtained here, even thinner than what we report for the ideal
(noninteracting, and thus also gaseous) ABP case, and the

meniscus height was much larger, i.e., the particles at the
wall went much higher above the isodensity line. Third, the
experimentally observed particle current along the wall was
directed upwards, consistent with the larger meniscus height
and giving rise to a clockwise rotating vortex, differing from
the downward wall-current and the counterclockwise rotation
reported here. The latter two observations were attributed to
additional particle-wall adhesion and alignment forces [34],
both emerging due to hydrodynamic particle-wall interactions
of the active colloids. It turned out that the inclusion of those
additional particle-wall interactions in an ABP model like the
one we considered here could even quantitatively recapitulate
the experimental observations.

Finally, the fact that one observes something that is rem-
iniscent of capillary rise at a wall, in spite of repulsive
particle wall interactions, is the most obvious signature for the
nonequilibrium character of this system. More fundamentally,
being out-of-equilibrium in the stationary state implies the
presence of stationary probability currents (since otherwise
detailed balance would be fulfilled), but these generally live in
high-dimensional configuration space. The system we studied
here actually shows emergent probability currents leading di-
rectly to real-space currents, similar to what has been reported
for self-propelled particles in an ellipsoid geometry [39], or
for ABPs at boundary inhomogeneities [41,42]. In addition,
these currents perform real work by lifting a fraction of the
particle mass above the liquid-gas interface against the force
field. Thus, one would expect the size and strength of the
emerging currents to be related to the entropy production rate
of this system, or at least an equivalent one in which the
dynamical rules have been defined thermodynamically con-
sistent [48]. These questions as well as in how far the strength
of the observed vortices is related to the vorticity introduced
in Ref. [49] are interesting and would be worthwhile to be
studied in the future.
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