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Search processes often involve multiple agents that collectively search a randomly located target.
While increasing the number of agents usually decreases the time at which the first agent finds
the target, it also requires resources to create and sustain more agents. In this letter, we consider
collective search costs that do not only account for the search time but also for the costs associ-
ated with launching and sustaining agents. First a general formalism is presented for independent
agents in terms of the target survival probability for a single-agent search, where agents are allowed
to be launched at arbitrary times. With this, the optimal number of searchers to be launched
simultaneously at the initial time is analytically derived. Then, the optimal times at which later
agents should be launched are calculated for different classes of the single-agent survival probabil-
ities demonstrating how short- and long-time behaviors impact the optimal strategies. Finally the
costs for launching new searchers are compared with those for resetting a single one.

The term search processes encompasses any phe-
nomenon in which the encounter of agents with a target
is important. They include chemical reaction kinetic
[1, 2], micro-organisms scavenging for food [3], immune
cells searching for pathogens [4], animal foraging and
hunting [5, 6], or swarming robots used in rescue missions
[7, 8]. In most instances, search protocols need to be
optimized in some way. Most frequently, the typical time
to find the target needs to be minimized with respect to
the parameters governing the search process. Recently,
considerable efforts have been dedicated to identify
and analyze efficient and optimal search strategies. For
searches with a single agent, the efficiency of various
types of stochastic processes have been investigated, e.g.
intermittent or Lévy walks [9–14], stochastic resetting
[15–19], or non-markovian searches [20–24].
More recently, collective search processes have also been
studied, not only for non-interacting agents [25], but
also for systems where searchers can interact and com-
municate [26–31]. To this day, the number of searchers
has however very rarely been considered as a variable
to be optimized. While it is clear that for nearly all
search processes the mean search time decreases with the
number of searchers, adding more searchers may have a
non-negligible cost in terms of the required resources.
For a human search problem where one needs to pay
agents and material resources to perform the search, one
can very easily understand that it is not optimal to hire
as many agents as possibly available as it would have a
huge financial cost. Similarly, in an immune response
process, hiring more cells to find a pathogen requires a
substantial amount of metabolic energy. This is precisely
the motivation for the question that we are raising in
this letter: given the cost associated with launching and
sustaining an agent in a collective search process, what
is the optimal number of them and when to launch them?

Survival probability: We consider an arbitrary stochas-
tic search process in which N agents search for a sin-
gle immobile target located at position rT . The ith

walker is introduced at time ti ≥ ti−1 and position
ri. The N -agent process terminates once one searcher
reaches the target. The individual processes can be ar-
bitrary, provided that the single-agent survival proba-
bility (SASP) of the target si(T, ri, rT ) associated with
the searcher i, i.e. the probability that the searcher
i has not found the target until time t, is well de-
fined. Note that si could be different for each searcher
if their dynamics is not identical. Because the searchers
are independent, the overall survival probability of the
target is given by S(T, {ti, ri} , rT ) =

∏N
k=1 sk(T −

tk, rk, rT )Θ(T − tk), where Θ is the Heaviside function.
Defining ϱT (rT ) and ϱS(r1, · · · , rN ) the probability dis-
tributions for the target position rT and initial coor-
dinates of each searcher r1, ..., rN respectively, the av-
eraged survival probability is defined as S̄(T, {ti}) =∫
drT

∫
dr1 · · ·

∫
drNϱT (rT )ϱS({ri})S(T, {ti, ri} , rT ).

In order to proceed we assume that 1) all individual
survival probabilities are identical, 2) the launch posi-
tions are random (i.i.d.), 3) the target position is fixed
or the search domain is finite and has periodic boundary
conditions, 4) the survival probability depends only on
the initial distance from the target, and 5) the launch po-
sitions are random (uniformly distributed). With these
assumptions S̄ can be written as

S̄(T, {ti}) =
N∏

k=1

s̄(T − tk)Θ(T − tk) (1)

where s̄ has a different definition depending on the last
assumption (see SM, section 1, for details). Note that s̄
in principle depends on the system size such that all the
results presented in this paper depend on it through s̄.
Search cost: In order to take into account the number

of launched searchers and the required resources to define
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the search cost K, we construct it as a weighted sum of
three contributions, namely

K = JTT + JS

N∑
i=1

(T − ti)Θ(T − ti) +KL

N∑
i=1

Θ(T − ti)

(2)

The first term weighted by the target cost rate JT quan-
tifies a cost associated with the presence of the target
and can be interpreted as a rate of damage due to the
presence of the target. The second term weighted by the
searcher sustaining rate JS quantifies the amount of re-
sources required to sustain one searcher per unit time.
Finally, the last term weighted by the searcher launch-
ing cost KL quantifies the amount of resources required
to launch a searcher. For compactness, we introduce the
normalized parameters γ = JS/JT and κ = KL/JT and
set JT = 1 as our cost rate unit for the rest of the paper.

Optimizing a search strategy with respect to the cost
function K, eq. (2), means to minimize it with respect
to the launch times {ti}. In SM, section 2, we show that
the mean search cost can then be written as

K̄({ti}) =
N∑

n=1

[
κS̄ (tn) + (1 + nγ)

∫ tn+1

tn

S̄ (t) dt

]
, (3)

We also introduce ∆n = tn − tn−1 to be the launch in-
terval for the nth searcher.

Uniqueness and simultaneous launching: As for any
optimization problem, the first question to be investi-
gated is to know whether there is a unique global min-
imum of the cost function. For two searchers, we show
in section 3 of the Supplemental Material that a suffi-
cient condition for the uniqueness of the minimum for
the z-quantiles and the means of the search cost is for
the SASP s(t) and its derivative to be logarithmically
convex, in which case the launch time minimizing an ar-
bitrary quantile can be found analytically. Proving the
uniqueness of a local local minimum is much more dif-
ficult for N > 2 in general and has to be investigated
numerically, as it is done later in the manuscript. Assum-
ing the absence of a local maximum for the mean search
cost, we can derive a criterion to decide whether it is fa-
vorable to introduce searchers simultaneously or if one
should launch them one after the other. We show in sec-
tion 4 of the Supplemental Material that ∂ti−1

K̄ > ∂tiK̄
for all i > 1 if t∗i = t∗i−1. This implies that the optimal
search strategy is such that there can not be searchers
launched simultaneously later than at the start of the
process. Moreover, the optimal number of agents Nsim

introduced simultaneously at t = 0 is the largest integer
k that verifies ∂tkK̄N > 0 for t1 = · · · = tk = 0, under
the constraint ∂tpK̄N = 0 for p > k. There we have
∂tkK̄ = k−1 + (k − 1)κs′(0) such that Nsim is

Nsim =

⌊
1

2
+

√
1

2
− 1

κs′(0)

⌋
|κs′(0)|→0

≃ 1√
−κs′(0)

(4)

Surprinsingly, Nsim does not depend on γ at all: no mat-
ter how much it costs to sustain a searcher, the number
of agents to be introduced into the system at t = 0 will
only be governed by the launching cost κ. In addition,
if s(t) is very sharply decreasing at short times – i.e. if
the probability to find the target quickly is high – there
is no interest in launching multiple searchers initially as
the benefit in the search time would be overcompensated
by the launching cost.

Test cases: While the statistical properties of the
search cost depend on the details of the SASP, in a
vast majority of single-agent search processes s(t) has
a similar functional form such that we can categorize
them into different classes. At long times s(t) either de-
cays exponentially (e.g. in confined domains [32, 33])
or algebraically (e.g. in open space [34]). Faster de-
cays are extremely rare. Note that we consider here only
SASP whose probability to eventually find the target is
1, i.e. limt→∞ s(t) = 0. For short times, we consider
three cases: (i) s′(0) = r(0) = 0, i.e. the search can
not be infinitely fast, leading to non-monotonic – and
non-convex – first-passage time distributions [35, 36] (ii)
0 < s′(0) < ∞, i.e. the probability to find the target
at arbitrarily short times is finite, a frequent feature of
processes with random initial positions of the searchers
[37] (iii) s′(0) = −∞, i.e. the probability density to find
the target at t = 0 diverges, as it is observed in some
simple diffusive processes [38].

We therefore consider test cases which combine specific
short and long time behaviors. To do this, we combine
fexp : t 7→ e−λt and falg : t 7→ (1 + λθ−1t)−θ char-
acterizing the long-time-behavior with either g0 : x 7→
sin (πx/2), gfin : x 7→ 1 or ginf : x 7→ 2 arcsin (x) /π, re-
ferred to as the flat, mild and sharp cases respectively and
characterizing the short-time behaviors. The six SASP
we focus on are therefore of the form sα,β = gα ◦ fβ ,
c.f. SM, section 5 for a visualization, and will be used to
discriminate the influence of the short and long-time be-
havior of the SASP on the optimal launching strategies.
To identify them, we performed gradient descent opti-
mization, where we used θ = 2 for the algebraic cases.
We ran the minimization procedure for increasing val-
ues of N , where the largest value of N was taken as the
lowest value of n for which S(tn) < 0.001. Among the
six test cases under study, four of them had unique lo-
cal minima of the mean search cost, namely the mild and
sharp cases. They correspond to log-convex SASP, which
is consistent with the prediction for 2 searchers. No lo-
cal maximum was found such that equation (4) holds for
these cases. The two other cases, i.e. non-convex SASPs,
lead to more complex structures for the mean search cost
and are analyzed separately.

Convex SASP: The exponential case s(t) = e−λt can
be analyzed analytically, c.f. SM, section 6. In this case,
the optimal strategy is to launch Nsim searchers at t = 0
and none later, where s′(0) = −λ is used in equation



3

FIG. 1. Normalized launch intervals λ∆n as a function of
the number of launched agents n for three convex test SASP
and various values of κ and γ. the inset shows the relative
variation δNn as a function of N −n, for which ∆N+1

n −∆N+1
n

was found larger than the tolerance of the gradient descent
algorithm.

(4). This result is independent of the total number of
available searchers N . For the three other convex cases,
we first investigate to which extent the total number of
available agents impacts the optimal introduction times
by defining the relative variation δNn = 1 − ∆N+1

n /∆N
n

upon having a new searcher in the reservoir, where the
superscript N refers to the total number of searchers. As
shown in the insets of Fig. 1, δNn decays exponentially
with N−n starting with a relatively low amplitude. The
optimal launch times tn obtained in the limit N → ∞
are therefore a good approximation of the actual optimal
ones for a finite number N of available searchers.

In the limit N → ∞, our results allow to identify
the optimal launching strategies and to classify them,
as shown in Fig. 1. We observe that the short-time be-
havior governs the launch time of the first agents while
the long-time behavior governs the introduction of later
agents. For the initially mild SASP, we have Nsim ≥ 1
such that multiple walkers may be introduced simultane-
ously at the start of the process. For the sharp SASP,
it holds Nsim = 1 such that one necessarily has to wait
a certain time before launching a second walker. For
searchers introduced at later times, the optimal launch-
ing intervals ∆n converge to a constant value as n → ∞
for algebraic SASP while they diverge for exponential
ones. The number of agents around which this transi-
tion occurs decreases with κ and increases with γ and
roughly corresponds to introduction times tn such that
λtn ∼ 1. This is consistent with the observation that
optimal launching intervals increase with κ and decrease
with γ as shown in Fig. 2. While the dependence on κ
is not surprising as a large launching cost should reward
to wait longer before launching a new searcher, the de-
pendence on γ is less intuitive. It is in fact preferable to
launch searchers at a higher frequency when the sustain-
ing rate γ is larger, indicating that the gain in the overall
search time overcompensates the larger rate of resources
required to sustain the new searchers. This trend holds
for all tested SASP and appears to be a general result for
a wide variety of search processes.

Non-convex case: For non-convex SASP multiple local
minima may exist. For any n ≥ 2 we have ∂tnK̄ ≥ 0 for
t2 = · · · = tn = 0, the strategy consisting in launching n
searchers simultaneously at t = 0 is locally optimal. Since
the probability for the first searcher to find the target at
very short times is low, there is no gain in waiting a short
amount of time for launching next searchers compared to
launching it together with the first one. However, this
locally optimal strategy is not necessarily the globally
best one, especially if the launching cost κ is high. We
show in Fig. 3 an example of the optimal strategies for
the test case with algebraic decay and N = 4. For low
values of κ, there is no local minimum and the optimal
strategy is to launch all searchers simultaneously. As one
progressively increases κ, local minima with tk > 0 for
k ≥ n appear at κ = κ∗

n and become the global minimum
for κ = κ∗∗

n > κ∗
n.

Comparison with stochastic resetting: Instead of
launching new searchers at the initial position in inter-
vals one could also reset a single searcher to the origin
at a certain rate, i.e. a search process with stochastic
resetting, which has attracted a lot of interest recently
[18, 39–42]. The fine-tuning of the resetting rates can
have a significant impact on the overall search efficiency
[43–46] and here we scrutinize when resetting is better
than launching new searchers.

We adapt the main result of reference [16] and show
that the mean search cost K̄r is minimized for a fixed
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FIG. 2. Introduction intervals ∆n as a function of κ (top) and
γ (bottom) for three test cases. The values are normalized by
∆n for γ = 0 in the bottom plot.

resetting time interval ∆, in which case it reads

K̄r(∆) = [(1 + γr)G(∆) + κr(∆)] /F (∆) (5)

where F (∆) = 1 − s(∆) and G(∆) =
∫∆

0
s(τ)dτ (c.f.

SM, section 7). Here κr is a resetting cost for which
we consider two canonical cases: (i) a fixed cost κr and
(ii) a mean resetting cost proportional to the distance
between the searcher and its initial position upon reset-
ting, κr = fr · δx, as used e.g. in [47, 48]. In this case
the resulting search cost depends on the details of the
single-agent search process and not only on its survival
probability. Here we focus on a well-studied example,
namely the one-dimensional diffusive search [49]. Each
searcher is launched from x = 0 and diffuses freely with
diffusion constant D. For a target placed at position
xT > 0 we have s(t) = erf(xT /2

√
Dt). For both cases

(constant and linear resetting costs) the total search cost
K̄r can be calculated analytically (c.f. SM) and yields
min∆ K̄r(∆) with min∆ K̄l(∆) can be compared with the
cost for launching K̄l. Figure 4 shows when launching
new searcher is better than resetting a single one: essen-
tially as long as the costs for sustaining a searcher, γ mul-
tiplied with the diffusive timescale, x2

T /D, is sufficiently
small, provided the costs for creating new searchers, κ is
also small enough. For linear resetting cost, there is even
a value of κ above which resetting is always better than

FIG. 3. Optimal introduction intervals ∆n as a function of
κ for s(t) = sflatalg (t) with N = 4 and γ = 0.01λ. Different
dashed line styles indicate different local minima while the
solid line indicates the global one. Colors code for different
searchers.

FIG. 4. Preferential strategy (resetting or launching new
agents) for the 1-dimensional diffusive search in the (κ, γ)-
plane, where we have used κ = κr = frxT .

launching regardless of the value of γ. Note, however,
that in practical applications it could be much harder, if
not unfeasible, to reset searchers, in contrast to adding
new searchers.

.

Discussion and conclusion: In this letter, we have
identified optimal strategies for when to launch new non-
interacting agents in a search process and showed how
the functional form of the single-agent survival probabil-
ity impacts the overall optimal launching times of suc-
cessive searchers. This is the first work to investigate in
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details how to optimize a search process considering not
only the overall search time but also other costs relative
to the resources required for the search. This was then
compared to a canonical resetting process.
As a direction for future works, we make the following
points. First, as mentioned early in the text, our results
are valid under some assumptions on the single-agent pro-
cess (mainly identical searchers and translational invari-
ance). It is not clear yet whether our current results
would still hold if these assumptions do not hold, e.g. for
N -species models or for searches with obstacles.
Our work could also be adapted for non-Markovian
searches, where the information gathered throughout the
search by all walkers is shared and used to adjust optimal
introduction times and locations, as it has for instance
been studied for stochastic resetting processes [19, 50].
This would contribute to the current emerging fields of
optimal collective searches in which one wants to opti-
mize interaction and communication channels for agents
to search together efficiently. We believe that this letter
is a first step towards the formalization of such questions,
which will be tackled in future studies.
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the search for resources by sharing information: Mon-
golian gazelles as a case study. Physical Review Letters,
110(24):248106, 2013.

http://arxiv.org/abs/2306.12126


6

[28] Milán Janosov, Csaba Virágh, Gábor Vásárhelyi, and
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SURVIVAL PROBABILITY

Let us consider the joint survival probability defined as

S(T, {ti, ri} , rT ) =
N∏

k=1

sk(T − tk, rk, rT )Θ(T − tk) (1)

where sk is the individual target survival probability for the searcher k. Let us now average it over the target position
and searchers coordinates to find

S̄(T, {ti}) =
∫

drT

∫
dr1 · · ·

∫
drNϱT (rT )ϱS({ri})

N∏
k=1

sk(T − tk, rk, rT )Θ(T − tk) (2)

where ϱT (rT ) and ϱS(r1, · · · , rN ) are the probability distributions for the target position rT and initial coordinates
of each searcher r1, ..., rN respectively. We now assume that (i) the single-agent survival probabilities are identical ie.

sk = s (ii) searchers launch positions are independent and identically distributed, i.e. ϱS(r1, · · · , rN ) =
∏N

k=1 ρs(rk)
. With this we find

S̄(T, {ti}) =
∫

drT ϱT (rT )

(
N∏

k=1

∫
drkρs(rk)s(T − tk, rk, rT )Θ(T − tk)

)
(3)

From here, we want to identify under which conditions equation (3) can be written as

S̄(T, {ti}) =
N∏

k=1

s̄(T − tk)Θ(T − tk) (4)

This can be achieved in different ways, namely

• for a target fixed at a deterministic position r0T , i.e. ϱT (rT ) = δ(rT − r0T ). In this case we have s̄(T − tk) =∫
drkρs(rk)s(T − tk, rk, r

0
T )

• in a finite search domain V with translational invariance and periodic boundary conditions such that s depends
on rk and rT through rk − rT , and where agents are launched homogeneously in the domain, i.e. ρs(rk) = 1/V
where V is the volume of the search domain. There we obtain∫

V
drkρs(rk)s(T − tk, rk, rT ) =

1

V

∫
V+rT

drks(T − tk, rk) =
1

V

∫
V
drks(T − tk, rk) = s̄(T − tk) (5)

where the second equality comes from periodicity.

DEFINITION OF THE MEAN SEARCH COST

We define the search cost as the sum of three contributions, i.e. K̄ = T̄ + γT̄ + κN̄ where T̄ is the overall mean
first-passage time, T̄ is the mean total time spent by searchers in the system and N̄ is the mean number of searchers
launched. Let us now, explicit these three contributions in terms of the joint survival probability S(t). The mean
first-passage time T̄ is classically obtained as T̄ =

∫∞
0

S̄(t)dt. Similarly, as the first-passage time distribution R(t)
related to the survival probability S̄(t) via R(t) = −S̄′(t), we have using integration by parts

T̄ =

∞∑
n=1

∫ ∞

0

d

dt
((t− tn)Θ(t− tn)) S̄(t)dt =

∞∑
n=1

n

∫ tn+1

tn

S̄(t)dt (6)
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and finally

N̄ =

∞∑
n=1

∫ ∞

0

dΘ(t− tn)

dt
S̄(t)dt =

∞∑
n=1

S̄(tn) (7)

TWO SEARCHERS

We first investigate the simple case of two searchers, for which we show that the log-convexity of the SASP s(t) is
a sufficient condition for the absence of a local maximum in the quantiles of the search cost, which proves the unicity
of a local minimum. For the mean search cost, we show that we also need −s′ to be log-convex to prove the unicity
of a local minimum.

Quantiles

Let F(k) be the probability for the search cost K to be less than k. Because of the piecewise affine relation between
K and the first-passage time T , we can express F in terms of the overal survival probility S(t), which is itself a
function of the SASP s(t), reading

F(k) =


1 if 0 ≤ k < k−1
s
(

k−κ
1+γ

)
if k−1 ≤ k < k+1

s (t2) if k+1 ≤ k < k−2
s
(

k−2κ−(1+γ)t2
1+2γ

)
s
(

k−2κ+γt2
1+2γ

)
if k > k−2

(8)

with k−1 = κ, k+1 = k−1 + (1 + γ)t2 and k−2 = k+1 + κ. The z-quantile kq(z) is defined as the solution of F(kq(z)) = z.
We want here to find the optimal introduction time t2 that minimizes kq(z) for an arbitrary values of z. Two cases
can be identified. If F(k+1 ) < z, then we have k−1 < kq(z) < k+1 , i.e.

s

(
kq(z)− k−1

1 + γ

)
=z

⇔ kq(z) =k−1 + (1 + γ)s−1(z) (9)

However, if F(k+1 ) > z, then we have kq(z) > k−2 such that

s

(
kq(z) + γt2 − 2κ

1 + 2γ

)
s

(
kq(z)− (1 + γ)t2 − 2κ

1 + 2γ

)
=z (10)

To solve this, let us first define X =
kq(z)
1+2γ , τ = γt2

1+2γ and α = 1 + 1
γ , to rewrite this equation as

s (X + τ) s (X − ατ) =z (11)

Because X is a simple rescaling of kq(z), the conditions for the existence of a local maximum obtained on X will
transfer directly to kq(z).
As X is defined as the solution oe equation (11), it intrinsically depends on τ . In particular, we are looking for

solutions for which dτX(τ) = 0 is verified. Taking the derivative of equation (11) with respect to τ and evaluating it
given the condition X ′ = 0 yields

s′ (X + τ) s (X − ατ) =αs(X + τ)s′(X − ατ) (12)

Now, we want to know whether this solution is a local maximum or minimum. We therefore take the second derivative
of equation (11), reading :

X ′′ (s′(X + τ)s(X − ατ) + s(X + τ)s′(X − ατ))

+(1 +X ′)2s′′(X + τ)s(X − ατ) + (X ′ − α)2s(X + τ)s′′(X − ατ)

+2(1 +X ′)(X ′ − α)s′(X + τ)s′(X − ατ) = 0 (13)
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Again evaluating it with the conditions X ′ = 0 and condition (12) yields

X ′′(1 + α)s(X + τ)s′(X − ατ)

+s′′(X + τ)s(X − ατ) + α2s(X + τ)s′′(X − ατ)

−2αs′(X + τ)s′(X − ατ) = 0 (14)

We therefore need to study the sign of

X ′′ =
s′′(X + τ)s(X − ατ) + α2s(X + τ)s′′(X − ατ)− 2αs′(X + τ)s′(X − ατ)

−(1 + α)s(X + τ)s′(X − ατ)
(15)

The denominator of the latter formula being always positive, the sign of X ′′ is the same as the sign of the numerator.
This can be obtained by first rewriting the last term as

2αs′(X + τ)s′(X − ατ) =αs′(X + τ)s′(X − ατ) + αs′(X + τ)s′(X − ατ) (16)

=α2 s
′(X − ατ)2s(X + τ)

s(X − ατ)
+

s′(X + τ)2s(X − ατ)

s(X + τ)
(17)

where we have used equation (12). We therefore obtain

s′′(X + τ)s(X − ατ) + α2s(X + τ)s′′(X − ατ)− 2αs′(X + τ)s′(X − ατ)

=
s(X − ατ)

s(X + τ)

(
s′′(X + τ)s(X + τ)− s′(X + τ)2

)
+ α2 s(X + τ)

s(X − ατ)

(
s′′(X − ατ)s(X − ατ)− s′(X − ατ)2

)
(18)

If s(t) is logarithmically convex, then s′′(t)s(t) > s′(t)2 for all t and therefore X ′′ > 0. If X(τ) presents an extremum
it must therefore be a minimum. However, we can take the derivative of equation (11) and evaluate it for τ = 0 to
find

X ′(0) =
α− 1

2
=

1

2γ
> 0 (19)

By continuity, if X(τ) presents an extremum, the first one for τ > 0 must be a maximum. This contradicts the
previous statement. We therefore conclude that X(τ) does not present an extremum and is therefore monotonically
increasing. We therefore have the following situation. Starting from t2 = 0, kq(z) increases until it reaches the value
k−2 , which happens at t2 = t∗2 = s−1(z). Then, it jumps to a value equal to κ+ (1+ γ)s−1(z) and then stays constant
for t2 > t∗2. The global minimum is therefore found either at t2 = 0 or at t2 = t+2 which we denote as (0) and (+).
We therefore have to compare the values of kq(z) at these two points, reading

k(0)q (z) =2κ+ (1 + 2γ)s−1(
√
z) (20)

k(+)
q (z) =κ+ (1 + γ)s−1(z) (21)

To minimize the median search cost, i.e. for z = 1/2, one should therefore introduce the second search initially at
t = 0 if

κ < αγ + β (22)

where we have defined

α =s−1

(
1

2

)
− 2s−1

(
1√
2

)
(23)

β =s−1

(
1

2

)
− s−1

(
1√
2

)
(24)

Otherwise, the second searcher should be introduced at t2 = (1+2γ)s−1(1/2). Note that for the median, the long-time
behaviour of s(t) does not matter as one only needs to know at which time it reaches 1/2 and 1/4. However, it will
matter if one chooses a lower value of z to describe the overall search efficiency.
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Mean cost

Let us now investigate the 2-searcher case on the level of the mean search cost and check whether the condition of
log-convexity for s(t) is also relevant here. The mean search cost K̄2 of the 2-searcher process reads as follows:

K̄2 =κ(1 + s(t2)) + (1 + γ)

∫ t2

0

s (t) dt+ (1 + 2γ)

∫ ∞

0

s (t) s (t+ t2) dt (25)

Upon integration by parts, the first and second derivatives of K̄ are given by

K̄ ′
2(t2) =κs′(t2)− γs (t2)− (1 + 2γ)

∫ ∞

0

s′ (t) s (t+ t2) dt (26)

K̄ ′′
2 (t2) =κs′′(t2)− γs′ (t2)− (1 + 2γ)

∫ ∞

0

s′ (t) s′ (t+ t2) dt (27)

The extrema of K̄2 are found such that K̄ ′
2 = 0, which implies

κ =
γs(t2) + (1 + 2γ)

∫∞
0

s′ (t) s (t+ t2) dt

s′(t2)
(28)

Inserting this into equation (27) for K̄ ′′
2 leads to

K̄ ′′
2 (t2) =

H
(1)
2 (t2) + γH

(2)
2 (t2)

s′(t2)
(29)

where we have defined

H
(1)
2 (t2) =s′′(t2)

∫ ∞

0

s′ (t) s (t+ t2) dt− s′(t2)

∫ ∞

0

s′ (t) s′ (t+ t2) dt (30)

H
(2)
2 (t2) =s(t2)s

′′(t2) + 2s′′(t2)

∫ ∞

0

s′ (t) s (t+ t2) dt− s′(t2)
2 − 2s′(t2)

∫ ∞

0

s′ (t) s′ (t+ t2) dt (31)

Let us now show that both these terms are negative. To do this, we first note that these functions are of the form

H
(k)
2 (t2) = g

(k)
2 (t2)

2 d

dt2

(
f2(t2)

g
(k)
2 (t2)

)
(32)

where we have defined

f2(t2) = s′(t2) (33)

g
(1)
2 (t2) =

∫ ∞

0

s′ (t) s (t+ t2) dt (34)

g
(2)
2 (t2) =s(t2) +

∫ ∞

0

s′ (t) s (t+ t2) dt (35)

The sign of H
(k)
2 is therefore the same as the one of d

dt2

(
f2

g
(k)
2

)
and the opposite as the one of d

dt2

(
g
(k)
2

f2

)
. Let

h
(k)
2 =

g
(k)
2

f2
and analyze it for k = 1, 2.

• First, for H
(1)
2 we have

h
(1)
2 (t2) =

∫ ∞

0

s′(t)s(t+ t2)

s′(t2)
dt

d

dt2
h
(1)
2 (t2) =

∫ ∞

0

s′(t)
s′(t+ t2)s(t2)− s′′(t2)s(t+ t2)

s(t2)
dt (36)

If s is log-convex, then for any x, y ∈ R with x < y it holds s′′(x)s(y) > s′(x)s′(y) such that we have d
dt2

h
(1)
2 (t2) >

0 and hence H
(1)
2 (t2) < 0.
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• For H
(2)
2 , we have

h
(2)
2 (t2) =

s(t2)

s′(t2)
+ 2

∫ ∞

0

s′ (t) s (t+ t2)

s′(t2)
dt

=
2

s′(t2)s(t2)

s(t2)
2

2
+ 2

∫ ∞

0

s′ (t) s (t+ t2)

s′(t2)
dt

=− 2

s′(t2)s(t2)

∫ ∞

0

s′(t+ t2)s(t+ t2)dt+ 2

∫ ∞

0

s′ (t) s (t+ t2)

s′(t2)
dt

=2

∫ ∞

0

[s′ (t) s(t2)− s′(t+ t2)] s (t+ t2)

s′(t2)s(t2)
dt

=− 2

∫ ∞

0

[s (t) s(t2)− s(t+ t2)] s
′ (t+ t2)

s′(t2)s(t2)
dt

=2

∫ ∞

0

s(t+ t2)− s (t) s(t2)

s(t2)

s′ (t+ t2)

s′(t2)
dt

=2

∫ ∞

0

ut(t2)vt(t2) (37)

where we have defined ua(x) = s(x+a)−s(x)s(a)
s(x) and va(x) = s′(x+a)

s′(x) . Now, note that for a fixed value of a we

have u′
a(x) = s′(x+a)s(x)−s(x+a)s′(x)

s(x)2 and v′a(x) = s′′(x+a)s′(x)−s′(x+a)s′′(x)
s′(x)2 . Assuming log-convexity for both s

and −s′, we obtain u′
a(x) > 0 and v′a(x) > 0. Since both ua and va are positive, the integrand in h is the

product of two positive increasing functions of t2, which makes h also a positive, increasing function of t2. This

proves that d
dt2

h
(2)
2 (t2) > 0 such that H

(2)
2 (t2) < 0.

We therefore obtain H
(1)
2 +γH

(2)
2 < 0 and thus K̄ ′′

2 > 0 for any extremum of K̄2. Any extremum is therefore a local
minimum. Now, suppose there are two local minima. By continuity and differentiability, there must also be a local
maximum between both of them, which is impossible. We therefore conclude that K̄2 has at most one local minimum
and no local maximum.

CONDITION FOR SIMULTANEOUS INTRODUCTION

Here, we want to find under which condition should multiple searchers be launched simultaneously into the system,
in the case where K̄ does not present any local maximum. To do this, we are using the notations introduced in the
previous paragraph on gradient computation.

First, as mentioned in the main text, the minimum of K̄ is located at a point t∗N where either t∗i > t∗i−1 and
∇iK̄N (t∗N) = 0, or t∗i = t∗i−1 and ∇iK̄N (t∗N) ≥ 0. Let us now proceed by contradiction. Assume that K̄N is minimal
at a point t∗N where, for a certain k > 2, we have t∗k = t∗k−1 and t∗k−1 > t∗k−2. Following our previous observation,
this implies that ∇kK̄N > 0 and ∇k−1K̄N = 0. Let us now compute the difference between ∇k−1K̄ and ∇kK̄ for
tk−1 = tk. Following the calculation from the previous section, we have

∇k−1K̄ −∇kK̄ =− γ(sk−1 − sk)−
∞∑

n=k−1

(1 + nγ)In,k−1 +

∞∑
n=k

(1 + nγ)Inkdt

+ κ

(
k−2∑
n=1

rk−1,n −
∞∑

n=k

rn,k−1 −
k−1∑
n=1

rkn +

∞∑
n=k+1

rnk

)
(38)

For tk−1 = tk, we have sk−1 = sk such that most of the terms in all the sums compensate each other and we obtain

(∇k−1 −∇k) K̄ =− 2κs′(0)Sk(tk) (39)

Note that this result also holds for a finite value of N as the right-hand side only depends on tk, such that imposing
tN → ∞ for N > k, as one should to deal with K̄N , does not impact it. Because s′(0) < 0, we therefore have
∇k−1K̄N > ∇kK̄N . This is valid at any point tN , provided that tk = tk−1, and in particular at t∗N , where we have
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∇kK̄N > 0. We therefore have ∇k−1K̄ > ∇kK̄ > 0, which is in contradiction with the original assumption. We
therefore conclude that if t∗k = t∗k−1 then for all j < k we must have t∗k = t∗j = 0: in the optimal strategy, there can
not be searchers launched simultaneously later than at the start of the process.

Let us now calculate the optimal number of searchers Nsim to be launched at t = 0. From our previous argument,
we know that at the optimal point, we have ∇kK̄N > 0 for k ≤ Nsim and ∇kK̄N = 0 for k > Nsim. Let us now
compute ∇kK̄ for t2 = · · · = tk = 0 for an arbitrary value of k, assuming that ∇pK̄ = 0 for p > k. For any i > 0 we
have

∇iK̄ = γsi +

∞∑
n=i

(1 + nγ)Ini − κ

(
i−1∑
n=1

rin −
∞∑

n=i+1

rni

)
= 0 (40)

The condition ∇pK̄ = 0 for p > k therefore reads

γsp +

∞∑
n=p

(1 + nγ)Inp − κ

(
p−1∑
n=1

rpn −
∞∑

n=p+1

rnp

)
= 0 (41)

Then, to evaluate ∇kK̄ with t2 = · · · = tk = 0, we note that some terms can be simplified, namely

sk =1 (42)

Ink =

∫ tn+1

tn

s′(t)s(t)k−1
n∏

p=k+1

s(t− tp)dt for n > k (43)

k−1∑
n=1

rkn =(k − 1)s′(0) for n > k (44)

The integral term Ink can be transformed using integration by parts, yielding

Ink =

s(t)k
k

n∏
p=k+1

s(t− tp)

tn+1

tn

− 1

k

n∑
p=k+1

Inp =
1

k
[sn+1 − sn]−

1

k

n∑
p=k+1

Inp (45)

Now, summing over all values of n ≥ k yields

∞∑
n=k

(1 + nγ)Ink =− 1

k
+

γ

k

∞∑
n=k

γn [sn+1 − sn]−
1

k

∞∑
p=k+1

∞∑
n=p

(1 + nγ)Inp (46)

where we have used the fact that sk = 1. Now, we note that the summand in the last term is exactly the second term
in the gradient of ∇pK̄ in equation (41). Summing equation (41) over p > k yields

∞∑
p=k+1

∞∑
n=p

(1 + nγ)Inp =−
∞∑

p=k+1

γsp + κ

∞∑
p=k+1

(
p−1∑
n=1

rpn −
∞∑

n=p+1

rnp

)
(47)

Let us now rewrite the terms proportional to κ. First, let us note rpn = ζ(tp − tn)Sp(tp). Swapping the order of
summation leads to

∞∑
p=k+1

(
p−1∑
n=1

rpn −
∞∑

n=p+1

rnp

)
=

∞∑
p=k+1

(
k∑

n=1

rpn +

p−1∑
n=k+1

rpn −
∞∑

n=p+1

rnp

)

=

∞∑
p=k+1

k∑
n=1

rpn +

∞∑
n=k+1

∞∑
p=n+1

rpn −
∞∑

p=k+1

∞∑
n=p+1

rnp

=

∞∑
p=k+1

k∑
n=1

rpn

=k

∞∑
p=k+1

rpk (48)
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where we have used the fact that rpn = rpk for n ≤ k. We therefore obtain

∞∑
p=k+1

∞∑
n=p

(1 + nγ)Inp =−
∞∑

p=k+1

γsp + kκ

∞∑
p=k+1

rpk (49)

Inserting this into equation (46) leads to

∞∑
n=k

(1 + nγ)Ink =− 1

k
+

γ

k

∞∑
n=k

n [sn+1 − sn] +
γ

k

∞∑
p=k+1

sp − κ

∞∑
p=k+1

rpk (50)

We note that the last term of the latter equation compensates exactly the last term of ∇kK̄ in equation (??). Bringing
everything together yields

∇kK̄ =− γ +
1

k
− γ

k

∞∑
n=k

n [sn+1 − sn]−
γ

k

∞∑
n=k+1

sn + κ(k − 1)s′(0) (51)

Now, we rewrite

∞∑
n=k

n [sn+1 − sn] = −k −
∞∑

n=k+1

sn (52)

to finally obtain

∇kK̄ =
1

k
+ κ(k − 1)s′(0) (53)

Nsim is therefore found as the largest value of k which is such that this quantity is positive.

TEST CASES

We show in figure 1 the six different single-agent survival probabilities that were tested numerically in the paper,
i.e.

ssharp,alg(t) =
2

π
arcsin

(
1(

1 + λt
θ

)θ
)

(54)

smild,alg(t) =
1(

1 + λt
θ

)θ (55)

sflat,alg(t) = sin

(
π

2
(
1 + λt

θ

)θ
)

(56)

ssharp,exp(t) =
2

π
arcsin

(
e−λt

)
(57)

smild,exp(t) =e−λt (58)

sflat,exp(t) = sin
(π
2
e−λt

)
(59)



14

FIG. 1. Test cases for the single-agent survival probabilities.

SEARCH COST IN THE EXPONENTIAL CASE

Let s(t) = e−λt. The collective mean first-passage time T̄ can be calculated analytically upon integration and
rearrangements of sums to find

T̄ =

∞∑
n=1

∫ tn+1

tn

n∏
k=1

e−λ(t−tk)dt = λ−1

[
1−

∞∑
n=2

e−λ
∑n−1

k=1 tn−tk

n(n− 1)

]
(60)

T̄ =

∞∑
n=1

n

∫ tn+1

tn

n∏
k=1

e−λ(t−tk)dt = λ−1 (61)

N̄ =

∞∑
n=1

n∏
k=1

e−λ(t−tk) = 1 +

∞∑
n=2

e−λ
∑n

k=1(tn−tk) (62)

Now, note that
∑n

k=1(tn − tk) =
∑n−1

l=1 l∆l, where we have defined ∆k = tk+1 − tk. The total cost is thus given by

K̄ =λ−1(1 + γ) + κ+

∞∑
n=2

e−λ
∑n−1

l=1 l∆l

(
κ− λ−1

n(n− 1)

)
(63)

The partial derivative with respect to ∆k reads then

∂K̄

∂∆k
= λk

∞∑
n=k+1

e−λ
∑n−1

l=1 l∆l

(
λ−1

n(n− 1)
− κ

)
(64)

Here, we note that the terms for which λ−1

n(n−1) > κ will yield positive contributions to the gradient. Let n∗ be the

lowest value of n such that this quantity is negative. Then, for any k ≥ n∗ the gradient ∂K̄
∂∆k

will be negative such
that the optimal strategy should be such that ∆k → ∞. In this case, the contributions of all terms with n ≥ n∗ will
vanish because of the exponential factor. Therefore, for all k < n∗ the gradient will be positive such that the cost will

be minimized for ∆k → 0. The optimal strategy is therefore such that Nsim =
⌊
1
2

(
1 +

√
1 + 4

κλ

)⌋
searchers should

be launched at t = 0 and none later. In this case, the mean search cost is found as

K̄opt =
1

Nsim
+ γ + κλNsim (65)
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Neglecting the floor part in Nsim we finally obtain

K̄opt =γ +
√
κλ

(
2√

κλ+
√
κλ+ 4

+

√
κλ+

√
κλ+ 4

2

)
(66)

As κ → 0, the terms between brackets will tend to 1 such that the overall cost will grow as
√
κλ. However, as κλ ≫ 1,

the brackets will be dominated by the second term which will tend to
√
κλ, making the cost grow linearly with κλ.

COST FOR RESETTING

Let us recall the result of Chechkin et al. [16]. Consider a stochastic search process for which the first-passage
time distribution is notes pT . Now, assume that the search is re-initialized after a time τ drawn from a probability
distribution pτ . In this case, the overall first-passage time probability distribution PT is given by

PT (T ) =

∞∑
n=0

πn

∫ T

0

dtΠn(t)PT (T − t) (67)

where πn is the probability have exactly n resets, Pτ is the probability distribution of the time between two resets,
PT is the first-passage time distribution from the last reset and Πn(t) =

∫ t

0
duΠn−1(u)Pτ (t − u) with Π0(t) = 2δ(t).

In addition, we have

Now, let us compute πn, Pτ and PT . First, we have

πn = π0(1− π0)
n (68)

π0 =

∫ ∞

0

dτpτ (τ)

∫ τ

0

dTpT (T ) (69)

Pτ (t) =
pτ (t)

∫∞
t

dTpT (T )

1− π0
(70)

PT (t) =
pT (t)

∫∞
t

pτ (τ)dτ

π0
(71)

Going in Laplace, equation 67 can be simplified as it ends up being a geometric series. The mean first-passage time
is therefore found using the generating function of PT to find

T̄ =

∫∞
0

dτpτ (τ)G(τ)∫∞
0

dτpτ (τ)FT (τ)
(72)

where we have defined FT (t) =
∫ t

0
dspT (s) and G(t) = t −

∫ t

0
dTFT (T ). By virtue of the mean value theorem, there

exists t∗ ∈ R+ such that

T̄ =
G(t∗)

FT (t∗)

∫∞
0

dτpτ (τ)FT (τ)∫∞
0

dτpτ (τ)FT (τ)
=

G(t∗)

FT (t∗)
(73)

such that

T̄ ≥ mint
G(t)

FT (t)
(74)

This lower bound is in particular realized for pτ (τ) = δ(τ − t∗) and with t∗ = argmint
G(t)
FT (t) .

Let us know define the overall search cost consistently with the one defined for launching new searchers. A first
contribution (1 + γr)T̄ quantifies the overall cost due to the presence of the target and the cost for sustaining the
searcher. A second contribution k̄r is defined as a mean resetting cost κrN̄ , i.e. the cost for a resetting event multiplied
by the mean number of resetting events.
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Fixed cost Let us first associate a fixed cost κr to each resetting event and to launching the searcher in the first
place. The mean cost for resetting is therefore given by

k̄r = κr

(
1 +

∑
n=0

nπn

)
= κ

(
1 + π0

∑
n=0

n(1− π0)
n

)
=

κ

π0
(75)

The total mean search cost is defined as K̄ = (1 + γr)T̄ + k̄r, i.e.

K̄ =
(1 + γr)

∫∞
0

dτpτ (τ)G(τ) + κr∫∞
0

dτpτ (τ)FT (τ)
(76)

Now, note that one can also write this as

K̄ =

∫∞
0

dτpτ (τ) [(1 + γr)G(τ) + κr]∫∞
0

dτpτ (τ)FT (τ)
(77)

such that the argument involving the mean value theorem still holds, i.e. there exists a time ∆ such that

K̄ =
(1 + γr)G(∆) + κr

FT (∆)
(78)

This is realized in particular for pτ (τ) = δ(τ −∆).

Linear cost Let us now define the resetting cost such that is proportional to the distance that the searcher has
reached from the origin upon resetting. For 1-dimensional processes, let ρb(x, t) be the probability distribution for the
searcher to be at position x at position t with the absorbing boundary condition ρb(xT , t) = 0. Let us note ρ(x, t) =
c(x, t)/

∫ xT

−∞ dxc(x, t) where c(x, t) is the ”concentration” in an experiment with absorption, i.e.
∫ xT

−∞ dxc(x, t) =
s(t) = 1− FT (t). Summing over all resetting events, the total mean resetting cost

k̄r =

∫∞
0

dτPτ (τ)
∫ xT

−∞ dxx c(x,τ)
1−FT (τ)

π0
=

∫∞
0

dτpτ (τ)
∫ xT

−∞ dxxc(x, τ)

π0(1− π0)
(79)

Again, in virtue of the mean value theorem, there exists a time ∆ such that

K̄ =
(1 + γr)G(∆) + κr(∆)

FT (∆)
(80)

with

κr(∆) =
f
∫ xT

−∞ dx|x|c(x,∆)

1−
∫∞
0

dτpτ (τ)
∫ τ

0
dTpT (T )

(81)

For pτ (τ) = δ(τ −∆) we obtain k̄r(∆) = f
∫ xT
−∞ dx|x|c(x,∆)

FT (∆) . note that this results can easily be generalized in higher

dimensions. In the case of the 1-dimensional diffusion problem, we have FT (∆) = 1 − erf
(

xT

2
√
D∆

)
and c(x, t) =

1√
4πDt

(
e−

x2

4Dt − e−
(x−2xT )2

4Dt

)
[49]. Defining lr =

√
D∆ and η = xT /lr we obtain

κr = flr

[
2√
π

(
1− e−η2

)
+ η

(
1− 2erf (η) + erf

(η
2

))]
∆→∞→ fxT (82)
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