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Chemotactic biological or synthetic active matter shapes its environment by secretions of chemical
signals from its self-propelled constituents, like cells, organisms or active colloids. From this indirect
interaction collective effects emerge that can be used by the agents to migrate collectively, to form
patterns or to search for targets more efficiently. Here, we use paradigmatic models to study the
efficiency of collective search strategies of a large group of motile agents that release during their
movement repulsive auto-chemotactic signals forcing them to move away from high concentrations
of the chemical clue. We show that the repulsive chemotactic interactions improve the search
efficiency, measured by the mean first passage time to find a randomly located target, by orders
of magnitude depending on the strength of the chemotactic coupling. The mechanism for this
improvement relies on two factors: the increase of the persistence length due to the agent’s self-
interaction with its own chemotactic field and by a more homogeneous distribution of the agents
due to their mutual indirect repulsion mediated by the chemotactic field. At stronger particle-
field coupling the chemotactic searchers self-organize into ballistically moving bands reminiscent
of search-chains formed in search and rescue operations, whose efficiency depends on the number
of searchers involved. Our comprehensive study of collective search strategies of large groups of
interacting agents is not only relevant for chemotactic active matter but also for a wide range of
fields like ethology, information engineering, robotics, and social engineering.

I. INTRODUCTION

Chemotaxis is the ubiquitous mechanism by which or-
ganisms, cells or bacteria direct their movements accord-
ing to certain chemicals in their environment by respond-
ing to a gradient in the concentration field of a chemical
species. When this gradient is generated by the organ-
isms themselves, this response is denoted as autochemo-
taxis and is one way in which organisms exchange infor-
mation by leaving chemical cues along their paths as they
search, which can be later sensed by fellow searchers and
used to influence their motion, in analogy to what ants
do to organize their traffic [1]. Prominent examples in
cell biology are migrating cells during embryogenesis [2],
immune responses [3], and neural pathfinding [4].

Self-generated gradients by attractant breakdown even
allow cells to make long-range route decisions and navi-
gate through complex environments [5, 6] and cells can
leave long-lived physicochemical footprints along their
way, which determine their future path [7]. Recently,
chemotactic interactions have also been realized in syn-
thetic matter, like self-propelled microdroplets that com-
municate via chemorepulsive trails [8], showing self-
caging, or colloidal particles that leave phase-change
trails [9], mimicking tunable pheromone interactions as
among ants. Synthetic chemotaxis in active matter sys-
tems generically lead to pattern formation like dynamic
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clusters and waves [10–12] and has recently been studied
intensively [13–18]. Moreover, it is a natural example of
non-reciprocal interactions, i.e. interactions that violate
the actio=reactio principle and that became recently a
major research focus [19–23].

Positive autochemotaxis is frequently connected with
cell aggregation [24], whereas repulsive signaling in neg-
ative autochemotaxis can be connected to efficient space
exploration, for instance for mutual avoidance during ef-
ficient foraging of ants [25]. How efficient chemotactic
repulsion actually performs in the search for randomly
located targets remains elusive - which is what we in-
tend to address in this paper: a quantitative analysis
of the efficiency of stochastic search processes with au-
tochemotactic repusion. Search processes are ubiquitous
in nature, society and daily life, a comprehensive classi-
fication from a game theoretic and robotic perspective
can be found in [26]. Physically relevant search pro-
cesses are often stochastic in nature [27–29] and include
chemical reaction kinetics [30–32], genetic transcription
[33, 34], bacteria searching for nutrients [35] or immune
cells searching for pathogenic cells [36], foraging animals
[37–40] or swarming robots [41, 42], to name but a few.
The efficiency of a specific search process is usually mea-
sured in the mean first passage time (MFPT) [28], the
average time needed to reach the target for the first time,
but also other cost factors may contribute [43], in partic-
ular when multiple searchers are involved.

Most search processes share the need to be optimized in
a way such that searchers reach the target as fast as pos-
sible or with the least amount of resources, which then
defines an optimal search strategy. Over the past two
decades, the analysis of such optimal search strategies
has attracted a lot of interest and were studied for var-
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ious search processes like for instance Lévy flights [44]
and intermittent walks [45], persistent random walks [46]
and random walks with n-step memory [47, 48], random
walks with resetting [49–53], and random walks interact-
ing with the environment [54].

These search strategies were up to now limited to a sin-
gle searcher. The MFPT for an N -agent search has fre-
quently been studied for independent, i.e. non-interacting
searchers, sometimes also denoted as the lion-and-the-
lamb problem [55–60], with the general and plausible re-
sult that N searcher find the target faster and that their
optimal search strategy is generally identical to the opti-
mal single-searcher strategy. Very few works have inves-
tigated the search performances of interacting agents in
specific simple systems, e.g. via an instantaneous 2-body
potential in an one dimensional [61] or dilute system [62],
or in the context of acoustic communication [63], all of
them predicting an optimal repulsive interaction range.
However, in how far interactions or communication be-
tween random searchers and their resulting collective be-
haviours can lead to improved collective search strategies
has not been systematically studied so far and general
principles remains elusive.

In this work we will study to which extent auto-
chemotactically interacting, but otherwise stochastically
moving, searchers are efficient to find a randomly located
target. Our theoretical framework comprises paradig-
matic models for a large number, N , of randomly moving
particles producing a diffusive, chemotactically repulsive
trail. The emerging stochastic process is non-Markovian
[47] and constitutes effectively an interacting many-body
problem, which is impossible to study analytically with-
out serious approximations, for which reason we predom-
inantly use computer simulations. The main quantity
characterising the search efficiency of these interacting
N -particle search processes will be the MFPT. We will
show that optimal search strategies exist, i.e. optimal
choices for the specific parameters defining the stochastic
processes, which minimize the MFPT for a fixed number,
N , of searchers, and that are substantially better than
that of independent searchers due to collective effects.

The paper is organized as follows: in section II the
models are introduced, in section III the search process
for singe searchers are recapitulated, section IV and V
contain the analysis of the N-agent search with and with-
out self-interaction, respectively. Section VI concludes
with a discussion and an outlook.

II. MODELS

We consider chemotactically interacting, self-propelled
particles, like migrating cells or foraging ants, and de-
scribe them by a stochastic processes for the position
of the particles and a deterministic diffusion equation
with moving sources for the chemotactic field. Nega-
tive autochemotaxis means that particles tend to move
away from areas with high concentrations of the chemo-

tactic field, which we model in two ways to identify
the universal aspects of collective effects induced by
chemo-repulsive interactions: first with an active Brow-
nian particle model (ABP) [64, 65] with repulsive auto-
chemotaxis, which has been introduced and studied for
attractive auto-chemotaxis in [66], and second with a lat-
tice model that is inspired by the true self-avoiding ran-
dom walk [67] to which the chemical diffusion of the trail
is added [47]. The difference between the two models
is that the ABP model allows for a continuous change of
the particle direction away from a concentration gradient
of the chemotactic field, whereas the random walk model
allows for instantaneous directional changes towards the
smallest concentration of the chemotactic field.

A. Auto-chemotactic Active Brownian particles
(ACP)

The auto-chemotactic active Brownian particle (ACP)
model consists of active Brownian particles emitting a
diffusive chemical cue that serves as a chemotactic sig-
nal for all particles. We adapt the model introduced in
[66, 68] for autochemotaxis: N self-propelled, disk-like
(radius a) particles move in two space dimensions ac-
cording to

ṙi(t) = v0 ei(t) +

N∑
j=1

f(rij)

γt
, (1)

where ri(t) is the position of particle i at time t, v0 is the
self-propulsion velocity,

ei(t) =
(
cosφi(t)
sinφi(t)

)
(2)

the propulsion direction with polar angle φi(t), γt the
translational friction constant, rij = |ri(t) − rj(t)| the
distance between particle i and j, and f(rij) a harmonic
repulsive force of the form: f(r) = f0(2 − r/a) for r ≤
2a and zero otherwise, where f0 measures the particle
stiffness.
Each particle produces a chemical cue with a rate hc,

which diffuses into the environment with diffusion con-
stantDc, and decays with a rate kc, so that its concentra-
tion c(r, t) obeys the inhomogeneous diffusion equation

ċ(r, t) = Dc∆c(r, t)− kcc(r, t) + hc

N∑
i=1

δ(r− ri(t)) . (3)

Chemotaxis is the ability of active agents to control
their direction of motion, in the ACP model defined by
the angles φi(t), in response to a chemical stimulus. We
model such a response by a torque that tries to align or
anti-align their direction of motion with the gradient of
the concentration field:

φ̇i(t) =
κ

γr
[∇c(ri(t), t)× ei(t) ]z +

√
2Drηi(t) , (4)
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where the cross product of ∇c with ei points perpendic-
ular to the 2d plane along the z-axis, γr is a rotational
friction constant and κ a chemotactic sensitivity.

For κ > 0 the particle anti-align with∇c and the model
describes chemo-repulsion, which we consider here. On
the other hand, for κ < 0 the particle aligns with ∇c and
the model describes chemo-attraction, which was consid-
ered in [68]. The second term on the r.h.s. is the usual
rotational noise for ABPs withDr the rotational diffusion
constant and ηi(t) Gaussian white noise with ⟨ηi(t)⟩ = 0
and ⟨ηi(t)ηj(t′)⟩ = δijδ(t− t′).

To avoid strong self-interaction, we locate the sensor
measuring the gradient in the front of the particle at ri+
aei and the source, which is approximated by a Gaussian
function [69], in the back at ri−aei. We scale lengths by
the radius a and time by the propulsion time v0/a. For
convenience we define a new chemotactic sensitivity β =
κ/γr. Important dimensionless numbers are the packing
fraction ϕ = πa2N/L2, persistence length of motion lp =
v0/(aDr) and chemotactic coupling Λ = βhca/D

2
c .

We use a simulation box of size L/a = 100 with pe-
riodic boundary conditions in all directions. We vary
the decay rate from kca/v0 = 0 to 0.2, the apersistence
length from lp = 0.5 to 5, the chemotactic sensitivity
from β/(v0a

2) = 0.0125 to 2.5, the diffusion constant
from Dc/(v0a) = 0.005 to 100 and the source strength
from hca/v0 = 50 to 4000. We integrate the equations
of motion (1, 2, 4) numerically using Brownian dynam-
ics simulation and the diffusion equation (3) with an
alternating-direction implicit method [70].

B. Auto-chemotactic walker (ACW)

The auto-chemotactic random walk (ACW) model is
defined on a lattice and contains the main ingredients of
auto-chemotaxis [18]. N walkers are placed on sites of
a 2-dimensional lattice and a concentration field c(l) is
defined for each walker l, its value on a site i at time t

being denoted c
(l)
i (t). The total concentration field c is

defined as the sum of all fields, i.e., ci(t) =
∑N

l=1 c
(l)
i (t).

The time evolution of the system is governed by a mas-
ter equation for the probability ρi(t) of a walker to be
found on site i at time t,

ρi(t+ 1) =
∑
j∈Ni

pj→i(t)ρj(t) , (5)

as the walkers jump at constant time intervals ∆t = 1,
where the probability pj→i to jump from site j to site i
is given by

pj→i(t) =
e−βci(t)∑

k∈Nj
e−βck(t)

(6)

and Ni is the set of neighboring sites of i.

Simultaneously, the concentration field evolves accord-
ing to a standard diffusion equation, i.e.,

ċ
(l)
i (t) = Dc

∑
j∈Ni

[
c
(l)
j (t)− c

(l)
i (t)

]
+hc

∞∑
τ=0

N∑
n=1

δinδ(t−τ) ,

(7)
where the sum of the source terms runs over all particles
and δin = 1 if the particle is located on the site i and 0
otherwise. The term δ(t−τ) indicates that the deposition
of the cue occurs at constant intervals ∆t = 1.
The model contains three main parameters. First, the

deposition rate hc. We define it as a unit of concentra-
tion per unit time and therefore use hc = 1 throughout
this study. Then, the diffusion constant Dc. For Dc = 0,
any amount of chemical deposited on a site remains there
forever, and the model becomes the well-known true self-
avoiding walk [67]. Finally, the chemotactic coupling
strength β. For β = 0, the walkers are insensitive to
the concentration field and jump to any neighboring site
with the same probability. On the other hand, for β → ∞
the walkers always jump to the neighboring site with the
lowest concentration.
We simulate this model by means of Monte-Carlo sim-

ulations on a 2-dimensional square lattice of size L×L =
100 × 100. The diffusion equation for the concentration
field is integrated using the Crank-Nicolson method [70]
and the diffusion coefficient is chosen as Dc = 0.5 in most
simulations.

C. Mean first-passage time (MFPT) computation

The event for which the MFPT is computed is defined
to be the first encounter of one of the N particles with a
ramdomly located target, where encounter means over-
lap of the particle disk with the target position in the
continuum and jump to the target site on the lattice. Ini-
tially, all searchers are placed randomly in the simulation
box and the concentration field is set to zero everywhere.
The simulations are then run until the system reaches its
steady-state. Then, targets are introduced in the system.
In the ACP model, we randomly distribute immobile

targets (disks with radius a) in the simulation box and
measure for each target the time it takes to be touched
by a searcher for the first time. After the target is found,
it is moved to a new random location and its clock is
reset to zero. This gives us an estimator of the survival
function SN (t), i.e., the probability that the lifetime T
of a target in the presence of N searchers is greater than
t, from which we compute the MFPT as

T̄N =

∫ ∞
0

SN (t) dt . (8)

In the ACW model, we record for each site i of a set
of Ns randomly selected sites the time τi at which a first
walker reaches it. Because all sites are equivalent, all
Ns × Nt times τi are used to evaluate the first-passage
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FIG. 1. Mean first-passage time (MFPT) T̄N of active Brown-
ian particles without coupling to the chemotactic field (β = 0)
as a function of the persistence length lp = v0/(aDr) for dif-
ferent packing densities ϕ. Time is defined in units of the
propulsion time a/v0 and lengths in units of the particle ra-
dius a.

distribution and its mean, where Nt is the number of
trajectories run.

III. THE SINGLE-AGENT SEARCH

To identify collective effects in the search efficiency of
an N -particle system one needs to compare it with the
search efficiency of N independent (non-interacting) par-
ticles, which derives from the single-agent search MFPT,
which is calculated in this section.

A. Single ACP

Already the movement of a single autochemotactic par-
ticle is influenced its own chemotactic field, for which
reason we need to compare its MFPT with the one of
the process without chemotaxis (β = 0). By varying
the persistence length lp, we find that MFPT (in units
of propulsion time time a/v0) scales as T̄ ∼ l−1p in the
Brownian regime (lp < 1) and is constant for persistent
particles (lp ≫ 1), c.f. Fig. 1.
Next the chemotactic coupling is switched on (β > 0)

and for all parameter combinations (lp, β, Dc, kc, hc) the
effective rotational diffusion constant Deff

r is extracted
from the decay of the orientation auto-correlation func-
tion ⟨e(0)·e(t)⟩ = exp

(
−Deff

r t
)
. There is not a simple de-

pendence of Deff
r on the model parameters, but Fig. 2(a)

shows that the scaling variables (
√

Deff
r /Dr − 1)/Λ form

a master curve when plotted against ζ = (4Dc)
−1+kc as

predicted in the weak chemotactic coupling limit in [68].
If only the diffusion constant of the chemotactic field,

Dc, is varied, and all other parameters held fixed, the
effective rotational diffusion constant of the particle is
Deff

r = Dr for very large and very small Dc with a mini-

10 -1 100 101 102

10 -5

100

(a)

10
0

10
5

100 101 102

100

(b)

100 101 102

100

(c)

FIG. 2. Single ACP: (a) Scaling plot of the effective rota-
tional diffusion constant Deff

r for different bare persistence
lengths lp (different symbols) and varying dimensionless cou-
pling constants Λ = βhca/D

2
c (color code). The dashed line is

the analytical expression for the weak chemotactic coupling
[68]. (b) MFPT T̄1 as function of the effective persistence
length leffp = lpDr/D

eff
r for different bare persistence lenghts

lp = v0/(aDr). The vertical dotted lines indicate the bare
persistence lengths lp. (c) MFPT T̄1 as function of the ef-
fective persistence length leffp for different decay rates kc > 0
(open symbols) of the chemotactic field c with the MFPT for
vanishing decay rate kc = 0 (full symbols). Parameters are
as in (b). Note the significant improvement of the MFPT
for kc = 0 for high chemotactic coupling Λ (large leffp ) due to
long-term memory of the chemical field.

mum in between. This is because at large Dc gradients in
the concentration c disappear fast and thus the chemo-
tactic response is low. On the other hand, for very small
Dc, the particle has to circle around to cross its own
trail, which usually takes longer than 1/Dr and thus has
no influence on the rotational dynamics.
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Using the effective rotational diffusion constant one
can define an effective persistence length leffp = lpDr/D

eff
r

and Fig. 2(b) shows the MFPT T̄1 as a function of leffp for
different bare persistent lengths lp = v0/(aDr) in com-
parison with the result of a simple active Brownian parti-
cle (β = 0). Fig. 2(c) shows that for non-vanishing decay
constant kc ̸= 0, the dependence of the MFPT on the
effective persistence length leffp = is nearly identical to
the one of a simple active Brownian particle on the bare

persistence length lp and decays as T̄ ∼
(
leffp

)−1
in the

Brownian regime and is constant for persistent particles.
This implies that for the parameter considered here the
self-generated chemical signal only modifies the persis-
tence of the motion and has no other effect on the search
efficiency.

Fig. 2(c) also shows that the situation is different for
kc = 0, i.e. a chemical trail is not destroyed by a decay
process: long-time memory emerges leading to a signifi-
cant improvement in search efficiency for large chemotac-
tic coupling Λ = βhca/D

2
c , c.f. the solid and open sym-

bols for k0 = 0 and kc ̸= 0, respectively, for in the regime
of intermediate effective persistence length 2 < leffp < 10.

B. Single ACW

The single ACW has been analyzed in [47] where it was
shown that the MFPT T̄1 decreases with the chemotactic
coupling β for small β and increases sharply for large β,
such that it displays a minimum at some value β∗, which
is the optimal search strategy for the single ACW, c.f.
Fig. 3(a). For large values of β the particle trajectories
are straight lines, which on a square have only two direc-
tions and therefore miss the target with high probability
leading to a diverging MFPT. This is different in the ACP
model, where ballistically moving particles can go in any
direction in two-dimensional space leading to a constant
but finite MFPT for periodic boundary conditions.

Here we demonstrate that the MFPT T̄ is a function
of the (numerically computed) persistence length lp (av-
erage number of consecutive steps taken in the same di-
rection) alone, as shown in Fig. 3(b). The persistence
length defines a persistent random walk, for which it
can be adjusted to minimize the MFPT [46]. For the
ACW considered here the persistence length lp increases
monotonically with the chemotactic coupling since as β
increases, the walker tends to jump to the neighbour-
ing site with the lowest concentration with less and less
fluctuations, which eventually results in a purely ballistic
motion [18]. There exists hence a value of β for which the
resulting persistence length lp is optimal for the search.
We note that this optimal value β∗ depends non-trivially
on the diffusion constant Dc as lp also depends on Dc in
a non-monotonous way, see [18] for details. We therefore
observe that β∗ first decreases with Dc for low values
of Dc, then reaches a minimum and eventually increase
again for large values of Dc, see Fig. 3(c).
To check whether there are other effects besides a

10−1 100 101 102 103

β

1.0

1.5

2.0

2.5

3.0

T̄
1
/L

2

(a)

Dc = 2

Dc = 0.5

Dc = 0.2

Dc = 0.05

10−2 10−1 100 101 102

lp − l
(0)
p

1.0

1.5

2.0

2.5

3.0

T̄
1
/L

2

(b)

10−1 100

Dc

102

6× 101

2× 102

3× 102
4× 102

β
∗

(c)

FIG. 3. Single ACW: (a) MFPT T̄ of a single chemotactic
random walker as a function of the coupling constant β. Solid
line are the results of the full model for various values of
Dc. The dashed lines are the results of the effective model,
where the transition probabilities p→,↑,←,↓ are measured in
the simulations. (b) MFPT T̄ as a function of the measured
persistence length lp from which we have subtracted its value

for a blind random walk l
(0)
p = 4/3. (c) Optimal values of the

chemotactic coupling β as a function of Dc.

change in the persistence length that govern the search
in our model, we extract the relative frequencies of for-
ward, right, left and backward moves with respect to
the last step taken (p→, p↓, p↑ and p←) and generate a
new random walk using this constant transition probabil-
ities, which now do not dependent on the concentration
field anymore. The MFPT of this effective model can
be computed analytically by following the same method
as the one introduced in [46] without assuming that the
left/right and backward probabilities are equal. The
resulting MFPT follows the same trend as the actual
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MFPT of the full model but it tends to overestimate the
real MFPT, c.f. dotted to solid lines in Fig. 3(a). The
difference in the MFPT quantifies the effect of long-term
memory for the search efficiency of an auto-chemotactic
walker and therefore strongly suggests that long-term
memory is beneficial for the single-agent search.

IV. THE N-AGENT SEARCH

To quantify the collective search efficiency of N par-
ticles searching for a randomly located target, we com-
pare the mean first-passage (MFPT) of N interacting
searchers T̄N to that of N independent searchers, which
only sense their own odor. The MFPT of N indepen-
dent searchers can be obtained from the single-searcher
simulations. Given S1(t), the survival probability of the
target in the single-agent search, the joint survival prob-
ability for N independent processes is given by SN (t) =

[S1(t)]
N
, leading to a MFPT computed as

T̄ ind
N =

∫ ∞
0

[S1(t)]
N
dt . (9)

Note that in case S1(t) is a pure exponential decay then
T̄ ind
N = T̄1/N . We define the ratio T̄ ind

N /T̄N as a measure
of collective search efficiency. T̄ id

N /T̄N > 1 means that
collective search is more advantageous than individualis-
tic search and that interaction between agents speeds up
the search.

A. Many ACPs

In this section we study the collective search efficiency
in the ACP model with N = 30 and N = 300 auto-
chemotactic particles corresponding to a packing frac-
tions ϕ ≈ 0.01 and ϕ ≈ 0.1, respectively, which is
quite dilute such that effects due to the area exclusion
are marginal. Because of computational limitations, we
mainly focus on ϕ ≈ 0.1. Different patterns arise when
varying the bare persistence length lp, the chemotac-
tic sensitivity β and the parameters of the concentra-
tion field (Dc, kc and hc), see Fig. 4 (a-d) and the cor-
responding movies in the Supplemental Material [71].
At low lp ≈ 0.5 and not to large dimensionless cou-
pling 1 ≤ Λ = βhca/D

2
c ≤ 10 particles are homoge-

neously distributed, see Fig. 4(a). For Dc/(v0a) ≫ 1
the concentrations profile forms instantly, which in 2d
is c(r) ∝ exp(−r/λ)/

√
r/λ for large distances r, where

λ =
√

Dc/kc. Consequently, the particles behave as if
they would interact via an effective repulsive screened
Coulomb potential. With increasing Λ and at similar lp
small oscillatory bands or exploding clusters appear, see
Fig. 4(b). A large-scale pattern emerges at larger lp ≈ 5
and 10 ≤ Λ ≤ 100, where particles move in bands, surf-
ing on a wave of self-generated chemo-repellent spanning
the entire length of the box [10], see Fig. 4(c). Small

immobile clusters surrounded by a gas phase of ACP’s
can be observed at height Λ > 1000 and lp > 1, see
Fig. 4(d). Simple active Brownian particles are slowed
down by collisions and small clusters with a lifetime of
the order of D−1r are formed. In ACP, the sensor and
source are shifted relative to each other, which leads to
an effective alignment by the concentration field of neigh-
boring particles. This stabilizes the small clusters, which
usually consist of 3, 4 or 6 particles and form highly sym-
metrical structures such as triangles or diamonds.

As elaborated above, the MFPT of a single ACP de-
pends essentially on the effective persistence length leffp
and in the following we address the question whether
the chemotactic repulsion between the particles change
leffp ? Fig. 5(a) shows leffp of N = 30 interacting ACP’s

as a function of leffp of a single ACP. At small Λ the
interactions are unimportant and the points lie on the
dashed line, the identity function. With increasing Λ, col-
lisions between particles increase the rotational diffusion
and thus reduce the persistence. On the other hand, at
large Λ, where immobile clusters form, the persistence is
greatly increased due to alignment introduced by neigh-
boring particles. If we plot the MFPT T̄N as a function
of leffp for N = 30, see Fig. 5(b), we observe basically the
behavior of a single ACP, but with two main differences.
First, the MFPT is much smaller than that of simple ac-
tive Brownian particles (β = 0) with the same persistence
for a coupling Λ > 1. Second, the search performance
decreases significantly for large Λ > 1000, due to trap-
ping of particles into immobile clusters. Bands appear
at higher densities since one needs at least L/(2a) ≈ 50
particles and will be discussed below.

It is a reasonable assumption that a search process ofN
agents is affected by their self-organized spatial arrange-
ment: the more homogeneous the agents are distributed
the better the search area can be explored [61]. In or-
der to quantify the homogeneity of the space exploration
we use a Voronoi tessellation defining a Voronoi cell for
each particle position ri, which contains all points clos-
est to ri. From this we obtain the Voronoi cell’s normal-
ized area-distribution function and finally its standard
deviation σ2

A = ⟨A2⟩ − ⟨A⟩2 of the normalized cell areas
A = A/⟨A⟩, where ⟨A⟩ = L2/N is the mean area. The
area-distribution for randomly distributed particles was
precisely determined via computer simulation and the
estimate of its standard deviation is σind

A =
√
0.28 [72].

We define the measure of the homogeneity of the agent
distribution as the ratio σind

A /σA. For homogeneously
distributed particles σind

A /σA > 1 holds and for clustered
particles σind

A /σA < 1 [73]. In addition we compute the
ratio T̄ ind

N /T̄N of the MFPT of N independent to that
of N interacting searchers. If the collective search effi-
ciency is T̄ ind

N /T̄N > 1 then collective search is beneficial
and the interaction between the agents speeds up search.
We combine both quantities, the measure of spatial order
σind
A /σA and the collective search efficiency T̄ ind

N /T̄N , to-
gether in one diagram for all simulation parameter com-
binations considered so far, shown in Fig. 6.
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FIG. 4. Simulation snapshots. Top row: ACP model with N = 300 autochemotactic particles together with the
color-coded concentration field log (c/c0), where c0 = hcN/(kcL

2). The circle indicates the size of the particle and the
red arrow its propulsion direction. Lengths are scaled by the radius a and time by propulsion time a/v0. (a) Ho-
mogeneously distributed particles (lp, β,Dc, kc, hc,Λ) = (0.5, 1.25, 10, 0.2, 500,12.5), where Λ = βhca/D

2
c . (b) Small

oscillatory bands (0.5, 1.25, 2.5, 0.2, 500,200). (c) Travelling bands (5, 0.125, 2.5, 0.02, 400,16). (d) Immobile clusters
(2.5, 0.25, 0.05, 0.04, 100,20000). Bottom row: ACW model for Dc = 0.5: (e) Flocking phase: N = 10, β = 1000 - (f)
Homogeneous phase: N = 50, β = 100 - (g) Traveling bands N = 500, β = 1000. The background color codes the concentra-
tion field while the white circles indicate positions of the walkers. Movies of the simulations are available in the Supplemental
Material.

A clear positive correlation between the homogene-
ity of the spatial particle distribution and the collec-
tive search efficiency is observed: the more uniformly
the particles are distributed, the higher the search ef-
ficiency (i.e. smaller MFPT). The gain in search effi-
ciency due to a homogeneous distribution of the search
area among the agents is significant, e.g., it can be up
to T̄N ≈ 0.4167 · T̄ ind

N for ϕ ≈ 0.1, see Fig. 6(b). The
particles are most homogeneously distributed and hence
most effective in search for small lp < 1 and not too large
chemotactic coupling Λ ≈ 10. On the other hand, hetero-
geneously distributed particles forming immobile clusters
or traveling bands (σind

A /σA < 1) are very ineffective con-
figurations for search, they appear for high persistence lp
and large coupling strengths Λ.

The gain in search efficiency increases with the density
ϕ, c.f. Fig. 6 (a) and (b), which is due to a decreas-
ing mean inter-particle separation and thus a stronger
repulsion leading to a more homogeneous particle distri-
bution. Obviously to strong ordering would be disad-
vantageous, although the search area would be perfectly
partitioned among the particles since the particles would
tend to localize in the center of their Voronoi-cells, like in

a crystal arrangement, their dynamics would be slowed
down and the exploration of the search subarea would be
suppressed. In our case, however, none of the uniformly
ordered systems showed a dynamical slow-down, neither
a subdiffusive region of the mean square displacement
nor a decrease in translational diffusion. To maximize
the benefit of collective search, it is therefore important
that the agents remain in a fluid state, in a delicate bal-
ance between partial order and the appropriate level of
activity. This is only achieved with low bare persistence
lp and not too strong coupling to the chemical field.

B. Many ACWs

Next we examine whether in the ACW model the ef-
fective persistence of each searcher is still the essential
quantity controlling the search efficiency of a system with
N chemotactically interacting particles, or whether ad-
ditional collective effects emerge.

Dilute and homogeneous phases. At low particle den-
sities, the trend observed for the single-searcher case
persists: the MFPT T̄N first slowly decreases with
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FIG. 5. Many ACPs: (a) Effective persistence length leffp for
the ACP model with N = 30 particles as a function of the
effective persistence length leffp of a single ACP. The dashed

line represents leffp = lp. The persistence is reduced at in-
termediate chemotactic coupling strengths Λ due to collisions
between particles. At large Λ, immobile clusters form and leffp
is greatly increased. (b) MFPT T̄N as a function of leffp for
N = 30 interacting ACPs, scaled with the particle density
N/L2. The dashed line shows the MFPT of active Brown-
ian particles (ABPs) without coupling to the chemical field
(β = 0). The MFPT of ACPs is smaller than the MFPT of
ABPs, except at large Λ, where clustering sets in. Different
bare persistence lengths lp are indicated by different symbols
and the dimensionless chemotactic coupling Λ = βhca/D

2
c is

color-coded.

the chemotactic coupling strength β and then increases
abruptly, see Fig 7(a). This suggests that the physi-
cal mechanism at play is similar to the one observed
for the single-walker search, i.e., the system reaches a
state where all walkers move ballistically at large values
of β, which leads to a very inefficient search. This phase
was documented in Ref. [18], where it is referred to as
the cluster phase and is basically a flocking phenomenon:
particles approaching each other have a high chance of
aligning their mutual directions due to the local profile of
their combined concentration fields, and then maintain-
ing this common direction thanks to the effective per-
sistence generated by their own field. This leads to the
formation of small clusters of particles traveling ballisti-
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FIG. 6. Many ACPs: Collective search efficiency T̄ ind
N /T̄N

versus spatial homogeneity σind
A /σA for two packing fractions

(a) ϕ ≈ 0.01 and (b) ϕ ≈ 0.1. Collective search efficiency
T̄ ind
N /T̄N is defined as the ratio of the mean first passage time

of non-interacting T̄ ind
N to that of interacting particles T̄N , i.e.,

for T̄ ind
N /T̄N > 1 a collective search is advantageous. Spatial

order σind
A /σA is defined as the ratio of standard deviation of

normalized areas A = A/⟨A⟩ of non-interacting σind
A (Pois-

son Voronoi cells) to that of interacting particles σA, i.e., for
σind
A /σA > 1 the particles are distributed more homogeneous

as compared to a spatial Poisson process. Different bare per-
sistence lengths lp are indicated by different symbols and the
dimensionless chemotactic coupling Λ = βhca/D

2
c is color-

coded. In (b) the letters (a), (b), (c) and (d) correspond to
the snapshots in Fig. 4.

cally over large distances, which eventually remain stable
once the system has reached a configuration, where they
all are far apart from each other, see Fig. 4(e).

At higher densities, the particles constantly collide
with each other and do not reach the adsorbing state
of the ballistically moving clusters. The system stays
in a homogeneous phase, where particles are distributed
across space, see Fig. 4(f). As a consequence, T̄N does
not sharply increase at large values of β but converges
to a plateau value for β → ∞, which can still be larger
than the global minimum reached at a finite value of β,
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FIG. 7. (a) MFPT T̄N of the ACW model for Dc = 0.5 and
varying number of walkers N , both for the original model
with self-interaction (solid lines) and for the model where self-
interaction is removed, with b = 0 (dashed lines). The value
if normalized by L2/N for visualization. (b) The same data
for T̄N in the original model is plotted as a function of the

persistence length lp, from which the base value l
(0)
p = 4/3

is subtracted. (c) Collective search efficiency T̄ ind
N /T̄N as a

function of N for Dc = 0.5 and various values of β/β∗, where
β∗ is the optimal value of β for the single-agent search.

as shown in Fig 7(a).

Analogous to the single-searcher case one can relate the
behavior of the MFPT to the effective persistence length
lp, as illustrated in Fig. 7(b). T̄N evolves again in a non-
monotonic way and its minimum is found for a common
value l∗p regardless of the value of N , e.g., l∗p ≃ 10 for a
lattice of size L×L = 100×100 andDc = 0.5. However, it
is clear that the persistence length observed for a certain
value of β strongly differs for different densities of walkers
due to strong interaction effects.

We quantify the influence of interactions using the col-
lective search efficiency T̄ ind

N /T̄N , which we find to be
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FIG. 8. MFPT T̄N of the ACW model for Dc = 0.5 for large
number of particles N . (a) T̄N as a function of β for various
values of N (normalized by L2/N). The jump in T̄N coincide
with the transition from the homogeneous to band phase. (b)
T̄N as a function of β for various values of N (normalized
by L). For a perfect thin band one would expect T̄N = L/2
independent of N .

always greater than 1 and to increase with N , as shown
in Fig. 7(c). This indicates that interactions between
walkers and their respective fields are beneficial for the
search efficiency. Its lowest value is reached when β = β∗,
i.e. the optimal chemotactic coupling of the single-agent
search, indicating that optimal single-agent searches run
in parallel is already an overall very efficient strategy.
For β < β∗, interactions contribute to reducing the
search time more, but still by a relatively small amount.
Whereas the single-agent search is highly inefficient for
β > β∗, due to the ballistic motion of the particles, this
is no longer the case for the N-agent process. This re-
sults in a very high search efficiency measured by the
ratio T̄ ind

N /T̄N and is a collective effect due to the strong
interactions mediated by the chemotactic repulsion.

Band formation. At higher densities, the system
spontaneously forms macroscopic bands, as reported in
Ref. [18]. These bands spread across one axis of the sys-
tem and travel ballistically in the transverse direction,
see Fig. 4(g). There is no limit in the total number of
particles they can contain such that one band often con-
tains almost all searchers in the system.

The formation of such structures impacts substantially
the mean search time, see Fig. 8(a). While walkers are
not well distributed across space, the overall structure
traveling at constant speed allows to sweep the system
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at once, such that all sites are scanned once the band
has traveled across the system. Thus the MFPT is of
the order of L/2 and does not vary much with N , see
Fig. 8(b). A more quantitative discussion of the efficiency
of searching in a band structure is deferred to section V.

V. ACW WITHOUT SELF-INTERACTION

So far we have seen that the chemotactic interactions
increase the search efficiency of the N -agent system sub-
stantially, but we did not discriminate between the role
of the self-interaction and the role of particle-particle in-
teraction. Hence we examine in this section the role of
the interaction of the searchers with their own chemotac-
tic field by switching it off. To achieve this one needs to
distinguish between the chemotactic field generated by
each individual searcher. For simplicity we focus on the
ACW model, where the concentration of the chemical

produced by searcher l on site j is denoted with with c
(l)
j

and obeys the diffusion equation (7), and the total con-

centration being cj =
∑N

l=1 c
(l)
j . Switching off the self-

interaction means that searcher l only ”sees” the concen-

tration cj − c
(l)
j replacing cj in the exponents of the tran-

sition probabilities pi→j in Eq. (6). Since with the self-
interaction also the self-induced persistence is switched
off we also introduce an additional intrinsic persistence
parameter b and define the probability p̃i→j for walker l
to jump to a neighboring site j from a site i as

p̃i→j =
(1 + bj)e

−β
(
cj−c(l)j

)
∑

k∈Ni
(1 + bj)e

−β
(
ck−c(l)k

) , (10)

where bj = b ≥ 0 if the site j is the one the walker would
reach if he continued in his current direction and bj = 0
otherwise. Without the interaction with the chemotactic
field (β = 0) the single-walker persistence length is lp =
(4 + b)/3.

For vanishing intrinsic persistence (b = 0) the MFPT
is shown in Fig. 7(a) as a function of β for various val-
ues of N . While the case N = 1 leads to a constant
value as it simply corresponds to a blind random walk,
the behaviour of the curves for N > 1 is significantly dif-
ferent. Starting from the same value as for the case with
self-interaction, it then slightly decreases and eventually
abruptly increases. This transition occurs at much lower
values of β than the transition to the ballistic regime in
the original model. This is due to the formation of a frus-
trated ’crystal-like’ state, where each walker is trapped
in a cage created by the fields of other walkers. A typ-
ical configuration of such state is shown in Fig. 9. In
the steady-state, the individual concentration profiles are
roughly radially symmetrical and the dynamics of walk-
ers is highly sub-diffusive with even a full dynamical ar-
rest for very large values of β, as can be seen from the
behaviour of the mean square displacement in Fig. 10.
This results in an extremely large search time T̄N for
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FIG. 9. Simulation snapshot for the ACW model without
self-interaction with N = 50, Dc = 0.5 and β = 100. The
positions of all walkers are indicated with green circles, ex-
cept for the l-th walker, represented by a red circle. The
background color codes for the concentration field that this
specific walker sees, i.e. c − c(l). It appears clearly that it
is trapped in a cage created by the concentration field of the
other walkers. A movie is available in the Supplemental Ma-
terial.

large values of β, since walkers are essentially immobile
and do not scan the domain at all.
An increasing persistence (b > 0) allows the walkers

to overcome the frustrated state and the system becomes
diffusive again (and even super-diffusive at short times),
as shown in Fig. 10. Consequently, the MFPT is dramat-
ically influenced by b. We show in Fig. 11 for N = 5 and
N = 20 and various values of β that T̄N first strongly
decreases with b, as the system loses its dynamical ar-
rest and becomes more efficient at scanning the domain.
Then, for larger values of b, T̄N increases again as the
bias b is so strong that walkers eventually reach again
the ballistic regime and do not feel the effect of the con-
centration field. There is thus an optimal value of b that
minimizes the MFPT to reach a randomly located target
in the biased model without self-interaction.
The value of the MFPT reached at this optimal point

can be compared to the value of the MFPT for the
same parameter set of the full ACW model with self-
interaction, as shown in Fig. 11. At small values of the
chemotactic coupling β the ACW model without self-
interaction at its optimal bias value performs better than
the original model. This is due to the fact that in this
region the interaction with the field is rather weak such
that making the walkers artificially persistent through
an optimal value of b will make the search more efficient.
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FIG. 11. MFPT of the full ACW model without self-
interaction as a function of the persistence parameter b, for
varying searcher number N and coupling constant β. The
corresponding values for the MFPT of the full ACW model
are shown for comparison (horizontal lines with same style).

However, in regions where the full ACW model is effi-
cient because of the optimal interaction strength with
the field, the ACW model without self-interactions does
not outperform the original one. This indicates that the
full ACW model, where walkers interact both with their
own field but also with the one of other walkers, has in-
trinsically a superior efficiency for a large range of values
of the chemotactic coupling β.

VI. DISCUSSION

We have revealed a variety of mechanisms rendering
non-local, delayed interactions mediated by chemotactic
trails beneficial for a collective search, but also scenarios

where the phases emerging from these interactions slow
the searchers down.
Most importantly, interactions are beneficial when

they allow the searchers to be distributed as uniformly as
possible across space, so that each searcher can scan its
own sub-area in parallel. This can be achieved by repul-
sive autochemotaxis, since the repulsive trails the particle
left behind, act as an effective repulsive pair potential.
However, being evenly spread across space is not a suf-

ficient condition to be collectively efficient at searching.
In fact, searchers also need to be mobile and relatively
persistent in order to scan a region of space efficiently.
For example, in the frustrated phase in the lattice model
without self-interaction, see Fig. 9, the walkers are well
distributed across space but almost immobile. Under op-
timal conditions, assemblies of auto-chemotactic walk-
ers satisfy both conditions: are spontaneously well dis-
tributed across space and sufficiently motile to scan space
efficiently. This explains why they can be very efficient
collective searchers.
For a single ACP reducing the decay rate kc of the

chemical cue, i.e., making the trails survive longer, im-
proves the search efficiency substantially for large β and
small Dc. However, multiple ACPs in this parameter
range mainly form immobile clusters, the worst config-
uration for effective search, and therefore the positive
effect of long-term memory cannot come into play. For
a single ACW we showed that long-term memory also
significantly reduces the search time by comparing the
MFPT of the full model with that of an effective model
under the assumption of a short-lived memory. However,
in contrast to the ACP, the improvement is present for
a much larger range of parameters, even for small β and
large Dc, and long-term memory should thus almost al-
ways have a positive effect on collective search.
It should still be noted that both models exhibit the

formation of traveling bands, whose search efficiency
needs to be addressed in more details, as this strategy is
used by humans in some situations such as police search
for missing people or rescue of a person buried in an
avalanche.
We derive a simple criterion when searching in bands

surpass parallel searching of evenly distributed particles:
Consider N searchers with radius a in a region of size L2,
which (case A) move homogeneously distributed with an
effective diffusion constant Deff , or (case B) move in a
band spanning the system in a lateral direction (say in
y-direction) with a velocity v0. The MFPT in case A can
be estimated as

T̄hom = αL2/(NDeff) (11)

with some constant α of order lnL. The MFPT of par-
ticles moving with velocity v0 in a band formation (case
B) is

T̄band = L/(2v0). (12)

Consequently it is still more efficient to search by uni-



12

formly distributing agents if

T̄hom

T̄band
=

2αv0
Deff

· L
N

< 1 , (13)

which is fulfilled for a sufficiently large number of diffu-
sive searchers: N > L · 2αv0/Deff . This is plausible since
increasing the number N of searchers in a band simply
increases the band thickness such that only the walkers
in front of the band are actually scanning new area while
the walkers behind only pass over the area that have al-
ready been checked.

Several conclusions can be drawn from this estimate.
First, at least N = L/(2a) searchers are needed to form
a continuous band (without holes). Even with this min-
imum number of searchers a diffusive search would still
be more efficient than band search if 4αv0a/Deff < 1, i.e.
for small velocity v0 or large effective diffusion constant
Deff (as long as the system size L is fixed since α grows
logarithmically with L). Second, for non-interacting
ABPs with self-propulsion velocity v0 and rotational dif-
fusion constant Dr the effective diffusion constant is
Deff = v20/2Dr and the persistent length is lp = v0/aDr,
such that the criterion for a more efficient diffusive search
can be expressed as T̄hom/T̄band = 4αL/(lpaN) < 1. As
expected N independent persistent searchers are more ef-
ficient than band searchers when their persistent length
is sufficiently large (note that this argument only holds
as long as lp ≪ L). Third, similarly, for the inde-
pendent persistent random walkers (i.e the autochemo-
tactic searcher with β = 0) the persistence length is
p→/(1 − p→), where p→ is the persistence probabil-
ity, i.e. the probability to move in the same direction
as in the last step, and the effective diffusion constant
Deff = γl2p with some prefactor γ. Again the criterion
for a more efficient diffusive search can be expressed as
T̄hom/T̄band = 2αL/(γlpN) < 1 (where we set the lat-
tice constant a = 1). Fourth, most relevant for our re-
sults on the MFPT of the collective N -particle search is
that once the chemotactically interacting searchers form
bands, these bands are substantially broader than min-
imally needed (N ≫ L/(2a)). As our estimate (13)
predicts, the MFPT then becomes much larger than
the MFPT for particles being homogeneously distributed
over the search area. Thus, the criterion (13) explains
the sharp increase of MFPT at the transition from the
homogeneous to band phase, which gets stronger with
increasing N , see Fig. 8(a).

VII. CONCLUSION

Our work shows that chemotactic interactions among
motile agents allow collective search strategies of superior
efficiency due to mainly three reasons: First, the traces
left by particles along their trajectory act as an effective
memory, preventing agents from visiting the same loca-
tion twice within a short period of time. Second, the

self-interaction of the agents with their own chemotactic
field leads to an effective persistence length of the trajec-
tories that can be beneficial for the search. Third, the
chemotactic interaction of agents with the trails of other
searchers leads to more homogeneous spatial distribution
of the searchers and thus to a more efficient space ex-
ploration in the search for the randomly located target.
Moreover, we found that the spontaneous formation of
ballistically moving bands, although commonly applied
in search-and-rescue operations, is mostly not beneficial
for the search process due to the large number of agents
necessary to sustain the band pattern induced by chemo-
tactic interactions.
Our study is the first to comprehensively explore

the impact of complex interactions on collective search
strategies on the micro-scale for which reason a plethora
of variations and extensions remain unexplored and de-
serve further investigation.
So far, we have looked at particles that secrete repul-

sive chemical signals, but there is also evidence that some
cells can create gradients themselves by degrading an at-
tractant in their environment, thus acting as sinks rather
than sources [5, 6]. These situations are not dual to each
other because the concentration of an attractant cannot
become negative, for which reason new collective effects
might emerge.
Moreover, beyond chemotaxis, which is a directed re-

sponse to chemical gradients, many microorganisms ex-
hibit chemokinesis, which is an undirected response to
changes in chemical concentration. This behavior in-
volves altering speed or reorientation frequency based on
the locally sensed concentration of chemicals. For ex-
ample, the bacteria Myxococcus xanthus, which is well-
known for its predatory behavior on other microor-
ganisms, exhibits in addition to auto-chemotaxis also
auto-chemokinesis [74]. However, the impact of auto-
chemokinesis on collective search remains unexplored.
With regards to applications to foraging organisms one

should also think about more complex chemical clues,
containing more information, like a time-stamp or direc-
tional information, or influencing also searcher speed or
persistence.
In conclusion this work combines two major research

areas: active matter with its recent exploration of chemo-
tactic active colloids or droplets, migrating cells, and liv-
ing organisms; and stochastic processes and search strate-
gies with its recent focus on non-Markovian search pro-
cesses. Hence our study of collective search strategies of
large groups of interacting agents might not only be rel-
evant for chemotactic active matter but also for a wide
range of fields like ethology [75], information engineering
[76], robotics[77], and social engineering[78].
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