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Search processes often involve multiple agents that collectively look for a randomly located target.
While increasing the number of agents usually decreases the time at which the first agent finds the
target, it also requires resources to create and sustain more agents. In this letter, we consider a
collective search cost that not only accounts for the search time but also for the cost associated to
the creation and the maintenance of an agent. We first present a general formalism for independent
agents in terms of the survival probability of the target for a single-agent search s(t), where we allow
agents to be introduced in the system one after the other. From this, we first derive analytically
the optimal number of searchers to launch initially in the system. Then, we identify the optimal
strategies for exponential and algebraic single-agent survival probabilities by pointing out the ideal
times at which new searchers should be launched in the system. Our results show that all searchers
should be launched simultaneously in the exponential case, while some should be launched at later
times in the algebraic case. Finally, we compare these results with numerical simulations of a strongly
interacting collective search, the true self-avoiding walk, and show how the optimal strategy differ
from the non-interacting case.

Search processes are encountered in a very wide vari-
ety of systems as this term encompasses any phenomenon
where one or multiple agents are looking for a target.
From immune processes and the search for pathogens [1],
to animal foraging and hunting and the search for food
[2, 3], or to human search processes such as police in-
vestigations, most of these tasks need to be optimized in
a certain way. Most frequently, one requires the typical
time to find the target to be minimized with respect to
the parameters governing the search process and that can
be tuned by the searchers. Over the past recent years, a
considerable amount of work has been dedicated to iden-
tifying efficient and optimal search strategies in various
contexts. For individual searchers, it has for instance
been shown that intermittent search strategies as well as
Lévy walks are particularly efficient and are frequently
observed in nature [4–9]. More recently, many studies
have investigated the impact of stochastic resetting on
search efficiency and have shown that the resetting rate
can also be optimized to improve the search efficiency
[10–14]. Finally, non-markovian searches have attracted
some attention as well, where the influence of memory
on the search properties has been studied [15–19].

Beyond the case of individual searches, collective pro-
cesses have also been extensively studied over the past
decade in various contexts: for hunting and foraging
or for the global immune response, understanding how
the first-passage time properties vary with the number
of searchers is important, not only for non-interacting
agents [20], but also for systems where searchers can in-
teract and communicate [21–25]. To this day, the number
of searchers has however very rarely been considered as
a variable to be optimized. While it is clear that the

large majority of processes will lead to a monotonically
decreasing mean search time as a function of the number
of searchers, it must be emphasized that adding more
searchers to a process may have a cost. For a human
search problem where one needs to pay agents and ma-
terial resources to perform the search, one can very eas-
ily understand that it is not optimal to hire as much
agents as possibly available as it would have a huge fi-
nancial cost. Similarly, in an immune response process,
hiring more cells to find a pathogen requires a substantial
amount of metabolic energy. This is precisely the moti-
vation for the question that we are raising in this letter:
given the cost associated to the hiring and maintenance
of an agent in a collective search process, what is the op-
timal number of them and when should one launch them
in to the system?

To answer this, we first formalize the question for non-
interacting searchers in terms of the survival probabil-
ity of the target in a single-agent search. We allow the
searchers to be introduced in the system at different times
and we define a mean search cost which consists in one
contribution from the overall search time, one from the
total time spent by searchers in the system and one from
the creation/hiring of a searcher. We first derive general
results, in particular the optimal number of searchers
to introduce simultaneously at the start of the search.
We then consider the main two classes of single-agent
target survival probabilities, namely exponential and al-
gebraic, for which we optimize the introduction times.
Finally, we consider a process with trail-leaving inter-
acting searchers, and we compare its optimal number of
searchers to the non-interacting case.

Formalism and definition of search cost. We consider a
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search process of N independent searchers for a single tar-
get, all characterized by a common single-agent survival
probability (SASP) of the target, denoted as s(t). We
consider in this paper only cases where limt→∞ s(t) = 0,
i.e. the target will eventually be found with probability
1. At time ti, the i-th searcher is introduced into the
system and performs an independent search without in-
teracting with the searchers introduced previously. The
entire process is stopped whenever one of the searchers
finds the target. The question that we are raising here
is: what are the optimal introduction times ti that make
the search most efficient? In order to respond, we need
to be more specific on the meaning of search efficiency.
We therefore define the search cost K as

K = JT T̄ + JN T̄ +KN N̄ (1)

where T̄ is the mean search time, T̄ is the mean sum
of times spent by all searchers in the system until the
target is found, and N̄ is the mean number of searchers
introduced in the system until the target is found. JT ,
JN an KN are parameters that weight each contribution
to the search cost. They can be interpreted as follows:

• JT is the target cost rate: it quantifies a cost asso-
ciated to the only presence of the target and can be
thought of as a rate of damage due to the presence
of the target.

• JN is the searcher maintenance rate: it quantifies
the amount of resources required to sustain one
searcher per unit time.

• KN is the searcher hiring cost: it quantifies
the amount of resources required to introduce a
searcher into the system.

The optimal search strategy is then defined by the set of
introduction times ti that minimize K. For compactness,
we introduce the normalized parameters γ = JN/JT and
κ = KN/JT and set JT = 1 as our cost rate unit for the
rest of the paper.

To calculate T̄ , T̄ and N̄ , we first need to formalize
the target survival probability, i.e. the probability that
neither of the searchers has found the target yet after a
certain time t. For tn ≤ t < tn+1, there are n searchers
in the system, and we have

S(t) = Sn(t) ≡
n∏

k=1

s(t− tk) (2)

Note that we choose by convention t1 = 0+ as the time
origin. Following the calculation reported in the Supple-
mental material, we rewrite K as

K =

∞∑
n=1

[
(1 + nγ)

∫ tn+1

tn

Sn(t)dt+ κSn(tn)

]
(3)

Note that this framework can be used to model a finite
number of searchers N simply by imposing tp → ∞ for
p > N . In this case, we note the search cost KN .
It should be emphasized that both S and s share

the same level of averaging with respect to the initial
positions of the target and of the searchers. If s depends
on these positions, S does as well and corresponds
to the survival probability when all searchers are ini-
tialized at the same position and look for the same target.

Condition for simultaneous introduction. Consider
a process with a total reservoir of N searchers. We
first want to know whether it is favorable to introduce
searchers simultaneously or if one should launch them
one after the other into the system.
Let us first assume that KN is a convex function of

tN = (t2, · · · , tN ), such that there exists at most one
local (and hence global) minimum of the cost function.
This assumption is not necessarily true for any SASP
s(t), but most standard cases satisfy this hypothesis.
Also note that the domain over which the function KN

is defined is such that ti ≥ ti−1 for any i ≥ 2. Because
of convexity, the minimum of K is therefore located at a
point t∗N where either t∗i > t∗i−1 and ∇iKN (t∗N) = 0, or
t∗i = t∗i−1 and ∇iKN (t∗N) ≥ 0 [26].
Starting from this observation, we show in the Supple-

mental material that the optimal strategy is such that
no searchers are launched simultaneously later than at
the start of the process. The only agents introduced to-
gether are launched at t = 0 and their number Nsim is
the largest integer k that verifies ∇kKN > 0 at the op-
timal point, where ∇pKN = 0 for any p > Nsim. This
statement is valid for any value of N and therefore holds
as N → ∞. Moreover, we show that for any k ≥ 2, ∇kK
evaluated at tk = tk−1 = ... = 0 with the constraint that
∇pK = 0 for p > k is given by

∇kK = k−1 − (k − 1)κr(0) (4)

where r(0) = −s′(0) is the initial value of the single-agent
first-passage time distribution. Nsim is therefore found
as the largest integer k for which the latter quantity is
positive, i.e. k(k − 1)κr(0) < 1. This leads to

Nsim =

⌊
1

2

(
1 +

√
1 +

4

κr(0)

)⌋
(5)

This result is very general as it does not rely on strong
assumptions on s(t) and shows that Nsim does not
depend on γ at all. No matter how much it costs to
sustain a searcher, the number of searchers to be intro-
duced into the system at t = 0 will only be governed by κ.

While Nsim can be found analytically in general,
finding the optimal values of ti for i > Nsim must
be treated specifically for a given survival probability
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s(t). Two prominent cases for limt→∞ s(t) = 0 can be
identified [27, 28]: exponentially or algebraically de-
caying, both of which we treat separately in the following.

Exponential SASP. Let us consider a single-agent sur-
vival probability given by s(t) = e−λt. We show in the
Supplemental material that the derivative of K with re-
spect to ∆k = tk+1 − tk is given by

∂∆k
K = λk

∞∑
n=k+1

e−λ
∑n−1

l=1 l∆l

(
λ−1

n(n− 1)
− κ

)
(6)

Because the function 1/n(n− 1) is decreasing with n, all
terms such that n(n − 1)λκ > 0 are a negative contri-
bution to the derivative. This condition is exactly the
same as the one discussed in equations (4) and (5), with
r(0) = λ. Therefore, for k + 1 > Nsim as defined in
equation 5, all contributions are negative, leading to an
overall negative exponential decay as a function of ∆k

for the derivative. This implies that for all k ≥ Nsim,
∆k must be infinite for K to be minimized, i.e. at most
Nsim particles should be introduced in the system.

For k < Nsim, all terms of ∇kK with n > Nsim are
vanishingly small as all ∆l with l > Nsim in the expo-
nential need to be infinitely large, as shown previously,
leading to a zero contribution to the derivative. The
sum therefore runs for k + 1 ≤ n ≤ Nsim, where all
terms are positive. The overall minimum of the function
will therefore be found for ∆k = 0. The best strategy is
therefore simple: Nsim searchers should be introduced
in the system simultaneously at t = 0 and none after.
As observed previously, this number does not depend on
γ, and the optimal cost grows as 2

√
κ for κr(0) ≪ 1 and

linearly with κ for κr(0) ≫ 1 (see Supplemental material
for the full equation).

Algebraic SASP. Let us now consider single-agent sur-
vival probabilities decaying as t−θ for t → ∞, where
θ > 0 is the so-called survival exponent. Examples of
such processes include random walks on fractals [29–31],
or in infinite space [32]. Here, we can not calculate the
search cost K analytically as for the exponential case,
therefore we tackle it using numerical optimization and
consider the following SASP: s(t) = (1 + λt)

−θ
.

For arbitrary θ > 0, the cost function K should in
principle be minimized with respect to all introduction
times ti. In practice, we performed a numerical gradient-
descent optimization using N of these times, making sure
that the algorithm converges to S(tN ) < 0.001. We used
three different values of θ, namely 1/2, 1 and 3/2.
The optimal strategy defined from the optimal intro-

duction times tn was found to differ substantially from
the exponential case. Here, Nsim searchers should first
be introduced in the system, whose value matches per-
fectly the prediction of equation (5) with r(0) = θλ.
Then, the next searchers should be introduced at an al-

FIG. 1. Optimal values of ∆n for n ≤ 4, θ = 0.5, 1, 1.5 and
γ = 0.5 as a function of n(n − 1)θλκ. The inset shows the
same data as a function of n for various values of κ. The
curves in the main panel do not collapse on each other as
suggested by the inset because the x-axis depends explicitly
on n, which is different for each curve.

FIG. 2. Nopt, Nsim and N̄ for θ = 0.5, 1, 1.5 and κθλ = 0.128
as a function of γ.

most constant time interval ∆∗. In fact, the value of
∆n very quickly reaches a constant value as n increases.
This optimal interval becomes larger with larger κ and θ
but decreases with γ, as shown in figure 1. This is also
observed by analyzing the effective optimal number of
searchers Nopt defined as S(tNopt

) > 0.01 > S(tNopt+1),
whose variation is opposite to the one of ∆∗ as shown in
figure 2.
As algebraic SASPs correspond to searches where the

searching time might be very long, our results show that
one should better not start all searchers simultaneously.
In fact, if all Nopt agents were to be launched at t = 0,
there would be a non-negligible probability that the
target would still take a lot of time to be found even
with many searchers in the system, resulting in a large
overall cost. The searching resources must therefore be
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managed carefully and launched into the system pro-
gressively only if the first ones struggle to find the target.

Interacting searchers. While the results presented in
the previous section hold for non-interacting searchers,
one can legitimately wonder to which extent they are still
valid for interacting ones. It is unfortunately not possi-
ble to derive very general results for arbitrary interacting
searchers as the combined target survival probability S(t)
would highly depend on the process under study. How-
ever, we can still optimize the launching strategy in a
particular process where searchers interact strongly and
evaluate how the results differ from the non-interacting
case.

Here, we investigate a collective search by auto-
chemotactic walkers, as presented in refs. [16, 33]. There,
a a field c is defined on a 2D-lattice. At each time step,
each walker first adds an amount δc to the field c on
the site it occupies. Then, the field diffuses over a cer-
tain duration following normal diffusion parametrized by
a diffusion coefficient Dc. Finally, each walker jumps to
a neighboring site j with a probability proportional to
e−βcj , where β > 0 quantifies the chemotactic coupling
strength. For Dc = 0, the model reduces to the true self-
avoiding walk [34] where the system retains an infinite
memory as the trace left by walkers along their paths
never decays.

We run Monte-Carlo simulations of this model on a
square lattice of size 100 × 100. Initially, a random site
of the lattice is identified as a target site. All walkers
are also introduced into the system at random lattice
sites. We first ran simulations for a single walker, which
we always found to yield an exponential SASP. For the
N-searcher problem, we first launched Nsim walkers in
the system at t = 0 and then introduced additional ones
one by one at a constant time interval ∆ until one of
the walkers reaches the target. We show in figure 3 an
example of the resulting mean cost K as a function of
Nsim and ∆ for Dc = 0, β = 1, γ = 0.5 and κλ = 0.01
where λ−1 is the timescale of the corresponding SASP.
The minimum cost is here reached for Nsim = 9 and ∆ =
4×103. We observe that the optimal value of ∆ is so large
that the mean number of searchers N̄ is only very slightly
larger than Nsim, i.e. it is very rare that the first Nsim

walkers will not find the target before the next searcher is
launched. This is consistent with the prediction made in
the previous section for non-interacting searches with an
exponential SASP, for which Nsim = N̄ . We also remark
that strategies with lower values of ∆ and N0 yielding the
same value for N̄ lead to a substantially larger search
cost, indicating that the mean number of searchers is
not the only quantity that matters but the details of the
launching strategy have a major impact.

We also display in figure 3 the optimal number Nsim

as we impose ∆ → ∞ and show that it follows the same
trend as the prediction of equation (5) as a function of

FIG. 3. Upper panel: Mean search cost of the auto-
chemotactic search in the (∆, Nsim)-plane, for Dc = 0, β = 1
and γ = 0.5, κλ = 0.01. The lines show iso-curves of N̄ (dot-
ted) and N̄ −Nsim (solid). Lower panel: Optimal number of
walkers Nsim for ∆ → ∞ as a function of κλ for various values
of Dc and β (solid lines) as well as equation (5) (dotted lines).
On the second y-axis, we report the associated optimal cost
(dashed lines) together with the optimal cost for independent
searchers (dash-dotted line).

κλ. The exact values differ slightly but still remain close,
even for the most strongly interacting searchers that we
have tested, i.e. for Dc = 0 and β = 10. The value of the
optimal search cost K̄ = λK also follow the same trend
but we clearly see that the cost becomes smaller for
more strongly interacting searchers. This implies that,
although optimal search costs may be reduced thanks to
interactions, the optimal launching strategy derived for
independent searchers is very likely to be quasi-optimal
for interacting searchers.

Discussion. In this letter, we have identified the
optimal strategy for when to launch new agents in a
search process. First, for non-interacting searchers, if the
single-agent survival probability of the target is exponen-
tially decaying, a well-defined number of agents should
be launched initially and none later. If it decays alge-
braically, some agents should also be introduced initially
but additional ones should then be launched at an al-
most constant rate. For interacting searchers, we have
shown on one example that the optimal strategy derived
for non-interacting ones is very close to the actual op-
timal one, suggesting that the non-interacting optimal
strategies are reliable reference procedures.

As a direction for future works, we make the following
points. First, as mentioned originally, our results apply
if s(t) and S(t) share the same level of averaging with re-
spect to the original positions of the searchers rs and the
target r0. Assume s(t) describes the SASP where rs and
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r0 are already averaged, then the definition of S(t) made
in equation (2) corresponds to a process where each new
agent is initialized randomly following the distribution
used in s(t). However, if one considers a process where
each new agent is initialized at the same location and
one averages over all these possible processes, then our
formalism should be adapted. This could for instance be
the case for a process where one knows that the target is
at a certain distance from the launching center, but not
precisely where.

More generally, this observation naturally raises
the question of the use of the information available
to adapt optimal introduction strategy, as it has for
instance been studied for stochastic resetting processes
[14, 35]. One could for instance consider a process where
one adapts the launching of new agents based on the
history of previous walkers, leading to non-markovian
decision-making. One can also wonder about the optimal
launching locations, in addition to the optimal introduc-
tion times, i.e. where should new agents be launched
given the location of previous agents. We believe that
this letter is a first step towards the formalization of
such questions, which will be tackled in future studies.

ACKNOWLEDGEMENTS

We acknowledge financial support by the DFG via the
Collaborative Research Center SFB 1027.

[1] Matthew F Krummel, Frederic Bartumeus, and Audrey
Gérard. T cell migration, search strategies and mecha-
nisms. Nature Reviews Immunology, 16(3):193–201, 2016.

[2] David JT Sumpter. Collective animal behavior. Princeton
University Press, 2010.

[3] Gandhimohan M Viswanathan, Marcos GE Da Luz,
Ernesto P Raposo, and H Eugene Stanley. The physics
of foraging: an introduction to random searches and bio-
logical encounters. Cambridge University Press, 2011.

[4] Gandhimohan M Viswanathan, Vsevolod Afanasyev,
Sergey V Buldyrev, Eugene J Murphy, Peter A Prince,
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Supplement Material

DEFINITION OF SEARCH COST

First, let us express the three contributions of the
search cost in terms of S(t). First we have

T̄ =

∫ ∞

0

tR(t)dt = −
∫ ∞

0

tS′(t)dt

=

∫ ∞

0

S(t)dt (7)

Then, we have

T̄ =

∞∑
n=1

∫ ∞

0

d

dt
((t− tn)Θ(t− tn))S(t)dt

=

∞∑
n=1

[∫ ∞

0

(t− tn)δ(t− tn)S(t)dt

+

∫ ∞

0

Θ(t− tn)S(t)dt

]
=

∞∑
n=1

∫ ∞

0

Θ(t− tn)S(t)dt

=

∞∑
n=1

∞∑
m=n

∫ tm+1

tm

Sm(t)dt

=

∞∑
m=1

m∑
n=1

∫ tm+1

tm

Sm(t)dt

=

∞∑
m=1

m

∫ tm+1

tm

Sm(t)dt (8)

Finally, we have

N̄ =

∫ ∞

0

Θ(t− tn)R(t)dt

=

∞∑
n=1

∫ ∞

0

δ(t− tn)S(t)dt

=

∞∑
n=1

S(tn) =

∞∑
n=1

Sn(tn) (9)

SEARCH COST IN THE EXPONENTIAL CASE

General case

In the exponential case, we have s(t) = e−λt. Let us
first compute the collective mean first-passage time T̄ .

T̄ =

∞∑
n=1

∫ tn+1

tn

n∏
k=1

s(t− tk)dt

=

∞∑
n=1

∫ tn+1

tn

n∏
k=1

e−λ(t−tk)dt

=

∞∑
n=1

∫ tn+1

tn

e−λ
∑n

k=1(t−tk)dt

=

∞∑
n=1

eλ
∑n

k=1 tk

∫ tn+1

tn

e−λntdt

=− λ−1
∞∑

n=1

e−λ
∑n

k=1 tn+1−tk

n
− e−λ

∑n
k=1 tn−tk

n

=− λ−1
∞∑

n=1

e−λ
∑n

k=1 tn+1−tk

n
− e−λ

∑n−1
k=1 tn−tk

n

=− λ−1

[ ∞∑
n=2

e−λ
∑n−1

k=1 tn−tk

n− 1
−

∞∑
n=1

e−λ
∑n−1

k=1 tn−tk

n

]

=λ−1

[
1−

∞∑
n=2

e−λ
∑n−1

k=1 tn−tk

n(n− 1)

]
(10)

Similarly, we have

T̄ =

∞∑
n=1

n

∫ tn+1

tn

n∏
k=1

s(t− tk)dt

=− λ−1
∞∑

n=1

n

(
e−λ

∑n
k=1 tn+1−tk

n
− e−λ

∑n
k=1 tn−tk

n

)

=− λ−1

[ ∞∑
n=2

e−λ
∑n−1

k=1 tn−tk −
∞∑

n=1

e−λ
∑n−1

k=1 tn−tk

]
=λ−1 (11)

Finally, we compute N̄ as

N̄ =

∞∑
n=1

n∏
k=1

s(tn − tk)

=

∞∑
n=1

n∏
k=1

e−λ(tn−tk)

=

∞∑
n=1

e−λ
∑n

k=1(tn−tk)

=1 +

∞∑
n=2

e−λ
∑n

k=1(tn−tk) (12)
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The total cost is thus given by

K =λ−1(1 + γ) + κ

+

∞∑
n=2

e−λ
∑n

k=1(tn−tk)

(
κ− λ−1

n(n− 1)

)
(13)

Now, note that

n∑
k=1

(tn − tk) =ntn −
n∑

k=1

tk

=n

n−1∑
k=1

∆k −
n∑

k=1

k−1∑
l=1

∆l (14)

=n

n−1∑
k=1

∆k −
n−1∑
l=1

n∑
k=l+1

∆l (15)

=n
n−1∑
k=1

∆k −
n−1∑
l=1

(n− l)∆l (16)

=

n−1∑
l=1

l∆l (17)

where we have defined ∆k = tk+1 − tk. We thus obtain

K =λ−1(1 + γ) + κ+

∞∑
n=2

e−λ
∑n−1

l=1 l∆l

(
κ− λ−1

n(n− 1)

)
(18)

Now, we take the derivative with respect to ∆k. In the
sum, only terms with k ≤ n − 1 will yield a non-zero
contribution. We obtain

∂∆k
K = λk

∞∑
n=k+1

e−λ
∑n−1

l=1 l∆l

(
λ−1

n(n− 1)
− κ

)
(19)

Optimal cost

In the optimal case, we proved that there should be
Nsim searchers launched at t = 0 and none after. We
therefore have

Kopt =T̄opt + γλ−1 + κNsim

=λ−1

[
1−

Nsim+1∑
n=2

1

n(n− 1)

]
+ γλ−1 + κNsim

=λ−1

[
1 +

1

Nsim
− 1

]
+ γλ−1 + κNsim

λKopt =
1

Nsim
+ γ + κλNsim

(20)

We rewrite Nsim = 1
2

(
1 +

√
1 + 4

κλ

)
as

Nsim =
1

2

(
1 +

√
1 +

4

κλ

)

=

√
κλ+

√
κλ+ 4

2
√
κλ

κλNsim =
√
κλ

√
κλ+

√
κλ+ 4

2

Kopt =γ +
2
√
κλ√

κλ+
√
κλ+ 4

+
√
κλ

√
κλ+

√
κλ+ 4

2

Kopt =γ +
√
κλ

(
2√

κλ+
√
κλ+ 4

+

√
κλ+

√
κλ+ 4

2

)
(21)

As κ → 0, the terms between brackets will tend to 1 such
that the overall cost will grow as

√
κλ. However, as κλ ≫

1, the brackets will be dominated by the second term
which will tend to

√
κλ, making the cost grow linearly

with κλ.

GRADIENT COMPUTATION

We calculate here the gradient of K with respect to an
arbitrary introduction times ti. First, we have

∇pK =− γSp−1(tp)

+

∞∑
n=1

[
(1 + nγ)

∫ tn+1

tn

∇pSn(t)dt+ κ∇p(Sn(tn))

]
(22)

The first term comes from evaluating the integrand in
t = tp for n = p and n+ 1 = p. Then we have

∇pSn(t) =∂tp [s(t− tn)s(t− tn−1) · · · s(t− t2)s(t)]

=

{
−s′(t− tp)

∏n
k=1
k ̸=p

s(t− tk) if n ≥ p

0 otherwise

(23)

Then

∇p(Sn(tn)) =∂tp [s(tn − tn−1) · · · s(tn − t2)s(tn)]

=


−s′(tn − tp)

∏n
k=1
k ̸=p

s(tn − tk) if n > p∑p−1
k=1 s

′(tp − tk)
∏p−1

l=1
k ̸=l

s(tp − tl) if p = n

0 otherwise

(24)
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We therefore obtain

∇pK =− γSp(tp)

−
∞∑

n=p

(1 + nγ)

∫ tn+1

tn

s′(t− tp)

n∏
k=1
k ̸=p

s(t− tk)dt

+ κ

p−1∑
n=1

s′(tp − tn)

p−1∏
l=1
l ̸=n

s(tp − tl)

− κ

∞∑
n=p+1

s′(tn − tp)

n∏
k=1
k ̸=p

s(tn − tk) (25)

Let ζ(t) = d ln s(t)
dt . We finally obtain

∇pK =− γSp(tp)

−
∞∑

n=p

(1 + nγ)

∫ tn+1

tn

ζ(t− tp)Sn(t)dt

+ κ

(
p−1∑
n=1

ζ(tp − tn)Sp(tp)−
∞∑

n=p+1

ζ(tn − tp)Sn(tn)

)
(26)

CONDITION FOR SIMULTANEOUS
INTRODUCTION

Here we want to find under which condition should
multiple searchers be launched simultaneously into the
system. As mentioned in the main text, the minimum
of K is located at a point t∗N where either t∗i > t∗i−1 and
∇iKN (t∗N) = 0, or t∗i = t∗i−1 and ∇iKN (t∗N) ≥ 0.

Let us now proceed by contradiction. Assume that KN

is minimal at a point t∗N where, for a certain k > 2, we
have t∗k = t∗k−1 and t∗k−1 > t∗k−2. Following our previous
observation, this implies that ∇kKN > 0 and ∇k−1KN =
0. Let us now compute the difference between ∇k−1K
and ∇kK for tk−1 = tk. Following the calculation from
the previous section, we have

∇k−1K −∇kK =− γSk−1(tk−1) + γSk(tk)

−
∞∑

n=k−1

(1 + nγ)

∫ tn+1

tn

ζ(t− tk−1)Sn(t)dt+

∞∑
n=k

(1 + nγ)

∫ tn+1

tn

ζ(t− tk)Sn(t)dt

+ κ

(
k−2∑
n=1

ζ(tk−1 − tn)Sk−1(tk−1)−
∞∑

n=k

ζ(tn − tk)Sn(tn)

)

− κ

(
k−1∑
n=1

ζ(tk − tn)Sk(tk)−
∞∑

n=k+1

ζ(tn − tk)Sk(tk)

)
(27)

Now, note that for any n > 0 it holds Sn−1(tn) = Sn(tn).
Using tk−1 = tk, we have Sk−1(tk−1) = Sk(tk). With
this, we note that most of the terms in all the sums com-
pensate each other and we obtain

(∇k−1 −∇k)K =− (1 + (k − 1)γ)

∫ tk

tk−1

ζ(t− tk)Sn(t)dt

− κζ(tk − tk)Sk(tk)

− κζ(tk − tk−1)Sk(tk)

=− 2κζ(0)Sk(tk)

=− 2κs′(0)Sk(tk) (28)

Note that this result also holds for a finite value of N as
the right-hand side only depends on tk, such that impos-
ing tN → ∞ for N > k, as one should to deal with KN ,

does not impact it. Because s′(0) < 0, we therefore have
∇k−1KN > ∇kKN . This is valid at any point tN , pro-
vided that tk = tk−1, and in particular at t∗N , where we
have ∇kKN > 0. We therefore have ∇k−1K > ∇kK > 0,
which is in contradiction with the original assumption.
We therefore conclude that if t∗k = t∗k−1 then for all j < k
we must have t∗k = t∗j = 0: in the optimal strategy, there
can not be searchers launched simultaneously later than
at the start of the process.

Now, we want to calculate the optimal number of
searchers Nsim to be launched at t = 0. From our pre-
vious argument, we know that at the optimal point, we
have ∇kKN > 0 for k ≤ Nsim and ∇kKN = 0 for k >
Nsim. Let us now compute ∇kK for t2 = · · · = tk = 0
for an arbitrary value of k, assuming that ∇pK = 0 for
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p > k. This latter condition reads

γSp(tp) +

∞∑
n=p

(1 + nγ)

∫ tn+1

tn

s′(t− tp)s(t)
k

n∏
l=k+1
l ̸=p

s(t− tl)dt

− κ

(
p−1∑
n=1

ζ(tp − tn)Sp(tp)−
∞∑

n=p+1

ζ(tn − tp)Sn(tn)

)
= 0

(29)

Then, we compute ∇kK:

∇kK =− γ −
∞∑

n=k

(1 + nγ)

∫ tn+1

tn

s′(t)s(t)k−1
n∏

p=k+1

s(t− tp)dt

+ κ

(k − 1)s′(0)−
∞∑

n=k+1

s′(tn)s(tn)
k−1

n∏
p=k+1

s(tn − tp)

 (30)

First, we rewrite the second term using integration by parts, reading

∫ tn+1

tn

s′(t)s(t)k−1
n∏

p=k+1

s(t− tp)dt =

s(t)k
k

n∏
p=k+1

s(t− tp)

tn+1

tn

− 1

k

n∑
p=k+1

∫ tn+1

tn

s(t)ks′(t− tp)

n∏
l=k+1
l ̸=p

s(t− tl)dt

=
1

k
[Sn(tn+1)− Sn(tn)]

− 1

k

n∑
p=k+1

∫ tn+1

tn

s(t)ks′(t− tp)

n∏
l=k+1
l ̸=p

s(t− tl)dt (31)

Now, summing over all values of n ≥ k yields

∞∑
n=k

(1 + nγ)

∫ tn+1

tn

s′(t)s(t)k−1
n∏

p=k+1

s(t− tp)dt

=− 1

k
+

1

k

∞∑
n=k

γn [Sn(tn+1)− Sn(tn)]

− 1

k

∞∑
p=k+1

∞∑
n=p

(1 + nγ)

∫ tn+1

tn

s(t)ks′(t− tp)

n∏
l=k+1
l ̸=p

s(t− tl)dt (32)

where we have used the fact that Sk(tk) = 1. Now, we note that the summand in the last term is exactly the
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second term in the gradient of ∇pK in equation (29). Summing equation (29) over p > k yields

∞∑
p=k+1

∞∑
n=p

(1 + nγ)

∫ tn+1

tn

s(t)ks′(t− tp)

n∏
l=k+1
l ̸=p

s(t− tl)dt

=−
∞∑

p=k+1

γSp(tp)

+

∞∑
p=k+1

κ

(
p−1∑
n=1

ζ(tp − tn)Sp(tp)−
∞∑

n=p+1

ζ(tn − tp)Sn(tn)

)
(33)

Let us now rewrite the terms proportional to κ. First, let us note Apn = ζ(tp − tn)Sp(tp). Swapping the order
of summation leads to

∞∑
p=k+1

(
p−1∑
n=1

Apn −
∞∑

n=p+1

Anp

)
=

∞∑
p=k+1

(
k∑

n=1

Apn +

p−1∑
n=k+1

Apn −
∞∑

n=p+1

Anp

)

=

∞∑
p=k+1

k∑
n=1

Apn +

∞∑
n=k+1

∞∑
p=n+1

Apn −
∞∑

p=k+1

∞∑
n=p+1

Anp

=

∞∑
p=k+1

k∑
n=1

Apn

=

∞∑
p=k+1

k∑
n=1

s′(tp)s(tp)
k−1

p∏
l=k+1

s(tp − tl)

=k

∞∑
p=k+1

s′(tp)s(tp)
k−1

p∏
l=k+1

s(tp − tl) (34)

where we have again used the fact that tn = 0 for n ≤ k to evaluate Apn in the sum. We therefore obtain

∞∑
p=k+1

∞∑
n=p

(1 + nγ)

∫ tn+1

tn

s(t)ks′(t− tp)

n∏
l=k+1
l ̸=p

s(t− tl)dt

=−
∞∑

p=k+1

γSp(tp) + kκ

∞∑
p=k+1

s′(tp)s(tp)
k−1

p∏
l=k+1

s(tp − tl) (35)

Inserting this into equation (32) leads to
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∞∑
n=k

(1 + nγ)

∫ tn+1

tn

s′(t)s(t)k−1
n∏

p=k+1

s(t− tp)dt =− 1

k
+

γ

k

∞∑
n=k

n [Sn(tn+1)− Sn(tn)] +
γ

k

∞∑
p=k+1

Sp(tp)

− κ

∞∑
p=k+1

s′(tp)s(tp)
k−1

p∏
l=k+1

s(tp − tl) (36)

We note that the last term of the latter equation com-
pensates exactly the last term of ∇kK in equation (30).
Bringing everything together yields

∇kK =− γ +
1

k
− γ

k

∞∑
n=k

n [Sn(tn+1)− Sn(tn)]

− γ

k

∞∑
n=k+1

Sn(tn) + κ(k − 1)s′(0) (37)

Now, we rewrite

∞∑
n=k

n [Sn(tn+1)− Sn(tn)] =

∞∑
n=k

nSn+1(tn+1)−
∞∑

n=k

nSn(tn)

=

∞∑
n=k+1

(n− 1)Sn(tn)−
∞∑

n=k

nSn(tn)

=− kSk(tk)−
∞∑

n=k+1

Sn(tn)

=− k −
∞∑

n=k+1

Sn(tn) (38)

such that

−γ

k

∞∑
n=k

n [Sn(tn+1)− Sn(tn)] =γ +
γ

k

∞∑
n=k+1

Sn(tn)

(39)

to finally obtain

∇kK =
1

k
+ κ(k − 1)s′(0) (40)

Nsim is therefore found as the largest value of k which is
such that this quantity is positive.
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