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Emergent complex phases in a discrete
flocking model with reciprocal and non-
reciprocal interactions
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There is growing interest in multi-species active matter systems with reciprocal and non-reciprocal
interactions. While such interactions have been explored in continuous symmetry models, less is
known about multi-species discrete-symmetry systems. To address this, we study the two-species
active Isingmodel (TSAIM), a discrete counterpart of the two-species Vicsekmodel. Our investigation
explores both inter-species reciprocal and non-reciprocal interactions, along with the possibility of
species interconversion. In the reciprocal TSAIM,we observe the emergence of a high-density parallel
flocking state, a feature not seen in previous flockingmodels.With species interconversion, the TSAIM
corresponds to an active extension of the Ashkin-Teller model and exhibits rich state diagrams. In the
non-reciprocal TSAIM, a run-and-chase dynamics emerge.We also find that the system ismetastable
due to droplet excitation and exhibits spontaneous motility-induced interface pinning. A
hydrodynamic theory validates our numerical simulations and confirms the phase diagrams.

Active matter is a class of natural or synthetic nonequilibrium systems
composedofmanyagents that consumeenergy tomoveor exertmechanical
forces. Over the past two decades, intensive research has established active
matter as a significant field of study1–6, with assemblies of active particles
exhibiting complexbehaviors andcollective effects, suchas the emergenceof
large, ordered clusters known as flocks. Flocking plays a significant role in a
wide range of systems across disciplines including physics, biology, ecology,
social sciences, and neurosciences7 and is an out-of-equilibrium phenom-
enon abundantly observed in nature1,4–6.

A widely studied computational model for flocking is the celebrated
Vicsek model (VM)8,9. In this model, point particles with rotational sym-
metry tend to align with their neighbors while moving at a fixed speed. This
alignment is not perfect as particles make error which are modeled as a
stochastic noise. Although the VM shows a transition from a disordered
(low-density, high-noise) to an ordered (high-density, low-noise) phase,
Solon et al.10,11 demonstrated that this is better understood as a liquid-gas
transition with a phase-separated coexistence region for intermediate noise
and density. Remarkably, despite its continuous symmetry, theVMexhibits
true long-range order in two dimensions, seemingly violating the Mermin-
Wagner theorem, which prohibits the spontaneous breaking of continuous
symmetry in two-dimensional systems in thermal equilibrium.However, as
Toner and Tu12–14 showed through their hydrodynamic theory, this
apparent violation arises because the moving flock operates far from equi-
librium. The non-equilibrium nature of the system, driven by themotion of

particles, allows for the emergence ofmacroscopic order and the breaking of
rotational invariance.

Subsequently, the active Ising model (AIM)15,16 was introduced which
replaces the continuous rotational symmetry of the VM with a discrete
symmetry, while preserving the essential physics of the VM. The AIM
exhibits three steady-states similar to the VM: disordered gas at high noise
and low densities, polar liquid at low noise and high densities, and a phase-
separated liquid-gas coexistence region at intermediate densities and tem-
peratures. The key distinction between the VM and the AIM is that the
former exhibits giant density fluctuations leading to microphase separation
of the coexistence region, while the latter shows normal density fluctuations
resulting in bulk phase separation. Recent studies on the q-state active Potts
model (APM)17–19 and the q-state active clock model (ACM)20,21 have pro-
vided further insights into flocking transitions. Thesemodels have emerged
asmore generalized frameworks for flocking bridging theVMand theAIM.

Due to their inherent out-of-equilibriumnature, active systems exhibit
long-range order (LRO)8 and survive spin wave fluctuations12–14. Conse-
quently, it was thought that polar-ordered phases in the active matter are
generally robust tofluctuations. In addition, studies of theseflockingmodels
are typically conducted in idealized settings, assuming perfectly identical
particles in an infinite andhomogeneous environment.However, realflocks
are more complex, and recent studies have revealed that even a single small
obstacle or artificially excited droplet within the ordered phase can desta-
bilize it, as observed in the VM22,23. This contrasts sharply with passive
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systems,where sucha small perturbation typically only induces a local effect.
Furthermore, these perturbations can emerge spontaneously and this
spontaneous fluctuation could similarly destabilize the ordered phase, as
recently observed in the constant-density Toner-Tu flocks24 and the
AIM25,26, where ordered flocks become metastable over large time scales,
eventually transitioning to a disordered state.

Additionally, the models of self-propelled particles mostly focus on
homogeneous systems where every agent has exactly the same dynamical
properties and follows the same “rules of engagement”. However, hetero-
geneity is ubiquitous in nature and complex systems are typically hetero-
geneous as individuals have disparate characteristics and vary in their
properties27–29. In particular, many biological systems that show flocking
involve self-propelled particles with heterogeneous interactions which can
significantly impact system dynamics, as seen in studies of mixed bacterial
populations30–32. Theoretically, various aspects of heterogeneous systems of
self-propelled agents have been investigated. For example, alignment
interactions in a binary mixture of self-propelled particles have shown that
different interaction potentials can lead to parallel, antiparallel, or per-
pendicular alignment, resulting in diverse collective motion patterns33.
Other investigations have explored particles with varying velocities34,35,
noise sensitivity29,36, sensitivity to external cues37, and particle-to-particle
interactions38–40. Different self-propelled particle species were also analyzed
in predator-prey scenarios41,42 and in the context of reciprocal, e.g. the two-
species Vicsek model (TSVM)43, as well as non-reciprocal interactions44,45.

The TSVM43, which is a two-species extension of the VM with reci-
procal antiferromagnetic interspecies interactions, exhibits two primary
steady states describing the collective motion: the anti-parallel flocking
(APF) state, where the two species form bands moving in opposite direc-
tions, and the parallel flocking (PF) state, where the bands travel in the same
direction. In the low-density and high-noise part of the coexistence region,
PF and APF states perform fluctuation-induced stochastic transitions from
one to the other where the transition frequency decreases with increasing
system size. Furthermore, the PF state vanishes at high densities and low
noises, leaving the APF state as the only ordered liquid phase.

Finally, an increasing number of recent studies involving none-
quilibrium systems have focused on how non-reciprocal interactions in
active matter affect non-equilibrium phase transitions and drive the
emergence of states or patterns in active matter6,46. A non-reciprocal
interaction violates Newton’s third law “actio=reactio” and leads to frus-
tration between two elements due to their opposing objectives. In soft and
active matter systems, non-reciprocity arises when interparticle forces are
mediated by a non-equilibrium environment, leading to the emergence of
novel self-organized states dependent on time44,45,47–51. More prominent, if
not ubiquitous, are non-reciprocal interactions in active and living systems
that break detailed balance at themicroscale, from social forces52 and neural
networks53,54 to antagonistic interspecies interactions in bacteria55, cells56 and
predator-prey systems57. In contrast to equilibrium systems governed by
Newton’s third law, non-reciprocal systems are generally considered to be
out of equilibrium58 and thereforenon-reciprocal interactions are associated
with a gain or a loss of energy.Although the incorporation of non-reciprocal
interactions is not required to capture flocking behavior, there is a recent
push toward understanding the effects of non-reciprocal interaction on the
phase behavior of flocking objects44,45,59,60.

In this paper, we investigate a two-species variant of the active Ising
model (AIM)15,16, namely the two-species active Ising model (TSAIM),
which serves as a discrete-symmetry counterpart to the continuous-
symmetryTSVM43. In the TSAIM, self-propelled particles from twodistinct
speciesAandBundergo biased diffusion in two dimensions alongwith local
alignment. In this context, we have mainly considered three different
scenarios:
(a) reciprocal TSAIM with conserved species where a particle aligns with

particles of the same species and anti-aligns with particles of the other
species but the population of each species remains conserved,
corresponding to the discrete counterpart of the TSVM43;

(b) reciprocal TSAIM with non-conserved species where the alignment
protocol follows (a) but a particle of one species can convert to the
other species, representing an active extension of the Ashkin-Teller
model, equivalent to two coupled Ising-like subsystems61,62, and
could be interpreted as a binary voter model63,64 for self-propelled
agents;

(c) non-reciprocal TSAIM (NRTSAIM) with conserved species where
particles of different species interact in a non-reciprocal manner: A
particles tend to align with B, while the B particles tend to anti-align
withA, acting as a natural extension of theAIMmimicking a predator-
preymodel42, where species Aplays the role of the predator and species
B plays the role of the prey.

Results
Microscopic model
We consider an ensemble of N particles in a periodic two-dimensional
square lattice of size Lx× Ly. The average particle density is ρ0 =N/LxLy. The
jth particle on site i is equipped with a spin-orientation σ ji ¼ ± 1 which
determines the biased hopping with self-propulsion ε via the rate:

Whopðσ; pÞ ¼ D 1þ θεjp � exj þ σεp � ex
� �

; ð1Þ

with θ ∈ [0, 1], i.e. a rateW+ = D[1 + (θ + 1)ε] in the favored direction
(p = σex), a rate W− = D[1 + (θ − 1)ε] in the unfavored direction
(p=− σex), and a constant rateD in the upward anddownward directions
(p = ± ey). The parameter 0 ≤ ε ≤ 1/(1 − θ) controls the asymmetry
between thenon-motile limit ε=0 (W+=W−=D) and the limitwhere the
particle never jumps to the unfavored direction ε= 1/(1− θ) (W−= 0). On
average, a particle drifts with speed v = 2Dε in the direction set by the sign
of its spin orientation, and diffuses with diffusion constantDxx=D+ θv/2
andDyy = D along x and y directions, respectively. The total hopping rate
thus becomes 4D+ θv, and the limiting values in ε give the inequality v ≤
2D/(1 − θ). The case θ = 0, i.e. W± = D(1 ± ε), will be used to derive the
main results, as in refs. 15,16, while the case θ = 1, i.e. W− = D and
W+ = D + v, will be used to study the stability of the liquid state, as in
refs. 25,26, since the diffusion D can be made small in comparison to the
velocity v.

The particle is further equipped with a species degree of freedom
sji ¼ ± 1whichdefines theparticle species (sA=1and sB=−1).Thenumber
of particles on site i, with spin orientation σ and species spin s is denoted by
nσs;i. No restriction is applied to the number of particles of species s on site i:
ρs;i ¼

P
σn

σ
s;i and to the total number of particles on site i: ρi = ρA,i + ρB,i.

The local magnetization of species s on site i is defined
by: ms;i ¼

P
j2sσ

j
i ¼ nþs;i � n�s;i.

Analogous to the one-species AIM15,16, we consider the following
flipping rate for a particle with spin σ and species s on site i, for an inverse
temperature β:

Wð1Þ
flipðσ ! �σÞ ¼ γ1 exp � 2β

ρi
σJss0ms0;i

� �
; ð2Þ

where the Einstein notation is used: Jss0ms0;i ¼ JsAmA;i þ JsBmB;i. Here, Jss0
represents the coupling constant of species s0 acting on species s.

First, we consider reciprocal interactions between the two species.
Similar to the TSVM43, the coupling constant is given by Jss0 ¼ J1ss

0 (with
J1 > 0), which is positive when the two species are the same (ferromagnetic
interaction) and negative when the species are different (anti-ferromagnetic
interaction). We can now define the following two key order parameters43:
the total local magnetization

vs;i ¼
X
j

σ ji ¼ mA;i þmB;i; ð3Þ
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defining the average propulsion direction at site i, and the local magneti-
zation difference

va;i ¼
X
j

sjiσ
j
i ¼ mA;i �mB;i; ð4Þ

playing the role of the order parameter of the ferromagnetic interaction.
From Eq. (2), the flipping rate for the spin-orientation in the reciprocal
TSAIM then becomes:

Wð1Þ
flipðσ ! �σÞ ¼ γ1 exp � 2βJ1

ρi
sσva;i

� �
: ð5Þ

Note that, this expression is similar to the one-species flipping rate15,16, with
va,i replacing the one-species magnetization.

In the case of non-reciprocal interactions between species,weprimarily
focus on the scenario where JAA = JBB = J1 and JAB =− JBA = JNR ≤ J1. From
Eq. (2), the flipping rate for the spin-orientation in the non-reciprocal
TSAIM is defined as the following:

Wð1Þ
flipðσ ! �σÞ ¼ γ1 exp � 2βJ1

ρi
σμs;i

� �
; ð6Þ

where μs,i = ms,i + s(JNR/J1)m−s,i plays the role of order parameter for
species s. We also investigate a more general coupling constant such that
− J1 ≤ JBA ≤0 ≤ JAB ≤ J1, where species A interacts ferromagnetically with
species B, while species B has an anti-ferromagnetic interaction with
species A.

Additionally, the spins sji defining the particle species may interact
locally on site i, via an Ising interaction independent of the spin-orientation
of the particles. As for the one-species AIM, we consider the following
flipping rate for the species-spin in the TSAIM:

Wð2Þ
flipðs ! �sÞ ¼ γ2 exp � 2βJ2

ρi
smi

� �
; ð7Þ

where the coupling constant J2 of species-species interactions is positive, and
mi ¼

P
js
j
i ¼ ρA;i � ρB;i is the species magnetization on site i. We define

m0 = (NA−NB)/LxLy as the average speciesmagnetization at the initial time.
The reciprocal TSAIM with species flip (γ2 ≠ 0) is a natural active

extension of the well-known Ashkin-Teller (AT) model61, in which four
components interact, equivalent to two coupled Ising-like subsystems (here
coupling spins σ and species s)62. The order parameters 〈vs〉~ 〈σ〉, 〈m〉~ 〈s〉,
and 〈va〉 ~ 〈σs〉 measure the relative ordering between the spins and
species65,66.

It is crucial to emphasize that three separate magnetizations are
explicitly defined at each site i in thismodel: (i) themagnetization of species
A, denoted mA;i ¼

P
j2Aσ

j
i, (ii) the magnetization of species B, denoted

mB;i ¼
P

j2Bσ
j
i, and (iii) the species magnetization, denoted mi ¼

P
js
j
i.

The state of the site i is completely definedby these threemagnetizations and
the total density ρi. In the following, we will consider ρi ≡ ρ(xi, yi),
mi≡m(xi, yi), ρs,i≡ ρs(xi, yi), andms,i≡ms(xi, yi), as equivalent expressions
where (xi, yi) are the coordinates of the site i.

Without any loss of generality, we take γ1 = 1, and we denote β1 �
βJ1 ¼ T�1

1 and β2 � βJ2 ¼ T�1
2 playing the role of two effective inverse

temperatures for the spin-spin and species-species interactions, respectively.
Simulations are performed for several control parameters: the average
density ρ0, the self-propulsion parameter ε, and the different effective
temperatures or coupling constants (T1 and T2 in the case of reciprocal
interactions, JAB, JBA and T1 � β�1

1 in case of non-reciprocal interactions).

Hydrodynamic equations
In this subsection, we will derive the hydrodynamic equations from the
microscopic update rules. From the average particle density ρσs ðx; tÞ �
hnσs ðx; tÞi in state σ and species s, at position x and time t, we define the

particle density ρsðx; tÞ ¼
P

σρ
σ
s ðx; tÞ and the magnetization msðx; tÞ ¼P

σσρ
σ
s ðx; tÞ of species s. These four functions (ρA, ρB, mA, andmB)

determine completely the spin and species states at the position x and the
time t.

In Supplementary Note 1, we derive the hydrodynamic equa-
tions for the reciprocal TSAIM. From the symmetries of the problem,
we define the density ρ ¼ P

s;σρ
σ
s ¼ ρA þ ρB, the species

magnetization m ¼ P
s;σsρ

σ
s ¼ ρA � ρB, and the order parameters

vs ¼
P

s;σσρ
σ
s ¼ mA þmB, and va ¼

P
s;σ sσρ

σ
s ¼ mA �mB. Since the

classical mean-field approximation fails to exhibit phase-separated profiles,
we follow the refined mean-field approximation used for the one-species
AIM15,16, which implies here to take m and va as independent Gaussian
variables with a variance linear in the density ρ: σ2m ¼ αmρ and σ2a ¼ αaρ,
respectively. The hydrodynamic equations, averaged over the Gaussian
variables, for the reciprocal TSAIM read

∂tρ ¼ Dxx∂
2
xρþ Dyy∂

2
yρ� v∂xvs; ð8Þ

∂tm ¼Dxx∂
2
xmþ Dyy∂

2
ym� v∂xva

þ 2γ2 ρ� r2
2β2

� �
sinh

2β2m
ρ

�m cosh
2β2m
ρ

� �
;

ð9Þ

∂tvs ¼Dxx∂
2
xvs þ Dyy∂

2
yvs � v∂xρ

þ 2γ1 m sinh
2β1va
ρ

� vs cosh
2β1va
ρ

� �
;

ð10Þ

∂tva ¼Dxx∂
2
xva þ Dyy∂

2
yva � v∂xm

þ 2γ1 ρ� r1
2β1

� �
sinh

2β1va
ρ

� va cosh
2β1va
ρ

� �

þ 2γ2 vs sinh
2β2m
ρ

� va cosh
2β2m
ρ

� �
;

ð11Þ

with diffusion constants Dxx = D + θv/2, and Dyy = D, the self-propulsion
velocity v = 2Dε, γi ¼ γi expðri=2ρÞ, r1 ¼ ð2β1Þ2αa, and r2 ¼ ð2β2Þ2αm.
Note that r1 and r2 are considered as two new parameters for the
hydrodynamic theory, and r1 = r2 = 0 corresponds to the classicalmean-field
approximation.Wewill consider in this paper only the caseD = 1 and θ = 0
(i.e. Dxx = Dyy = 1 and v = 2ε).

In Supplementary Note 2, we derive the hydrodynamic equations for
the non-reciprocal TSAIM. As for reciprocal interactions, we follow the
refined mean-field approximation consisting here to take the magnetiza-
tions ms as independent Gaussian variables with a variance linear in the
density ρ: σ2s ¼ αsρ. The hydrodynamic equations, averaged for the Gaus-
sian variables, for the non-reciprocal TSAIM read:

∂tρs ¼ Dxx∂
2
xρs þ Dyy∂

2
yρs � v∂xms; ð12Þ

∂tms ¼Dxx∂
2
xms þ Dyy∂

2
yms � v∂xρs

þ 2γs ρs �
r1
2β1

� �
sinh

2β1μs
ρ

�ms cosh
2β1μs
ρ

� �
;

ð13Þ

with diffusion constants Dxx = D + θv/2, and Dyy = D, the self-propulsion
velocity v = 2Dε, μs =ms + (Js,−s/J1)m−s, γs ¼ γ1 exp½ðr1 þ rs;�sÞ=2ρ�, and
rss0 ¼ ð2βJss0 Þ2αs0 ¼ ðJss0=J1Þ2r1, where r1 can be considered as a new
parameter in the context of the hydrodynamic theory. We will consider in
this paper only the case D = 1 and θ = 0 (i.e. Dxx = Dyy = 1 and v = 2ε).

Reciprocal interactions without species flip (γ2 = 0)
In this subsection, we present the results of the reciprocal TSAIMwithout
species flip (γ2 = 0) for an equal population of the two species:
NA = NB = N/2, i.e.m0 = 0, which will stay constant over time. We aim to
compare the results of this model, a model with discrete symmetry, with
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those obtained for the TSVM43, a model characterized by continuous
symmetry.

Steady-state profiles and state diagrams of the TSAIM without
species flip. In this paragraph, we present the results for a hopping rate,
given by Eq. (1), with θ = 0 and D = 1. Fig. 1a–d show the steady-state
density snapshots obtained from numerical simulations for increasing
density starting from a semi-ordered PF configuration. At low densities
(ρ0 < 3.98), the particles of both species are disordered, forming a gas
phase. At higher densities (3.98 < ρ0 < 6.82), particles of both species
exhibit flocking behavior in a moving transverse band, forming phase-
separated density profiles, characterized by a band of each speciesmoving
together on a gaseous background composed of both A and B particles.
These two bands are macrophase separated (i.e. only one band is
observed in the steady state for each species, contrary to the TSVM), and
define the coexistence region. The A- and B-band can either move in
opposite directions, denoted as anti-parallel flocking (APF) (Fig. 1a), or
in the same direction, denoted as parallel flocking (PF) (Fig. 1b). In both
the bands, A-particles are anti-aligned with B-particles due to the anti-
ferromagnetic interaction, yielding an opposite motion of B-particles
inside the A-band, and vice versa. At even higher densities (ρ0 > 6.82), the
TSAIM exhibits a liquid state, though the morphology of this state is not
unique. The homogeneous liquid phase can emergewhere the densities of
species A and species B are spatially uniformly distributed in an APF
state, as shown in Fig. 1c, similar to the liquid phase observed in the
TSVM. Additionally, the system can also display a stable high-density PF
(HDPF) state, characterized by two parallel flocking bands occupying
half of the domain (Lx/2 × Ly) (Fig. 1d). Unlike in the TSAIM, this HDPF
state is unstable in the TSVM43, since the continuous symmetry implies
giant number fluctuations10, and fluctuations in the band orientation are
also in favor of the APF state.

Figure 1e–h show instantaneous steady-state density profiles corre-
sponding to Fig. 1a–d. The phase-separated density profiles, shown in
Fig. 1e–f and characterizing an APF and PF state, respectively, exhibit three
distinct regions for each species: amaximumdensity in its own liquid band,
an intermediate density in the gas phase outside both bands, and a mini-
mum density in the liquid band of the other species. Due to the anti-
ferromagnetic interaction between the two species, when a liquid band of

species smoves to the right (left), with a positive (negative) magnetization,
the particles of species − s inside that band go to the left (right) with a
negative (positive) magnetization. As the density increases, with an APF
initial condition, both species exhibit homogeneous profiles around their
averagedensity, indicative of anAPFstate (Fig. 1g). Starting fromaPF initial
condition, however, the system forms individual high-density bands for
each species in theHDPF state, together spanning the x-axis (Fig. 2h). In the
HDPF state, no gas phase is present, leading to two distinct regions in the
density profiles: a maximum density within the own band of each species
and a minimum density within the band of the other species.

The emergence of this HDPF state involves the nucleation and growth
of several flocks of both species, eventually leading to layered polar bands
with a dominant direction of motion. See Supplementary Note 3 for a
detaileddescriptionof this process through the timeevolutionof theTSAIM
starting from a disordered configuration.

Figure 2a shows the probability pAPF of having an APF steady state,
rather than aPF steady state, starting fromadisordered initial configuration,
as a function of the domain size L, calculated over 5000 different initial
configurations and for several densities ρ0. A transition occurs between
small system sizes, where the system exhibits an APF steady state for all
realizations, and larger system sizes, where a PF steady state dominates. The
probability pAPF becomes smaller than 1 (i.e., at least one configuration goes
to a PF state) for L > Lc, with Lc ~ 55 for ρ0 ∈ {8, 10} and Lc ~ 80 for ρ0 = 5,
leading to HDPF and phase-separated PF steady states, respectively. This
suggests that PF states aremore stable thanAPF states in the hydrodynamic
limit (L → ∞) when starting from a disordered initial condition. It is
important to note that, for semi-ordered initial conditions, the final TSAIM
steady state is determined by the initial configuration, a PF (APF) initial
condition always leads to a PF (APF) state. Indeed, we do not observe any
fluctuation-induced stochastic switching between the APF and PF states in
the TSAIM coexistence region, as seen in the TSVM43, since the density
fluctuations in the TSAIM are normal, similar to the one-species AIM15,16.

We now discuss our results for non-motile limit (ε = 0) of the TSAIM,
where the particles of both species only diffuse. A second-order phase
transition similar to the one-speciesAIM is observedbetween a low-density,
high-noise disordered state and a high-density, low-noise ordered state.
Fig. 2b shows themean value of the order parameter ∣va∣ as a function of the
densityρ0 forβ1=0.75 and several systemsizes,which confirms thepresence

Fig. 1 | Steady states for reciprocal interactions without species flip. a–d Density
snapshots for β1 = 0.75, ε = 0.9 and increasing density, in a 1024 × 128 domain,
showing different states: coexistence a APF and b PF states for ρ0 = 5, c liquid APF
state, and dHDPF state for ρ0 = 10. The densities of A and B species are represented
with red and blue colors, respectively. At each site, the color corresponding to the
species with the higher density is displayed. High-density bands move in the

direction indicated by the arrows. A movie (movie 1) of the same can be found at
ref. 70. e–h Density profiles (red/blue represent species A/B, respectively) obtained
from the density snapshots shown in a–d by integrating along the y-axis. The dash-
dotted line represents the density in the gas region, while the densities of the two
species in the liquid phase are represented by dashed lines, as a guide to the eyes.
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of this order-disorder phase transition. The density ρ* at which the transi-
tion occurs can be determined by the Binder cumulant of the order para-
meterU4 ¼ 1� hv4ai=3hv2ai2 for several system sizes (inset of Fig. 2b). The
Binder cumulant is independent of the system size only at the transition
point67, which gives ρ* = 4.95 for β1 = 0.75. Repeating this procedure for
several temperatures, we compute the temperature-density state diagram
for ε = 0 as shown in Fig. 2c. The transition line can be fitted by the
expression ρ*= r/(2β1− 1),with r≃ 2.37. This expression is compatiblewith
our hydrodynamic theory and is analogous to the one-species AIM.

We nowmove to the active case (ε > 0). Fig. 2d shows the steady-state
density profiles ρs(x) of a single species in the PF state for varying densities.
These profiles are computed in a 1024× 128 domain, integrated along the y-
direction, and averaged both species and 1000 different times after the
steady state is reached. For densities ρ0 < 6.82, the profiles exhibit phase-
separated PF bands similar to Fig. 1b, where the density ρs(x) takes three
different values: maximum (larger than the gas density) in the liquid phase
of species s with a positive magnetization ms due to strong intra-species
ferromagnetic interactions; intermediate in the gas phase with zero mag-
netization; and minimum (smaller than the gas density) in the liquid phase
of theother species − swithanegativemagnetizationmsdue to strong inter-
species anti-ferromagnetic interactions. For densities ρ0 > 6.82, the profiles
correspond to an HDPF state as depicted in Fig. 1d. From these density
profiles, we determine the binodals: ρg= 3.98 and ρl = 6.82, as theminimum
and maximum value of the total density ρ = ρA + ρB, defined such that for
ρ0 < ρg the system is in the gas phase and ρ0 > ρl the system is in a liquid state

(either liquid APF or HDPF state, depending on the initial condition). A
stable HDPF state emerges solely due to the reciprocal anti-aligning inter-
actions between the two species and therefore, is absent in the one-species
flocking models15–18,20,21. To the best of our knowledge, this HDPF state has
also not been observed in the TSVM43 and any other multi-species active
matter system.

We subsequently compute the binodals ρg and ρl for different tem-
peratures and biases, and construct the velocity-density state diagram for
β1 = 0.75 (Fig. 2e) and the temperature-density state diagram for ε = 0.9
(Fig. 2f), both of which consist of the three typical regions of a flocking
system: gas phase (ρ0 < ρg), liquid state (ρ0 > ρl), and the liquid-gas coex-
istence region (ρg < ρ0 < ρl). The three line ρg(T1), ρ*(T1) and ρl(T1) merge
when T1 → Tc = 2.

Hydrodynamic theory of the TSAIM without species flip. We now
present the results obtained from the hydrodynamic theory derived with
Eqs. (8)-(11) for γ2 = 0. The non-motile case, for which ε = 0 (i.e. v = 0),
exhibits only homogeneous stationary solutions: ρ(x) = ρ0, m(x) = m0,
and the order parameters following the equations:

vs ¼ m0 tanh
2β1va
ρ0

; ð14Þ

va ¼ ρ0 �
r1
2β1

� �
tanh

2β1va
ρ0

: ð15Þ

Considering the same average density for each species (〈ρs(x)〉= ρ0/2, where
〈 ⋅ 〉 denotes the spatial averaging here) at initial condition, i.e.
〈m(x)〉 =m0 = 0, we get vs = 0. From Eq. (15), we get a second-order phase
transition between a disordered homogeneous solution (va = 0) and an
ordered homogeneous solution (∣va∣ > 0). The transition occurs when
2β1− r1/ρ0 is larger than 1, i.e. for a density larger than ρ*= r1/(2β1− 1) and
for a temperature T1 < Tc = 2. This expression is compatible with the
transition line obtained from the simulations of themicroscopic model and
shown in Fig. 2c.

Phase-separated density profiles can be observed for a positive velocity
(ε > 0). Figure 3a, b show steady-state density profiles ρs(x) as APF and PF
states, respectively. Fig. 3c shows steady-state density profiles ρs in the PF

Fig. 3 | Hydrodynamic theory for reciprocal interactions without species flip.
a–b Steady-state density profile (red/blue represent species A/B, respectively) for
ρ0 = 1.01 showing a an APF state and b a PF state. c Steady-state density profile for
increasing densities in the PF state. Parameters: β1 = 1, ε = 0.9, and Lx = 1024.
d Velocity-density state diagram for β1 = 1. e Temperature-density state diagram
for ε = 0.9.

Fig. 2 | Profiles and state diagrams for reciprocal interactionswithout speciesflip.
a Probability for a steady state in the APF state as a function of the system size,
starting from disordered initial configurations, calculated over 5000 ensembles for
β1 = 0.75, ε = 0.9 and several densities ρ0. bMean value and Binder cumulant (inset)
of the order parameter ∣va∣ vs ρ0 without activity (ε = 0) for β1 = 0.75 and several
system sizes. The transition occurs at density ρ* = 4.95. c State diagram for ε = 0.
ρ0 < ρ*(T1): disordered state (red), ρ0 > ρ*(T1): ordered state (blue). d Steady-state
density profiles (PF state) for β1 = 0.75 and ε=0.9 in a 1024 × 128 domain, for various
densities. The data are averaged over 1000 times. eVelocity-density state diagram for
β1 = 0.75. f Temperature-density state diagram for ε = 0.9.
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state for increasingdensity. Fordensitiesρ0< 1.31, theprofiles exhibit phase-
separated PF bands similar to Fig. 3b, for a right-moving band. The density
ρs(x) takes three different values: in the liquid phase of species s (ms > 0), in
the gas phase (ms = 0), and in the liquid phase of the other species − s
(ms < 0). For densities ρ0 > 1.31, the HDPF state is observed and explained
with Eqs. (8)-(11) as follows: in the A-band, the density is homogeneous
such that ρA > ρB and the order parameter va obeys the ordered homo-
geneous solution. Then vs satisfies Eq. (14) wherem0 is replaced by ρA− ρB,
which determines the magnetization of species A: mA = (vs + va)/2 and
species B: mB = (vs − va)/2, such that mA and mB have different signs. We
determine the binodals from these density profiles: ρg = 0.986 and ρl = 1.31.
Computing the binodals for several velocities and temperatures, we con-
struct the velocity-density state diagram for β1 = 0.75 (Fig. 3d) and the
temperature-density state diagram for ε= 0.9 (Fig. 3e).We recover the three
typical regions of a flocking system: gas phase (ρ0 < ρg), liquid state (ρ0 > ρl),
constitutedwith the liquidAPF state and theHDPF state, and the liquid-gas
coexistence region (ρg < ρ0 < ρl).

Reciprocal interactions with species flip (γ2 = 0.5)
In this subsection, we present the results of the reciprocal TSAIM with
species flip, with species interaction given by Eq. (7) with γ2 = 0.5, for which

the number of particles of each species, NA and NB, is not conserved.
Depending on the initial species magnetization m0 = (NA − NB)/LxLy, the
TSAIM dynamics drive the system into different steady states.

Steady-state profiles and state diagrams of the TSAIM with
species flip. In this paragraph, we present the results for a hopping rate,
given by Eq. (1), with θ = 0 and D = 1. Fig. 4a–d show the steady-state
density profiles obtained from the simulation of the microscopic model,
for β1 = 0.75 and β2 = 1.5 (β2 > β1), starting from a semi-ordered con-
figuration. As shown, the steady state strongly depends on the initial
population of each species. At very low densities (ρ0 < 0.8), the steady
state is disordered in both spin and species, forming a paramagnetic gas
phase (see Supplementary Note 4).

Starting from a configuration with all particles of species A (m0 = ρ0),
for ρ0 > 0.8, the system exhibits a liquid-gas phase transition of species A
similar to the one-species AIM, where the particles in species B remain
disordered for all densities. At low densities (0.8 < ρ0 < 2.86), the particles of
species A are disordered in spin, but ordered in species, forming a ferro-
magnetic gas phase of species A (see Supplementary Note 4). At larger
densities (2.86 < ρ0 < 9.13), the particles in species A start flocking in a
transverse band, showing macrophase-separated density profiles, which

Fig. 4 | Steady states for reciprocal interactions with species flip. a–h Density
snapshots for ε = 0.9 in a 1024 × 128 domain. a–d Snapshots for β1 = 0.75 and
β2 = 1.5: a one-species coexistence state (ρ0 = 5), b one-species liquid phase (ρ0 = 10),
c two-species coexistence PF state (ρ0 = 10), and d HDPF state (ρ0 = 20). e–f
Snapshots for β1 = β2 = 0.75: e one-species coexistence state (ρ0 = 10), and f two-
species coexistence PF state (ρ0 = 20). g–h Snapshots for β1 = 1.8 and β2 = 0.75: g two-
species coexistence PF state (ρ0 = 3.5), and h HDPF state (ρ0 = 6) exhibiting

microphase separation. The densities of A andB species are representedwith red and
blue colors, respectively. Amovie (movie 5) of the same can be found at ref. 70. i–p
Density profiles (red/blue represent species A/B, respectively) obtained from the
density snapshots shown in a–h by integrating along the y-axis. The dash-dotted
lines represent the densities of the two species in the ferromagnetic gas, while the
densities of the two species in the liquid phase are represented by dashed lines, as a
guide to the eyes.
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characterizes the coexistence region (Fig. 4a). At even higher densities
(ρ0 > 9.13), the band of species A spans the whole domain, forming a liquid
phase of species A (Fig. 4b).

But, if we start with an initial configuration where both species are
equally populated (m0 = 0), the scenario differs from the one-species AIM
and the reciprocal TSAIM without species flip. At low densities
(0.8 < ρ0 < 2.95), particles of both species are disordered in spin, but ordered
in species, which also leads to a ferromagnetic gas phase of both species (see
Supplementary Note 4). At higher densities (2.95 < ρ0 < 17.0), both species
exhibit transverse band motion, forming macrophase-separated density
profiles, with a band of each species followed by its gas phase (Fig. 4c),
characterizing thePF coexistence region.At evenhigher densities (ρ0 > 17.0),
the two bands span the whole domain, with no gas phase present, forming
an HDPF state (Fig. 4d), as observed for the reciprocal TSAIM without
speciesflip. However, the liquid APF state is not observed in the presence of
species flip. Furthermore, Fig. 4b, c are obtained for the same parameters,
but different initial configurations, leading to two different steady states: a
one-species liquid phase and a two-species phase-separated profile,
respectively.

Figure 4e–f show the steady-state density profiles, for β1 = β2 = 0.75,
starting from a semi-ordered configuration. For this value of β2, the steady
states are similar to the ones observed for β2 > 1.5: a paramagnetic gas phase
(for ρ0 < 3.95), a ferromagnetic gas phase (for 3.95 < ρ0 < 8.0), a one-species
macrophase-separated profile (for 8.0 < ρ0 < 14.0) as shown in Fig. 4e, a one-
species liquid phase (for ρ0 > 14.0), a two-species macrophase-separated
profile (for 8.0 < ρ0 < 31.0) as shown in Fig. 4d, and an HDPF state (for
ρ0 > 31.0), dependingon the initial condition.As shown inFig. 4i–p, theonly

difference between β2 = 1.5 and β2 = 0.75 lies in the proportion of A and
B-particles in each site: for β2 = 1.5, most of the sites of the steady states
shown in Fig. 4a–d are occupied by a unique species (either A or B
depending on the position), while for β2 = 0.75, all the sites of the steady
states shown in Fig. 4e–f are occupied by the two species (but one has a
higher population, depending on the position). This behavior is due to the
increase of speciesmagnetizationm, i.e. a stronger order in species, when β2
increases.

Figure 4g–h show the steady-state density profiles, for β1 = 1.8 and
β2 =0.75 (β1 >β2), starting fromadisorderedconfiguration.Here, the steady
state does not depend on the initial population of each species. At low
density (ρ0 < 2.11), the particles are in a disordered state for both spin and
species, forming the paramagnetic gas phase. At higher densities
(2.11 < ρ0 < 4.67), both species exhibit transverse band motion, forming
microphase-separated density profiles, with several PF bands of both species
(Fig. 4g). These microphase-separated density profiles have not been
observed in the one-species AIM15,16 or the reciprocal TSAIM without
species flip, which only exhibit macrophase-separated profiles. At even
higher densities (ρ0 > 4.67), these microphase-separated bands span the
whole domain forming an HDPF state (Fig. 4h), similar to Fig. 4d where
only two bands are present. This steady state is obtained from a quench and
has the signature of a dynamical processwithmicrophase-separated profiles
at intermediate times, during the formation of flocks. A steady state
with any even number of bands would remain stable within this parameter
set. Additional density profiles are shown in Supplementary Note 5. The
origin of these microphase-separated profiles is discussed in the context
of Fig. 5.

Fig. 5 | Profiles and state diagrams for reciprocal interactions with species flip.
a–d Order parameter and state diagrams for ε = 0. a–bMean value and Binder
cumulant (insets) of the order parameters ∣m∣ and ∣va∣ vs ρ0 for β1 = 0.75, β2 = 0.75,
and several system sizes. The transitions occur at densities ρ�2 ¼ 3:95 and
ρ�1 ¼ 11:25. cTemperatureT2-density state diagram for β1 = 0.75, andd temperature
T1-density state diagram for β2 = 0.75. ρ0<minðρ�1 ; ρ�2Þ: spin disordered/species
disordered state with 〈m〉 = 0 and 〈va〉 = 0 (blue), ρ�2<ρ0<ρ

�
1 : spin disordered/species

ordered state with 〈m〉 > 0 and 〈va〉 = 0 (yellow), ρ�1<ρ0<ρ
�
2 : spin ordered/species

disordered state with 〈m〉 = 0 and 〈va〉 > 0 (green), and ρ0>maxðρ�1 ; ρ�2Þ: spin

ordered/species ordered state with 〈m〉 > 0 and 〈va〉 > 0 (red). e–j Profiles and state
diagrams for ε > 0. e–f Steady-state density profiles (PF state) for β1 = 0.75, β2 = 1.5,
and ε = 0.9 in a 1024 × 128 domain, for various densities. The initial configuration is
taken with em0 = ρ0 or (f)m0 = 0. g Steady-state density profile of a single band for
β1 = 1.8, β2 = 0.75, and ε = 0.9 in a 1024 × 128 domain, corresponding to the
microphase separated snapshot shown in Fig. 4g. The data are averaged over 1000
times. hVelocity-density state diagram for β1 = 0.75 and β2 = 0.75. iTemperatureT2-
density state diagram for β1 = 0.75 and ε = 0.9. j Temperature T1-density state
diagram for β2 = 0.75 and ε = 0.9.
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Figure 4i–p show the instantaneous steady-state density profiles cor-
responding to Fig. 4a–h. For β1 = 0.75 andβ2 = 1.5 (β2 >β1), starting fromall
particles of species A (m0 = ρ0), the density profiles are similar to the one-
species AIM: homogeneous gas profiles at low densities, macrophase-
separated density profile at intermediate densities (Fig. 4i), and homo-
geneous liquiddensityprofiles of speciesAathighdensities (Fig. 4j). Starting
from an equal population of both species (m0 = 0), the macrophase-
separated bands of each species are characterized by a PF state, where the
high-density liquid band of each species is followed by its own low-density
gas phase (Fig. 4k). At higher ρ0, the low-density gas phases vanish and the
high-density liquid bands span the x-axis forming an HDPF state (Fig. 4l).
For this value of β2, only one of the two species has a positive value (up to
fluctuations) at a given position x. For β1 = β2 = 0.75, starting from all
particles of species A, the macrophase-separated density profile exhibits a
gaseous background of species B with a slightly higher density inside the
liquid bandof speciesA (Fig. 4m). Starting fromanequal population of both
species, the macrophase-separated density profiles (within a PF state)
exhibit four distinct regions for each species: a maximum density in its own
liquid band, a high intermediate density in its owngas phase (located behind
its liquid band), a low intermediate density in the liquid band of the other
species, andaminimumdensity in the gas phase of the other species (located
behind the liquid band of this species) (Fig. 4n). Contrary to the reciprocal
TSAIM without species flip, the species-species interaction dominates the
antiferromagnetic spin-spin interaction meaning that the magnetization of
the species s is non-zero only in the liquid band of species s, and the density
ratio between both species depends only on the species magnetization m,
such that ρA/ρB = (1+M)/(1−M), whereM =m/ρ = (ρA− ρB)/(ρA+ ρB)
has a constant modulus over x (M≃ ± 0.8 for β2 = 0.75), leading to the four
values taken by ρs in gas and liquid regions. For β1 = 1.8 and β2 = 0.75
(β1 > β2),multiple alternating high-density bands of speciesA andB emerge
in a PF state on a low-density gas background (Fig. 4o), and as the density
increases, the average width and height of these bands expand and span the
whole region (Fig. 4p).

Starting from a fully disordered configuration at large β2 and ρ0, the
system evolves into a steady state where one species completely replaces the
other [see Fig. 4b], akin to consensus formation in the binary voter model,
where one opinion eventually dominates. A detailed discussion of this
evolution is provided in Supplementary Note 6.

Wenowdiscuss the non-motile case (ε= 0), where the particles of both
species only diffuse, in addition to the spin and species interactions. A
second-order phase transition occurs for both m and va order parameters
between a disordered state at low density and high noise, and an ordered
state at high density and low noise. Fig. 5a–b show the mean value of the
order parameters ∣m∣ and ∣va∣ as a functionof thedensity ρ0 forβ1 =β2 = 0.75
and several system sizes, which confirms the presence of an order-disorder
phase transition for bothm and va. The densitiesρ�2 and ρ

�
1 atwhich both the

phase transitions occur can be derived from the Binder cumulant of the two
order parameters: Um

4 ¼ 1� hm4i=3hm2i2 and U4 ¼ 1� hv4ai=3hv2ai2,
respectively (insets of Fig. 5a–b). TheBinder cumulant is independent of the
system size only at the transition point67, which gives ρ�2 ¼ 3:95 for the
species phase transition (crossing of Um

4 ), and ρ�1 ¼ 11:25 for the spin-
orientation phase transition (crossing of U4) for β1 = β2 = 0.75. Repeating
this procedure for several β1 and β2, we compute the temperature-density
state diagrams shown in Fig. 5c–d. From the flipping rates, given by Eqs. (2)
and (7), the density ρ�2 � ρ�2ðT2Þ will only depend on T2 where the density
ρ�1 � ρ�1ðT1;T2Þ will depend on both the temperatures T1 and T2. The
transition line can be fitted by the expression ρ�2ðT2Þ ¼ r2=ð2β2 � 1Þ, with
r2≃ 1.85. This expression is compatible with the hydrodynamic theory and
analogous to the one-species AIM. The lines ρ�1 and ρ�2 partition the state
diagram into four regions inwhich spin and species can be either disordered
or ordered, dependingon the values of 〈va〉 and 〈m〉, respectively.These four
non-motile states are similar to those reported for the ATmodel65,66, for the
order parameters 〈vs〉 ~ 〈σ〉, 〈m〉 ~ 〈s〉, and 〈va〉 ~ 〈σs〉: (i) a paramagnetic
phase where 〈σ〉 = 〈s〉 = 〈σs〉 = 0 [disorder/disorder in Fig. 5c–d (blue)], (ii) a

symmetric Baxter phase where 〈σ〉 = ± 〈s〉 ≠ 0 and 〈σs〉 ≠ 0 [order/order in
Fig. 5c–d (red)], (iii) a 〈σs〉 phase where 〈σs〉 ≠ 0 and 〈σ〉 = 〈s〉 = 0 [order/
disorder in Fig. 5c–d (green)], and (iv) a 〈s〉 phase where 〈s〉 ≠ 0 and
〈σ〉 = 〈σs〉 = 0 [disorder/order in Fig. 5c–d (yellow)].

We now move to the active case (ε > 0). Figure 5e–f show the steady-
state density profiles ρs(x) in the PF state obtained from numerical simu-
lations for increasing densities. These profiles are computed in a 1024 × 128
domain, integrated along the y-direction, and averaged over both species
and 1000 different times after the steady state is reached, following the two
different initial populations of each species:m0 = ρ0 in Fig. 5e andm0 = 0 in
Fig. 5f. Starting withm0 = ρ0, the density profiles are analogous to the one-
speciesAIM15,16. Starting fromm0 = 0 and for densities ρ0 < 17.0, the profiles
exhibit phase-separated PF bands similar to Fig. 4c, where the density ρs(x)
assumes four distinct values corresponding to the liquid phase and the
ferromagnetic gas phase, dominated either by species s or by the opposing
species − s. Starting from m0 = 0 and for densities ρ0 > 17.0, the profiles
correspond to an HDPF state as depicted in Fig. 4d. We determine from
these density profiles the value of the binodals for both initial conditions:
ρð1Þg ¼ 2:86 and ρð1Þl ¼ 9:13, as the minimum and maximum value of ρA
when only species A is present, and ρð2Þg ¼ 2:95 and ρð2Þl ¼ 17:0, as the
minimum and maximum value of the total density ρ = ρA+ ρB when both
species are present. As we can see ρð1Þg ’ ρð2Þg � ρg since the system is in the
same gas phase for both scenarios when ρ0 < ρg. However, we can see that
ρð1Þl <ρð2Þl since the two liquid states are completely different and the anti-
ferromagnetic interaction between the two species makes the value of the
binodal higher.

Figure 5g shows the steady-state density profile ρs(x) of a single band
obtained from numerical simulations, corresponding to the microphase
separated snapshot shown in Fig. 4g. This profile is computed in a
1024 × 128 domain by first performing a running average on the time-
dependent density profiles, integrated along the y-direction, to merge the
multiple bands corresponding to the microphase separation. The resulting
profiles are then averaged over 1000 times, and both species.We determine
the gas and liquid binodals: ρg=2.11 and ρ

ð2Þ
l ¼ 4:67, respectively, from this

density profile.
We compute analogously the binodals ρg, ρ

ð1Þ
l , and ρð2Þl for different

temperatures T1, T2, and biases ε, and construct the velocity-density state
diagram for β1 = 0.75 andβ2 = 1.5 (Fig. 5h), the temperatureT2-density state
diagram for β1 = 0.75 and ε = 0.9 (Fig. 5i), and the temperature T1-density
state diagram for β2 = 0.75 and ε = 0.9 (Fig. 5j), which consists of four
regions: paramagnetic gas phase (ρ0<ρ

�
2), ferromagnetic gas phase

(ρ�2<ρ0<ρg), coexistence region (ρg < ρ0 < ρl), and liquid state (ρ0 > ρl), where
ρl can either beρ

ð1Þ
l orρð2Þl , dependingon the initial configuration.This liquid

state is characterized by a one-species liquid phase (1sp liquid) for ρ0>ρ
ð1Þ
l , as

shown in Fig. 4b, or by anHDPF state for ρ0>ρ
ð2Þ
l , as depicted in Fig. 4d. The

coexistence region can be further decomposed into three subregions: (i)
ρ�2<ρg<ρ

�
1 where a ferromagnetic gas phase coexists with a macrophase-

separated liquid band (Fig. 4a), (ii) ρg<ρ
�
2<ρ

�
1 where a paramagnetic gas

phase coexists with a macrophase-separated liquid band (Fig. 4c), and (iii)
ρg<ρ

�
1<ρ

�
2 where a paramagnetic gas phase coexists with microphase-

separated liquidbands emerging from the frustrationof the spinorderedbut
species disordered state (Fig. 4g). Note that the liquid binodals, ρð1Þl and ρð2Þl ,
will always be larger than ρg, ρ�1 , and ρ

�
2 since flocking is possible only when

both species and spin are ordered.

Hydrodynamic theory of the TSAIMwith species flip.We now present
the results obtained from the hydrodynamic theory derivedwith Eqs. (8)-
(11)with γ2≠ 0.Here, wewill restrain to the special case r1 = r2 = r, leading
to γ2=γ1 ¼ γ2=γ1 � γ. The non-motile case, for which ε = 0 (i.e. v = 0),
exhibits only homogeneous stationary solutions: ρ(x) = ρ0, and

m ¼ ρ0 �
r
2β2

� �
tanh

2β2m
ρ0

; ð16Þ
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vs ¼ m tanh
2β1va
ρ0

; ð17Þ

ρ0 � r
2β1

� 	
sinh 2β1va

ρ0
� va cosh

2β1va
ρ0

þγ vs sinh
2β2m
ρ0

� va cosh
2β2m
ρ0

h i
¼ 0:

ð18Þ

FromEq. (16), we get a second-order phase transition between a disordered
homogeneous solution wherem = 0 and an ordered homogeneous solution
∣m∣ > 0. The transition occurs when 2β2 − r/ρ0 is larger than 1, i.e. for a
density larger than ρ�2 ¼ r=ð2β2 � 1Þ and for a temperatureT2 <Tc=2.This
expression is compatible with the transition line obtained from simulations
of themicroscopicmodel and shown inFig. 5c. FromEqs. (17)-(18),we get a
second-order phase transition between a disordered homogeneous solution
where va = 0 and an ordered homogeneous solution ∣va∣ > 0. The transition
occurs for a density larger than ρ�1 , solution of the equation:

ρ�1 ¼
r

2β1 � 1þ γ½ðβ1=β2ÞM� sinhM� � coshM��
; ð19Þ

withM� ¼ 2β2m�=ρ
�
1 wherem* is a stable solutionofEq. (16)withρ0 ¼ ρ�1,

i.e.m* = 0 for ρ�1<ρ
�
2 andm* > 0 for ρ�1>ρ

�
2 . The solution is trivial for ρ

�
1<ρ

�
2:

ρ�1 ¼ r=ð2β1 � 1� γÞ, but not analytically tractable for ρ�1>ρ�2 . Numerical
solutions tell us that ρ�1 is continuous as function of T1 and T2, but its
derivative exhibits a discontinuity at the temperature T1 such that
ρ�1ðT1;T2Þ ¼ ρ�2ðT2Þ, i.e. T1 = T2/(1 + γT2/2).

Phase-separated density profiles can be observed for a positive velocity
(ε > 0). Figure 6a–d show the steady-state density profiles ρs(x) in the PF
state. Two different initial average species magnetization are considered:
〈m(x)〉 =m0 = ρ0 for Fig. 6a, c and 〈m(x)〉 =m0 = 0 for Fig. 6b, d. Analogous
to the results obtained from the simulations of the microscopic model, two
kinds of phase-separated density profiles are observed for the same density
ρ0 = 5: one-species flocking when starting withm0 = ρ0 (Fig. 6a), akin to the
one-species AIM15,16, and two-species flocking when starting with m0 = 0
(Fig. 6b), where the density ρs(x) takes four different values for the same
reasons discussed in Fig. 4n. Figure 6c–d show theses steady-state density
profiles ρs(x) with increasing densities. Starting with m0 = ρ0, the density
profiles are analogous to the one-species AIM15,16 (Fig. 6c), and starting with
m0 = 0, the profiles exhibit phase-separated PF bands similar to Fig. 6b for
densities ρ0 < 11.59 and a HDPF state for densities ρ0 > 11.59 (Fig. 6d).

We determine the binodals from theminimumandmaximumdensity
ρ = ρA + ρB of these phase-separated profiles: ρð1Þg ¼ 3:64 and ρð1Þl ¼ 5:30
when one species is present, and ρð2Þg ¼ 3:60 and ρð2Þl ¼ 11:59 when two
species are present in the steady state. As for simulations of themicroscopic
model, we have ρð1Þg � ρð2Þg � ρg and ρ

ð1Þ
l <ρð2Þl . Computing the binodals for

several velocities ε and temperatures T1 and T2, we construct the velocity-
density state diagram for β1 = β2 = 0.75 (Fig. 6e), the temperatureT2-density
state diagram for ε = 0.9 and β1 = 0.75 (Fig. 6f), and the temperature T1-
density state diagram for ε= 0.9 and β2 = 0.75 (Fig. 6g).We recover the four
regions observed with simulations of the microscopic model: paramagnetic
gas phase (ρ0<ρ

�
2), ferromagnetic gas phase (ρ�2<ρ0<ρg), coexistence region

(ρg < ρ0 < ρl), and liquid state (ρ0 > ρl), where ρl can either be ρð1Þl or ρð2Þl ,
depending on the initial configuration. This liquid state is characterized by a
one-species liquid phase (1sp liquid) for ρ0>ρ

ð1Þ
l , or by an HDPF state for

ρ0>ρ
ð2Þ
l . However, the coexistence region will be slightly different here: the

gas binodal ρgwill always be between ρ�1 and ρ
�
2 leading to two subregions: (i)

ρ�2<ρg<ρ
�
1 where a ferromagnetic gas phase (m> 0 and va=0) coexistswith a

liquid band (m>0and va>0), and (ii) ρ1 � <ρg<ρ�2 where aAPFstate (m=0
and va > 0) coexists with a liquid band (m > 0 and va > 0). This second
subregion is unstable in the presence of fluctuations, leading to the
microphase-separated profiles observed in Fig. 4g–h.

Non-reciprocal interactions
In this subsection, we consider the TSAIMwith non-reciprocal interactions
(NRTSAIM) which is a minimal microscopic model of non-reciprocal
flocking with two species having competing interests: species A aligns with
species B with an interaction strength JAB (0 ≤ JAB ≤ J1) while species B anti-
alignswith speciesAwith interaction strength JBA (− J1≤JBA≤0).We further
define the dimensionless variablesJ ss0 ¼ Jss0=J1 and β1 = βJ1. Here, we will
again consider an equal population of both species, NA = NB = N/2,
i.e.m0 = 0.

For the results presented in this subsection, we initialize the system in
either an ordered or semi-ordered configuration. In an ordered configura-
tion, particles of both species possess the same spin σ, whereas in the semi-
ordered configuration, high-density bands of both species are arranged in
either a PF or an APF state. If simulations start from a disordered initial
configuration in thepresence of non-reciprocal frustration, the system tends
to remaindisordered. This is due to the continuous switchingof the spin σof
a particle between its two states ( ± 1), resulting in a disordered steady state.

Steady-state profiles and state diagrams of the NRTSAIM. In this
paragraph, we present the results for a hopping rate, given by Eq. (1), with
θ = 0 and D = 1. First, we consider the non-reciprocal interaction as
J AB ¼ �J BA � J NR, where the coupling constant of A-particles with
B-particles, J AB>0, is exactly the opposite of the coupling constant of
B-particles with A-particles, J BA<0.

We first analyze the effect of self-propulsion (ε > 0). Starting from the
same initial configuration, Fig. 7a–f showall thepossible steady-statedensity
configurations exhibited by the NRTSAIM for large self-propulsion ε = 0.9
as the strength of the non-reciprocal interactionJ NR is increased. Fig. 7a, b
exhibit a flocking state of two species (in a PF state) for J NR ¼ 0 and

Fig. 6 | Hydrodynamic theory for reciprocal interactions with species flip. a–b
Steady state profiles (red/blue represent species A/B, respectively) for same density
ρ0 = 5 but different initial species magnetization: am0 = 5, and bm0 = 0. c–d Steady-
state density profiles (in PF state) for different densities and initial species magne-
tization: c m0 = ρ0, and d m0 = 0. Parameters: β1 = 0.75, β2 = 0.75, ε = 0.9, and
Lx = 1024. e Velocity-density state diagram for β1 = β2 = 0.75. f Temperature T2-
density state diagram for β1 = 0.75 and ε = 0.9. g Temperature T1-density state
diagram for β2 = 0.75 and ε = 0.9.
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J NR ¼ 0:1, respectively. InFig. 7b, theB-band (blue) appears narrower and
denser compared to theA-bandwhereas in Fig. 7a, both bands exhibit equal
width and density due to the absence of inter-species interactions. This
occurs because the slight increase in the non-reciprocity increases the
velocity of the B-band and propels it near to the opposite extremity of the
A-band (relative to the band propulsion direction) as B-particles respond to
the emerging non-reciprocal environment. Despite the growing strength of
non-reciprocal interactions, the two-species flocking behavior persists up to
a point, afterwhich the system transitioned to aflocking state of only species
A, as shown inFig. 7c, forJ NR ¼ 0:3.However, aswe increaseJ NR further,
a transition to a fully disordered state occurs in both species (Fig. 7d), fol-
lowed by run-and-chase dynamics at higher values ofJ NR (Fig. 7e–f). This
run-and-chase dynamics emerges from the nucleation of an A-band in the
gas phase in front of the B-band, since A-particles tend to align with
B-particles. The B-particles tend to avoid them because of the non-
reciprocal interaction, resulting in a substantial accumulation of B-particles,
which leads to a denser B-band, and a slowing down of the B-band velocity.
Therefore, the arrangement shown in Fig. 7f exemplifies a highly efficient
non-reciprocal configuration, facilitating the B-particles to maintain the
maximumdistance from the chasingA-particles. The velocity c~ 1.96 of the
flocking bands (Fig. 7a–b) is larger than the self-propulsion velocity of the
particles v = 2Dε = 1.8 for small nonreciprocity, as also observed in the one-
speciesAIM15,16.However, in the run-and-chase state (Fig. 7e–f), the velocity
c ~ 1.64 of the B-band is smaller than v since the nonreciprocal interaction
slows down the dynamics of the B-band.

Figure 7 qualitatively evaluates the NRTSAIM states via steady-state
snapshots as the non-reciprocal interaction strength increases. This quali-
tative assessment is complemented by the corresponding density profiles
shown in Fig. 7g–l, which provide a more quantitative picture of the phe-
nomenon.We observe two identical yet distinct density profiles of species A

and B in Fig. 7g as the inter-species interaction is zero. The profiles signify
that the system is in the liquid-gas coexistence regime, where each species
exhibits order solely within its respective band while remaining disordered
elsewhere. ForJ NR ¼ 0:1 (Fig. 7h), with the emergence of non-reciprocity,
the liquid density within the B-profile surpasses that of the corresponding
A-profile, as B-particles try to move away from the high-density A-band.
However,within theB-band,A-particles alignwithB-particles, both sharing
the same spin state σ and moving in the same direction. In contrast, within
the A-band, B-particles are anti-aligned with A-particles, moving in the
opposite direction with an opposite spin state. A similar effect occurs in the
one-species flocking band of species A (Fig. 7i forJ NR ¼ 0:3), where non-
reciprocity causes contrasting behaviors in B-particles: they are in a dis-
ordered state outside theA-band, but in an anti-aligned ordered state inside
the band. With a continued increase in non-reciprocal frustration, both
species transition into a disordered state (Fig. 7j). Subsequently, a run-and-
chase state emerges for largeJ NR (Fig. 7k–l)where the bands of each species
are coupled. In this run-and-chase state, the maximum density of the
B-profile increases with J NR as an increasing number of B-particles try to
escape contact with the moving A-band.

To illustrate the influence of density and noise on the run-and-chase
state, we present the steady-state density profiles of species A and B for
J NR ¼ 1 in Fig. 8a–b. Regardless of whether system density increases at
fixed noise or β1 increases at fixed density, the system remains in the run-
and-chase state, without transitioning to an ordered phase. As β1 is
increased, with fixed density ρ0, the run-and-chase state exhibits wider A
and B-bands and a decrease in the maximal density of each band, due to
stronger intra-species interactions (Fig. 8a). As the total density is increased,
with fixed β1, the run-and-chase state shows broader but denser bands
(Fig. 8b).Ahigherdensity leadsmoreB-particles tomovewithin thenarrow,
high-density B-band to avoid the expanding A-band. However, since

Fig. 7 | Steady states for non-reciprocal interactions. a–f Density snapshots for
β1 = 1.25, ε = 0.9, ρ0 = 4, and increasing non-reciprocal interaction: a J NR ¼ 0,
b J NR ¼ 0:1, c J NR ¼ 0:3, d J NR ¼ 0:55, e J NR ¼ 0:6, and f J NR ¼ 1 in a
1024 × 128 domain. The densities of A and B species are represented with red and

blue colors, respectively. Amovie (movie 8) of the same can be found at ref. 70. g–l
Density profiles (red/blue represent species A/B, respectively) for increasing J NR,
obtained from the density snapshots shown in a–f by integrating along the y-axis.
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A-particles are alignedwithB-particles, the density ofA-particles noticeably
increases within the high-density B-band.

To comprehensively illustrate the influence of noise and density on the
NRTSAIM steady states, we construct the (J NR,β1) and (J NR; ρ0) state
diagrams, depicted in Fig. 8c–d. These state diagrams exhibit four regions
representing the following states: A- and B-species flocking, A-species
flocking, disordered gas, and run-and-chase states. When J NR ¼ 0,
denoting the absence of inter-species interaction, we observe the emergence
of flocking bands of both species, as noise decreases or density increases. As
J NR is increased for β1 = 1.25 and ρ0 = 4, the system goes through all the
possible states of the NRTSAIM, as shown in Fig. 7. As β1 and ρ0 are
increased, the transition from a flocking state to the disordered state occurs
at larger values of J NR, while the transition to the run-and-chase state
appears at smaller values ofJ NR, as this state becomesmore favorable even
with weaker non-reciprocal coupling.

We now shift our focus to the scenario where the magnitudes of the
inter-species coupling strengths may differ from each other (J AB≠� J BA,
but keeping J AB ≥ 0 and J BA ≤ 0). We observe that the impact of J AB
stands in stark contrast to that of J BA. By maintaining a constant
J AB ¼ 0:7, the system exhibits a run-and-chase state for any values ofJ BA.
An increase of jJ BAj further consolidates the run-and-chase state, as evi-
denced by the density profiles of the B-species (Fig. 8e).

Subsequently, we construct a (J AB;�J BA) state diagram in Fig. 8f to
illustrate the comparative influence ofJ AB andJ BA in defining the steady-
states of theNRTSAIM.To illustrate the effect of nonreciprocity, let usmove
horizontally in the state diagram keeping J AB constant, from J BA ¼ 0 to
J BA ¼ �1 (increasing the anti-alignment interaction). For small J AB, the
system exhibits a two-species or one-species flocking state, illustrated in

Fig. 7a–c. For J AB ≥ 0:7, regardless of the magnitude of the coupling J BA,
the system consistently manifests a run-and-chase state, as shown in
Fig. 7e–f, where the velocity of the B-band slowly decreases with�J BA. On
the other hand, if we nowmove vertically in the state diagram keepingJ BA
constant, the system transitions from a two-species flocking state to a run-
and-chase state, via a one-species flocking state, whenJ AB is increased. For
large J BA, this transition occurs through an intermediate disordered gas
state. Moving along the diagonal dotted line J AB ¼ �J BA, from the
bottom-left to the upper-right corners, we go through the steady states as
presented inFig. 7.Hence, it appears thatJ AB assumes amore critical role in
determining the emergence of the steady states than J BA. To emphasize, a
strong preference of species A to B propels the system toward the run-and-
chase state, even for a slight aversion of B towards A.

Non-motile NRTSAIM (ε = 0). We now examine the scenario of non-
motile NRTSAIM (ε = 0), where particles of both species only diffuse. In
the absence of non-reciprocity (J NR ¼ 0), a phase transition occurs from
a disordered state at low density and large noise to an ordered state at
large density and low noise. With the introduction of non-reciprocity via
J NR, we witness the emergence of a dynamical oscillatory state (or swap
state)45, characterized by oscillations in the magnetizations of both spe-
cies over time (Fig. 8g), where mA is in late quadrature with mB. The
magnitudes of these oscillations fluctuate over time, and generally
increase with β1 and decrease withJ NR. Fig. 8h shows the phase portraits
(mA,mB) and illustrates the transition from the disordered state to the
oscillatory state. In the disordered state, mA = mB = 0 is the only stable
fixed point, while the oscillatory state is depicted by stable limit cycles,
with their area increasing as β1 increases. Furthermore, the time period of

Fig. 8 | Profiles and state diagrams for non-reciprocal interactions. a–b Steady-
state density profiles of species A (flat profiles) and species B (sharp peaks), shown
for a different β1 with fixed ρ0 = 4, and b varying ρ0 with fixed β1 = 1.25. Parameters:
ε = 0.9,J NR ¼ 1, Lx = 1024, Ly = 128. c (J NR,β1) state diagram for ρ0 = 4 and ε = 0.9;
and d (J NR,ρ0) state diagram for β1 = 1.25 and ε = 0.9. e Steady-state density profiles
for different values of J BA and fixed J AB ¼ 0:7, β1 = 1.25, ε = 0.9, ρ0 = 4 in a
1024× 128 domain. f (J AB ,�J BA) state diagram for β1 = 1.25, ε=0.9, and ρ0 = 4. The
dotted line represents J AB ¼ �J BA as a guide to the eyes. g–l Non-motile

NRTSAIM (ε = 0): g Time-evolution ofmA andmB exhibiting an oscillatory state for
β1 = 2.2, ρ0 = 4, and J NR ¼ 0:1 in a 64 × 64 domain. h Phase portrait for ρ0 = 4,
J NR ¼ 0:1, and increasing β1 in a 64 × 64 domain. i Oscillation period vs β1 for
several J NR couplings and ρ0 = 4. jMean value and Binder cumulant (inset) of the
vector order parameterm = (mA,mB) vs β1 for ρ0 = 4,J NR ¼ 0:1, and several system
sizes. The transition occurs at β* = 1.94. k (J NR ; β1) state diagram for ρ0 = 4, and
l (T1, ρ0) state diagram for J NR ¼ 0:1.
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these oscillations τ increases exponentially with β1, and decreases with
J NR (Fig. 8i). Indeed, a longer period (signifying stronger ordering)
arises from weaker noise (larger β1) and low non-reciprocal strength.

To characterize the transition points between the disordered state and
the oscillatory state, we define a vector orderparameterm= (mA,mB). Fig. 8j
shows the mean value of this order parameter ∣m∣ as a function of β1 for
several system sizes, characteristic of a transition between a disordered state
and a quasi-ordered state68. The inverse temperature β* at which this dis-
ordered/oscillatory transition occurs is determined by the Binder cumulant
of the vector order parameter Um ¼ 1� hm4i=2hm2i2, with
m2 ¼ m2

A þm2
B, for several system sizes (inset of Fig. 8j). The Binder

cumulant is independent of the system size only at the transition point67,
which gives β*=1.94 for ρ0 = 4 andJ NR ¼ 0:1. By repeating this procedure
for varying ρ0 and J NR, we compute the (J NR,β1) and the (T1,ρ0) state
diagrams, shown in Fig. 8k–l, respectively, displaying two steady-states: the
disordered and the oscillatory states. However, for J NR ¼ 0 in Fig. 8k, the
transition occurs between the disordered and the ordered states, where the
ordered state can be interpreted as an oscillatory state with an infinite
oscillation period. For any nonzero J NR, regardless of how small, the
oscillation period does not diverge at a finite β1 value, showing that no
ordered state can be reached (Fig. 8i).

Hydrodynamic theory of the NRTSAIM. Next, we present the results
derived from the hydrodynamic theory of the NRTSAIM by solving
Eqs. (12) and (13). In this paragraph, we will keep the analytical study
of these two transitions as general as possible, considering all J AB
and J BA couplings, and the numerical solutions will be shown
for J AB ¼ �J BA ¼ J NR.

Figure 9a–f show the one-dimensional steady-state density profiles of
theNRTSAIM for increasingJ NR which resemble those shown in Fig. 7g–l,
obtained from simulations of the microscopic model: flocking of species A

and B at small J NR (Fig. 9a–b), flocking of only species A at intermediate
J NR (Fig. 9c–d), and a run-and-chase behavior at large J NR (Fig. 9e–f).
Analogous to themicroscopic simulations, the band velocity of the flocking
states is larger than the self-propulsion velocity (c/v ~ 1.17 forJ NR ¼ 0:1),
whereas the band velocity of the run-and-states is smaller (c/v ~ 0.94 for
J NR ¼ 1). By examining steady-state profiles for various J NR, β1, and ρ0,
we obtain qualitatively similar (J NR; β1) and (J NR; ρ0) state diagrams for
ε=0.9 in Fig. 9g–h, akin to those from simulations of themicroscopicmodel
shown in Fig. 8c–d.

The non-motile NRTSAIM, for which ε = 0, i.e. v = 0, exhibit only
homogeneous solutions: theEq. (12) for densities gives ρs(x, t) = ρ0/2 and the
Eq. (13) for magnetizations becomes

_ms

γs
¼ ρ0

2
� r1

2β1

� �
sinh

2β1μs
ρ0

�ms cosh
2β1μs
ρ0

; ð20Þ

withms(x, t) =ms(t), and μs ¼ ms þ J s;�sm�s. Stationary magnetizations
are then solutions of the following coupled equations:

ms ¼
ρ0
2
� r1
2β1

� �
tanh

2β1μs
ρ0

: ð21Þ

This system of equations allows two possible solutions: a disordered
homogeneous solution (mA =mB = 0) and ordered homogeneous solutions
(∣mA∣ > 0 and ∣mB∣ > 0, withmA ≠mB). Due to non-reciprocal interactions,
the transitions where the disordered solution becomes unstable and the
homogeneous solutions are stable do not occur at the same density and
temperature45.

Between these two transitions, the magnetizationsmA andmB exhibit
an oscillatory nature (Fig. 9i), where mA is in quadrature with mB. Fig. 9j
shows the phase portraits (mA, mB) of these stationary and non-stationary

Fig. 9 | Hydrodynamic theory for non-reciprocal interactions. a–f Steady-state
density profiles (red/blue represent species A/B, respectively) for β1 = 1.25, ε = 0.9,
ρ0 = 2.5, Lx = 1024, and increasing J NR: a J NR ¼ 0, b J NR ¼ 0:1, c J NR ¼ 0:25,
d J NR ¼ 0:4, e J NR ¼ 0:45, and f J NR ¼ 1. g (J NR; β1) state diagram for ρ0 = 2.5
and ε = 0.9, and h (J NR ; ρ0) state diagram for β1 = 1.25 and ε = 0.9. i–l

Hydrodynamic theory for the non-motile NRTSAIM (ε = 0). iTime evolution ofmA

and mB exhibiting a oscillatory state for β1 = 1.5, ρ0 = 2.5, and J NR ¼ 0:1. j Phase
portraits for ρ0 = 2.5, J NR ¼ 0:1, and increasing β1. k (J NR,β1) state diagram for
ρ0 = 2.5, and l temperature-density state diagram for J NR ¼ 0:1.
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solutions as a function of β1, for fixed ρ0 = 2.5 andJ NR ¼ 0:1. For β1 < 1.4,
the disordered solutionmA =mB = 0 is stable. At higher β1 (1.4 < β1 < 1.71),
the disordered and ordered solutions are unstable, and the system exhibits a
stable limit cycle. For β1 > 1.71, the ordered solutions are stable, giving the
emergence of four fixed points due to the symmetries of Eq. (21). Fur-
thermore, the period of the oscillatory states follows the same trend as in the
simulations of the microscopic model: increasing with β1 and decreasing
with J NR but diverging at the oscillatory/order transition.

We first derive the disorder/oscillatory transition line, corresponding
to a Hopf bifurcation45, considering a perturbation to the disordered solu-
tion:ms(t) = δms(t). Keeping only the linear terms in δms in Eq. (20), we get

_δms

γs
¼ β1 �

r1
ρ0

� �
δμs � δms; ð22Þ

with δμs ¼ δms þ J s;�sδm�s. This equation can be rewritten in a matrix
form _δms=γs ¼ Mss0δms0 , with the diagonal matrix elements
Mss = β1 − 1 − r1/ρ0 and the off-diagonal matrix elements
Ms;�s ¼ ðβ1 � r1=ρ0ÞJ s;�s. We denote λ± the two eigenvalues of M, and
the evolution of the perturbation is dictated by the sign of the real part of

λ ± ¼ β1 � 1� r1
ρ0

± { β1 �
r1
ρ0










 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�J ABJ BA

p
: ð23Þ

The disordered state becomes unstable when β1 − 1 − r1/ρ0 > 0, i.e. for a
density larger than ρ* = r1/(β1 − 1). This transition is then independent of
J AB and J BA couplings, as soon as the product J ABJ BA is negative.

We now study the oscillatory/order transition which occurs when Eq.
(21) exhibits stable positive stationary solutions. For J AB ¼ J BA ¼ 0, i.e.
with μs =ms, this transition occurs when β1− r1/ρ0 is larger than 1, i.e. for a
density larger than ρ*, telling that no oscillatory state is observed without
inter-species interactions. In the presence of non-reciprocal interactions, the
stability criterion for an ordered solution (mA, mB), derived in Supple-
mentary Note 7, reads

m2
s ≥m

2
o �

ρ0
2
� ρ0 þ r1

2β1

� �
ρ0
2
� r1
2β1

� �
; ð24Þ

giving a maximal extension for the limit circles shown in Fig. 9j.
The (J NR; β1) and (T1, ρ0) state diagrams, obtained by solving

numerically Eq. (20), are shown in Fig. 9k and l, respectively. The two
disorder/oscillatory (β*or ρ*) andoscillatory/order (βoor ρo) transition lines
delimit the state diagram into three regions, revealing the presence of three
distinct states: the disordered state, the oscillatory state, and the ordered
state, reflecting the phase portraits shown in Fig. 9j.

However, it is important to note that in our numerical simulations
(Fig. 8h), we do not observe any ordered state for any nonzero values of
J NR, evenat largeβ1.A similarobservation is reported in thenon-reciprocal
Ising model69, where the oscillatory and ordered states predicted by the
mean-field description are absent, destroyed for any amount of non-reci-
procity, in the 2D numerical simulations. In 3D, however, the swap state
survives, likely due to reduced fluctuations, but the ordered state is even-
tually destroyed by non-reciprocity. In numerical simulations of our
microscopic model, the oscillatory state persists (Fig. 8k–l), likely because
particles can still diffuse when ε = 0, which stabilizes the oscillatory state.

Metastability and motility-induced interface pinning at small
diffusivity
Next, we study the fate of the liquid states of the reciprocal TSAIMwithout
and with species flip when the diffusivity is small compared to the velocity.
To do this we choose the hopping rateWhop (defined by Eq. (1)) with θ = 1,
i.e. D + v in the favored direction σex and D in the three other directions
( − σex and ± ey).

First, we study the fate of the liquid states of theTSAIMwithout species
flip. Figure 10a–b depict the time evolution starting from the HDPF state

with a diffusion constant D = 0.05 in a 2048 × 2048 domain. The bands
initiallymove to the right (〈vs〉 > 0). After 6000Monte Carlo steps (t = 698),
spontaneous nucleation of A and B droplets moving to the left appears
within the high-density regions of both species (Fig. 10a). This spontaneous
nucleationdestroys the long-rangeorder characterizedbybulkHDPF bands
and observed for strong diffusion (Whop with θ= 0 andD= 1), and creates a
new steady state formed of alternating A and B-rich PF clusters arranged in
stripes along the y-axis, going successively to the right and the left Fig. 10b).
This morphology exhibits short-range order in species but displays strong
spin correlations within each stripe, unlike the one-species AIM where
clusters exhibit short-range order in spin26. The system is in the coexistence
region, and further increasing the density does not alter themorphology but
instead leads to a transition to an HDPF state. Similarly, starting from a
liquid APF state, spontaneous nucleation of A and B droplets appears, and
the system relaxes to the same steady state as depicted in Fig. 10b. A movie
(movie 3) of the same can be found at ref. 70.

We now analyze this new steady state formed by the spontaneous
nucleation of droplets in the HDPF state and estimate the typical sizes of
the steady-state A and B clusters. Fig. 10c shows the spin-spin and the
species-species correlation functions, defined as Cσσ(r) ~ 〈vs,i+rvs,i〉 and
Css(r) ~ 〈mi+rmi〉, respectively, where 〈 ⋅ 〉 represents spatial, temporal
and ensemble averaging, and calculated in a 2048 × 128 domain. The
spin-spin correlation function Cσσ(r) does not decay to zero along the x
direction, demonstrating the long-range order in the spin of the new
steady state. The species-species correlation function Css(r) decays to
zero along the x direction, and shows the structure of PF clusters in a
stripe such that CssðrÞ � cosðλxrÞ expð�r=ξxÞ with a correlation length
ξx ≃ 128. These pronounced oscillations of Css(r), although damped, are
the signature of a phase-segregated repeated pattern often observed in
binary fluid71 and are also characteristic of antiferromagnetic interac-
tions. Akin to the one-species AIM26, the species-species correlation
function exhibits an exponential decay along the y-axis with a correla-
tion length ξy ≃ 24. These correlation functions demonstrate the short-
range order in species of the new steady state and give a characteristic
size to the constitutive clusters via the correlation lengths ξx and ξy,
independent of the system size.

Figure 10d shows the diffusion-density state diagram for v = 1 and
β1 = 1, computed in the same way as the state diagrams in Fig. 2e–f but for
the hopping rate Whop with θ = 1. The gas and liquid binodals ρg and ρl
decreasewithD, meaning one enters the coexistence regionwhendecreasing
the diffusion constant at fixed density. For a diffusion constantD≲ 0.15, the
bulkHDPFbands are no longer stable and the systemexhibits a steady-state
morphology as depicted in Fig. 10b.

Similarly to the one-species AIM26, the TSAIM exhibits motility-
induced interface pinning (MIIP) at large values of β1 (low temperatures),
enhanced in the presence of small diffusion. Themechanism responsible for
influencing the system’s dynamics and the emergence of theMIIP transition
can be attributed to the development of distinct timescales: a particle hops at
a rate of 4D+ v, slow compared to the flipping, which scales as expð2β1Þ26.
The MIIP state is characterized by a pinned or jammed interface, with
σ=+ 1 particles on the left and σ=− 1 particles on the right of the interface.
At zero temperature, this structure is stable since a σ=+ 1 particlewillmove
to the right and reach a site populated with only σ =− 1 particles and then
instantaneously flip to σ = − 1, and return, creating a back-and-forth
oscillation at the interface. Figure 10e–f illustrate theMIIP state forD= 0.05
and increasing values of β1. For β1 = 2.5, the MIIP state consists of pinned
interfaces formed by particles of both species, with many active particles
movingoutside of this structure andnot contributing to the formationof the
pinned interfaces (Fig. 10e).Aswe increase the inverse temperature toβ1=3,
the interface pinning strengthens, resulting in the MIIP state being defined
by twodistinct, high-density pinned interfaces of each species, with a greater
number of particles actively contributing to the formation of these interfaces
Fig. 10f. TheMIIP states, shown in Fig. 10e–f, are independent of the initial
condition (disordered, liquidAPF, orHDPF state), however, with anHDPF
or a liquid APF initial condition, theseMIIP states can only be formed after
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counter-propagating droplets have spontaneously nucleated to create the
pinned interface, which is enhanced when D is small compared to v.

Similarly, we study the fate of the liquid states of the TSAIM with
species flip. Figure 10g–h depict the time evolution starting from theHDPF
state with a diffusion constantD = 0.05 in a 2048 × 2048 domain. The band
movement initially goes to the right (〈vs〉 > 0). After 13000 Monte Carlo
steps (t = 697), spontaneous nucleation of A and B droplets moving to the
left appearswithin thehigh-density regionsof both species (Fig. 10g), akin to
theTSAIMwithout species-flip.The spin-flipmechanismgovernedbyWð1Þ

flip
is mainly responsible for this spontaneous nucleation, which breaks the
long-range order characterized by bulk HDPF bands. A new steady state is
then formed by left and right flocking clusters arranged in stripes of A and B
species along the y-axis (Fig. 10h). This morphology exhibits strong species
correlations within each stripe but displays short-range order in spin, like
the one-species AIM26.

We now study this new steady-state formed by the spontaneous
nucleation of droplets in theHDPF state and estimate the typical size for the
steady-state left and right flocking clusters. Fig. 10i shows the spin-spin and
the species-species correlation functions,Cσσ(r) andCss(r), and calculated in
a 2048 × 128 domain. Akin to the one-species AIM26, the spin-spin corre-
lation functionCσσ(r) exhibits an exponential decay to zero with correlation
lengths ξx ≃ 110 and ξy ≃ 10 along the x and y directions, respectively,
demonstrating the short-range order in spin of the new steady state. These
correlation lengths, independent of the system size, give a characteristic size
to the constitutiveflocking clusters. The species-species correlation function
Css(r) does not decay to zero along the x direction and can be expressed as
CssðrÞ � C1 þ ð1� C1Þ expð�r=ξxÞ with a correlation length ξx ≃ 110
andC∞≃ 0.38, indicating the presence of long-range order in species within
the new steady state. To emphasize, spontaneous nucleation of droplets

disrupts the HDPF state in both versions of the TSAIM, with and without
species flip. However, the resulting steady-state in the TSAIM without
species flip exhibits long-range order in spin and short-range order in
species, while the TSAIM with species flip displays the opposite behavior:
long-range order in species and short-range order in spin.

Figure 10j shows the diffusion-density state diagram for v = 1, β1 = 1,
and β2 = 1.5, computed similarly to the state diagrams displayed in Fig. 5h–j
but for the hopping rateWhopwith θ=1. The gas and liquid binodals ρg, ρ

ð1Þ
l ,

and ρð2Þl decrease with D. For a diffusion constant D ≲ 0.1, the liquid states
are no longer stable and the system exhibits a steady-state morphology as
depicted in Fig. 10h, and denoted SRO (short-range ordered spin state) in
this state diagram. Akin to the one-species AIM26, the liquid binodals are no
longer defined.

The TSAIM with species flip also exhibits MIIP at large values of β1
(low temperatures), enhanced in the presence of small diffusion26, following
the same mechanism explained for the reciprocal TSAIM without species
flip. Fig. 10k–l illustrate this MIIP state for increasing values of β2. For
β2 = 0.75, noMIIP state is observed and the system exhibits a ferromagnetic
gas phase. For β2 = 1.5, theMIIP state is formed by particles of both species,
with many particles moving outside this structure and not contributing to
the formation of these interfaces [Fig. 10k]. For β2 = 2.25, the MIIP state is
defined by two distinct, high-density pinned interfaces of each species, due
to stronger interface pinning and more particles contributing to the for-
mation of these interfaces [Fig. 10l]. As demonstrated, in addition to tem-
perature T1, temperature T2, which governs species flip, also plays a crucial
role in the emergence of the MIIP state and determining its morphology.
Similarly to TSAIMwithout species flip, theMIIP states are independent of
the initial configuration, and the formation of these interfaces is enhanced
when the diffusion D is small compared to the velocity v.

Fig. 10 | Metastability and motility-induced interface pinning for reciprocal
interactions. a–f Results without species flip (γ2 = 0) a Spontaneous nucleation of
the HDPF state after 6000 MCS, for β1 = 1,D = 0.05, v = 1 and ρ0 = 8. b Steady-state
after 300000 MCS. A movie (movie 2) of the same can be found at ref. 70. c Spin-
spin and species-species correlation functions along x: Cσσ(r) ~ 〈vs,i+rvs,i〉 and
Css(r) ~ 〈mimi+r〉, respectively, for β1 = 1,D = 0.05, v = 1, and ρ0 = 12, and calculated
in a 2048 × 128 domain. d Diffusion-density state diagram for β1 = 1 and v = 1. e–f
Motility-induced interface pinning for D = 0.05, v = 1, ρ0 = 4, and several tem-
peratures: e β1 = 2.5 and f β1 = 3. A movie (movie 4) of the same can be found at
ref. 70. g–lResults with species flip (γ2 = 0.5). g Spontaneous nucleation of theHDPF

state after 13000MCS, for β1 = 1, β2 = 1.5,D = 0.05, v = 1, and ρ0 = 10. h Steady state
after 300000 MCS. A movie (movie 6) of the same can be found at ref. 70. i Spin-
spin and species-species correlation functions along x:Cσσ(r) andCss(r), respectively,
for β1 = 1, β2 = 1.5,D= 0.05, v= 1, and ρ0 = 16, and calculated in a 2048 × 128 domain.
j Diffusion-density state diagram for β1 = 1, β2 = 1.5, and v = 1. The SRO region
exhibits steady states similar to h. k–lMotility-induced interface pinning for β1 = 3,
D= 0.05, v= 1, ρ0 = 4, and several species coupling: k β2 = 1.5 and l β2 = 2.25. Amovie
(movie7) of the same can be found at ref. 70. For all density snapshots, the densities
of A and B species are represented with red and blue colors, respectively.
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Similarly to the reciprocal TSAIM, all the NRTSAIM steady states are
metastable when the diffusion is small compared to the velocity, and tran-
sition to a disordered state. The NRTSAIM also exhibits MIIP. See Sup-
plementary Note 8 for details.

Discussion
To summarize, we have systematically analyzed a multi-species flocking
modelwith discrete symmetry, the two-species active Isingmodel (TSAIM),
which serves as a discrete-symmetry counterpart of the continuous-
symmetry two-species Vicsek model (TSVM)43. Driven by recent
interests22–26 in how complex and heterogeneous interactions influence
active matter systems, we examine both reciprocal and non-reciprocal
interactions between particles of different species, as well as the potential for
a particle’s species to flip from one species to another.

The flocking transition in the TSAIM with reciprocal interaction
between species (without species flip) possessesmany similarities with both
the one-species AIM15,16 and the TSVM43: it exhibits a liquid-gas phase
transition and displays macrophase separation in the coexistence region15,16

where single dense liquid bands of the two species propagate on a gaseous
background either in a parallel flocking (PF) state in which the two bands of
the two speciespropagate in the samedirection, or in an antiparallelflocking
(APF) state in which the bands of species A and species B move in opposite
directions43. In the coexistence region, stochastic transitions between the PF
and the APF states, as they can be observed in the TSVM43, are absent in the
TSAIM, and in the infinite-size limit, the system always relaxes to the PF
state starting from a disordered initial condition. At large densities, the
TSAIM exhibits a bistable behavior where both the HDPF and liquid APF
states are stable depending on the initial condition. The liquid APF state is
thermodynamically stable, corresponding to a discrete version of the TSVM
liquid state, while the HDPF state emerges due to the discrete nature of the
dynamics, i.e. due to normal densityfluctuations, andhas not been observed
in previous flocking models.

The introduction of species inter-conversion in the TSAIM, which
corresponds to an active extension of the equilibriumAshkin-Teller model,
further enriches the dynamical behavior of the system, leading to a wider
rangeof steady-statephases: a spin and species-disorderedparamagnetic gas
phase, a spin-disordered but species-ordered ferromagnetic gas phase, a
coexistence region, and a liquid state. The coexistence region can be further
divided into three subregions: a ferromagnetic gas phase coexisting with a
macrophase-separated liquid band, a paramagnetic gas phase coexisting
with a macrophase-separated liquid band, and a paramagnetic gas phase
coexisting with microphase-separated liquid bands, which have not been
observed in flocking models with discrete symmetry, including the TSAIM
without species flip. Moreover, the introduction of the species flip sup-
presses any possible APF state, which could only emerge in the scenario of a
species disorder and a spin order within the liquid phase, transitioning
preferentially into the microphase-separated PF state. Thus, species-flip
dynamics significantly broaden the range of steady-state phases, with the
interplay between initial species composition and density playing a
crucial role.

Finally, our investigation of the NRTSAIM reveals the emergence
of a highly efficient non-reciprocal dynamical state, termed as the run-
and-chase state, when non-reciprocal frustration becomes significant.
In this state, A-particles chase B-particles to align with them while
B-particles avoid due to nonreciprocal interactions. This leads to a
substantial accumulation of B-particles at the opposite end of the
advancing A-band, allowing B-particles to maintain the maximum
distance from the pursuing A-particles. This run-and-chase state can be
regarded as the non-reciprocal discrete-symmetry counterpart of the
chiral phase observed in the non-reciprocal Vicsek model44. In non-
reciprocal systems with discrete symmetry, the chiral phase cannot be
realized due to restrictions in particlemovement and reduced degrees of
freedom. Our investigation further reveals that self-propulsion destroys
the oscillatory state obtained for the non-motile case, as also observed
in ref. 45.

Recent studies have argued that liquidpolarflocks aremetastable to the
presence of small obstacles, opposite-polarity droplets, or to the sponta-
neous nucleation of opposite-phase droplets22–26. In this paper, we have also
confirmed that for weak diffusivity, the TSAIM long-range polar order or
the NRTSAIM run-and-chase states are susceptible to spontaneous droplet
nucleation, leading to a variety of steady-state systemmorphologies. In the
TSAIMwithout speciesflip, the state is long-rangeordered in spinbut short-
range ordered in species,whereas in thepresenceof speciesflip, the situation
is reversed. For the NRTSAIM, the resulting state is characterized by short-
range ordered gas. As θ is decreased, the metastability of the HDPF state
becomes less pronounced due to an increase in the nucleation time of the
droplets. This is a result of the constraint v≤2D/(1− θ),which requires large
diffusion D or small velocities v (see Supplementary Note 9). Moreover, at
sufficiently low temperatures, all three models of TSAIM exhibit a spon-
taneous MIIP transition (without any impurities or disorder), as first
reported in ref. 26. This transition prevents the system fromevolving into an
HDPF state (in TSAIM) or a run-and-chase state (in NRTSAIM)
when β1, β2 →∞.

Our study of the two-species active Ising model (TSAIM) and its non-
reciprocal counterpart (NRTSAIM) provides insights into the dynamics of
multi-species flocking systems. The emergence of complex steady-state
phases, shaped by the interplay of diffusion, inter-species dynamics, system
size, andnon-reciprocal interactions, highlights their profound influence on
collective behavior and emphasizes the inherent complexity of activematter
systems. We hope our findings will inspire future research into the impli-
cations of these dynamics in real-world active matter systems, and further
investigations into the effects of heterogeneous environments and external
perturbations will provide deeper insights into the stability and adaptability
of such systems.

Methods
Simulation details
WeperformMonteCarlo simulations, which evolve in discrete time steps of
length Δt. At each time step, N randomly chosen particles are updated. A
particle can either hop with a probability phop = (4D+ θv)Δt, or flip its spin
orientation with a probability pð1Þflip ¼ Wð1Þ

flipΔt ≤ expð2βJ1ÞΔt, or flip its
species with a probability pð2Þflip ¼ Wð2Þ

flipΔt ≤ expð2βJ2ÞΔt. The probability
that nothing happens during this single particle update is
pwait ¼ 1� phop � pð1Þflip � pð2Þflip. An expression for Δt can be chosen to
minimize the value of pwait:

Δt ¼ 1
4Dþ θv þ γ1 expð2βJ1Þ þ γ2 expð2βJ2Þ

: ð25Þ

This hybrid dynamics combines Monte Carlo and real-time dynamics
previously used in the simulations of the one-species AIM15,16.We primarily
consider square and rectangular domains with periodic boundary condi-
tions in x and y-direction to compute the steady-state density profiles and
state diagrams. We consider several initial conditions: (a) a disordered
configuration with random initial positions (xi, yi) and random spin-
orientations σ; (b) a semi-ordered configurationwhereA andB particles are
arranged in two high-density bands, either in a parallel flock (PF) state
(σA = σB) or an anti-parallel flock (APF) state (σA = − σB); (c) an ordered
configuration with random initial positions but with spin-orientations
chosen to form a PF or APF state. Depending on the studied case, the initial
populationofAandB species canbe eitherm0=0orm0=ρ0. Themaximum
time tmax to reach a steady state is approximately tmax=Δt � 105 � 107

Monte Carlo steps (MCS). The C++ codes used for numerical simulations
are available in ref. 72.

Numerical solutions of hydrodynamic equations
We use the explicit Euler Forward Time Centered Space (FTCS)73 differ-
encing scheme to numerically integrate the Eqs. (8)–(13). We solve these
coupled partial differential equations on a one-dimensional ring of lengthLx
with periodic boundary conditions, forD=1 and θ=0, i.e.Dxx=Dyy=1 and
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v = 2ε. In our simulation, Lx = 1024 and the maximum simulation time is
t ≃ 105. To maintain the numerical stability criteria, we set Δx = 1 and
Δt = 10−3 as the space and time discretizations, respectively. These dis-
cretization parameters satisfy the Courant-Friedrichs-Lewy (CFL) stability
condition74. In our numerical implementation, the initial system is prepared
as semi-ordered profiles with high-density regions of species A and B
moving to the left or right (i.e. with positive or negativemagnetization). The
C++ codes used to compute the numerical solutions of Eqs. (8)–(13) are
available in ref. 72.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The codes used in this study are available in ref. 72.
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