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We systematically derive an exact coarse-grained description for interacting particles with thermodynam-
ically consistent stochastic dynamics, applicable across different observation scales, the mesoscopic and the
macroscopic. We implement the coarse-graining procedure using the Doi–Peliti field theory, which preserves
microscopic noise effects on the meso/macro scale. The exact mapping reveals the key role played by Pois-
sonian particle occupancy statistics. We show the implications of the exact coarse-graining method using
a prototypical flocking model, namely the active Ising model, which exhibits a mismatch between the mi-
croscopic and macroscopic mean-field coarse-grained descriptions. Our analysis shows that the high- and
low-density regimes are governed by two different coarse-grained equations. In the low-density regime, noise
effects play a prominent role, leading to a first-order phase transition. In contrast, the second-order phase tran-
sition occurs in the high-density regime. Due to the exact coarse-graining methods, our framework also opens
up applicability to systematically analyze noise-induced phase transitions in other models of reciprocally and
non-reciprocally interacting particles.

1. INTRODUCTION

The dynamics of microscopic particles have been qual-
itatively well understood using a coarse-grained macro-
scopic/mesoscopic field-theoretical description for an order
parameter [1–5]. This methodology is based on delineating
the order parameter, and it relies on symmetries and con-
servation laws: a top-down approach towards mean-field dy-
namics of the order parameter. The field-theoretical physi-
cal description of many-body particle systems has been over-
whelmingly successful in encapsulating the universal phys-
ical properties of different microscopic systems. For ex-
ample, the critical phenomena in equilibrium systems [2],
non-equilibrium systems such as reaction-diffusion systems
[3], and chemical reaction networks [6]. The path inte-
gral formulations that incorporate fluctuations have been
studied, namely the Martin-Siggia-Rose functional [7] and
the Bausch-Janssen-Wagner-deDominicis functional [8–10].
However, they incorporate close-to-equilibrium Gaussian
fluctuations around the mean-field dynamics of the order-
parameter: again a top-down approach towards fluctuations.

Despite its success, the field-theoretical description has
major drawbacks [1–5]. First, a field theory contains mul-
tiple control parameters without a systematic and transpar-
ent connection to the microscopic control parameters of the
system under consideration, which are usually only a few.
Second, an effective coarse-grained description lumps to-
gether microscopic degrees of freedom that do not neces-
sarily have the same dynamic and thermodynamic proper-
ties. Therefore, these field theories are usually not thermo-
dynamically consistent because an exact connection to a mi-
croscopic system is missing, which impedes a field-theoretic
formulation of the stochastic thermodynamics of the system
under consideration, in particular, the computation of the
thermodynamic entropy production [11]. Third, the coarse-
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grained phenomenological description utilizes the mean-field
assumption, which completely ignores microscopic noise ef-
fects. This approximation has been shown to exhibit a huge
qualitative and quantitative mismatch between microscopic
and coarse-grained descriptions. For example, the prototyp-
ical flocking model, the active Ising model [12, 13]. The AIM
has a first-order phase transition from the disordered to the
ordered phase [12, 13]. In contrast, the macroscopic coarse-
grained description predicts a second-order phase transition
from the disordered to the ordered phase [12, 13]. Incorpo-
rating noise effects for particle occupancy has been shown to
successfully bridge the microscopic and coarse-grained phys-
ical description in the low-density regime; however, it fails
in the high-density regime [14]. In addition, noise effects
play a key role in not only the correctness of the phase di-
agram but also the exact quantification of thermodynamic
dissipation across different observation scales. This high-
lights the importance of incorporating noise effects for a dy-
namic and thermodynamically consistent description across
different observable scales. Fourth, the focus has been on the
non-equilibrium dynamics of non-interacting (ideal) parti-
cles modelled using ideal reaction-diffusion systems or chem-
ical reaction networks, but the majority of real-world par-
ticles are interacting (non-ideal). This implies that a tool
similar to reaction-diffusion systems and chemical reaction
networks for studying the dynamics and thermodynamics of
out-of-equilibrium interacting particles is missing. Bottom-
up approaches to a coarse-grained description have been ex-
plored [15–19], but are susceptible to one or more of the
aforementioned drawbacks.

To remedy aforementioned drawbacks, a bottom-up ap-
proach is necessary, which we present here for a generic class
of interacting particle systems, comprising non-equilibrium
systems with reciprocal and non-reciprocal interactions
[11], that preserves microscopic noise and the thermody-
namical consistency on the macroscale/mesoscale. Here,
we systematically elaborate on the technical aspects of
the coarse-graining procedure for the interacting parti-
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cles and obtain the corresponding mesoscopic/macroscopic
Langevin description for the stochastic particle num-
ber/density fields. Thermodynamically consistent coarse-
graining allows us to identify the Local detailed balance
condition (LDB) on the mesoscale/macroscale, which pre-
serves the thermodynamically-consistent formulation of mi-
croscopic particles [11]. Moreover, in contrast to simulat-
ing the microscopic Master equation, simulating the coarse-
grained microscopic/macroscopic Langevin equations for the
particle number/density greatly decreases computational re-
quirements. We use the Doi–Peliti field theory (DPFT) tech-
nique to implement the coarse-graining procedure [20–28].
We obtain an exact large deviation rate functional for the
stochastic dynamics of interacting particles. DPFT exactly
quantifies the microscopic fluctuation in the coarse-grained
description because of its second quantized nature. We im-
plement and derive the coarse-graining procedure for the
thermodynamically consistent non-reciprocally interacting
particles. However, it can be easily modified to any system
of interacting particles that does not necessarily satisfy the
thermodynamic consistency condition, but requires micro-
scopic noise effects incorporated in the coarse-grained de-
scription. Using bottom-up approach to microscopic transi-
tions, an exact path integral formulism for discrete state sys-
tems is derived in Ref. [29–31], and the dynamic and thermo-
dynamic implications of Poisssonian transitions for far-from-
equilibrium systems are detailed.

2. MICROSCOPIC DESCRIPTION

2.1. Dynamics

We consider a lattice gas model with lattice spacing 𝑙 and
continuous-time dynamics. The lattice spacing is assumed to
be one, unless stated otherwise. Physically, this corresponds
to choosing the microscopic diffusive length scale as a mea-
surement unit. Here, we study the discrete space description;
however, the continuous space limit is obtained by taking an
infinitesimally small lattice spacing. Each particle has a type
index 𝛾 and a lattice index #. 𝑁 #

𝑖 denotes the number of parti-
cles of type 𝑖 at the lattice site index #. {𝑁 } denotes the lattice
configuration specified by the particle occupancy vector. The
dimension of {𝑁 } is the product of the number of lattice sites
and the particle types. The microscopic Boltzmann weight 𝜖#

𝑖

for the type 𝑖 particle at the lattice site # is divided into its

reciprocal and non-reciprocal parts, 𝜖𝑟𝑖 and 𝑓 𝑛𝑟𝑖 , respectively
[11].

𝜖𝑟𝑖 = 𝛽
∑︁
𝑗≠𝑖

𝑣𝑟𝑖 𝑗𝑁
#
𝑗 + 𝛽𝑣𝑟𝑖𝑖

(
𝑁 #
𝑖 − 1

)
, 𝑓 𝑛𝑟𝑖 = 𝛽

∑︁
𝑗

𝑣𝑛𝑟𝑖 𝑗 𝑁
#
𝑗 . (1)

𝑣𝑟𝑖 𝑗 quantifies the microscopic Boltzmann weight due to the
reciprocal interaction between the particle types 𝑖 and 𝑗 [11].
Similarly, 𝑣𝑛𝑟𝑖 𝑗 quantifies the microscopic Boltzmann weight
due to the non-reciprocal interaction experienced by the par-
ticle of type 𝑖 due to the particle of type 𝑗 . Importantly, by
construction, the symmetry 𝑣𝑟𝑖 𝑗 = 𝑣

𝑟
𝑗𝑖 and the anti-symmetry

𝑣𝑛𝑟𝑖 𝑗 = −𝑣𝑛𝑟𝑗𝑖 are satisfied [11]. 𝑣𝑟𝑖 𝑗 , 𝑣
𝑛𝑟
𝑖 𝑗 > 0 (𝑣𝑟𝑖 𝑗 , 𝑣

𝑛𝑟
𝑖 𝑗 < 0) signify

a repulsive (an attractive) interaction. 𝑣𝑖 𝑗 = 𝑣𝑟𝑖 𝑗+𝑣𝑛𝑟𝑖 𝑗 quantifies
the total interaction coefficient.

Δ#
𝛾𝛾 ′ denotes a reactive transition of type 𝛾 ′ to 𝛾 at the lat-

tice site #. The reactive transition changes the lattice occu-
pancy vector {𝑁 } → {𝑁 + Δ#

𝛾𝛾 ′ }. Similarly, Δ ®D#
𝑖

denotes a
diffusive transition of the particle of type 𝑖 at the lattice site
# along the direction ®D. The diffusive transition changes the
lattice occupancy vector {𝑁 } → {𝑁 + Δ

®D#
𝑖

}. 𝑘#
𝛾 ′𝛾 denotes

the reactive transition rate to change the particle type from 𝛾

to 𝛾 ′ at the lattice site #. Similarly, 𝑘 ®D#
𝑖

denotes the diffusive
transition rate of the particle type 𝑖 along the direction vector
®D. Reactive and diffusive transition rates are related to the

microscopic Boltzmann weight eq. (1). The exact expressions
read:

𝑘#
𝛾 ′𝛾 = 𝑑𝛾 ′𝛾𝑒

𝜖#
𝛾 , 𝑘

®D#
𝑖 = 𝑑D

𝑖 𝑒
𝜖#
𝑖 . (2)

Here, 𝑑𝛾 ′𝛾 and 𝑑D
𝑖

are the constants that quantify the reactive
and diffusive transition rates, respectively. {Δ#

𝛾𝛾 ′ } and {Δ ®D#
𝑖

}
denote the set of all reactive and diffusive transitions, respec-
tively. Thus, the system satisfies the Local Detailed Balance
condition [11].

A. Master equation

The probability of a configuration {𝑁 } at time 𝑡 is denoted
by 𝑃{𝑁 } (𝑡). The Master Equation for the evolution of 𝑃{𝑁 } (𝑡)
reads:

𝜕𝑡𝑃{𝑁 } (𝑡) =
∑︁

{Δ#
𝛾𝛾 ′ }

(
𝑘#
𝛾 ′𝛾 ({𝑁 + Δ#

𝛾𝛾 ′ })𝑃{𝑁+Δ#
𝛾𝛾 ′ }

− 𝑘#
𝛾𝛾 ′ ({𝑁 })𝑃{𝑁 }

)
︸                                                         ︷︷                                                         ︸

− 𝑗#
𝛾𝛾 ′ ({𝑁 })

+
∑︁
{Δ ®D#

𝑖
}

(
𝑘
( ®D#)−1

𝑖
({𝑁 + Δ

®D#
𝑖 })𝑃{𝑁+Δ ®D#

𝑖
} − 𝑘

®D#
𝑖 ({𝑁 })𝑃{𝑁 }

)
︸                                                              ︷︷                                                              ︸

− 𝑗
®D#
𝑖

({𝑁 })

,

(3)

Here, 𝑗#
𝛾𝛾 ′ ({𝑁 }) and 𝑗

®D#
𝑖

({𝑁 }) quantify the net probability outflow due to the transitions Δ#
𝛾𝛾 ′ and Δ

®D#
𝑖

, respectively.
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3. COARSE-GRAINING: MICROSCOPIC TO MESOSCOPIC

The microscopic stochastic description requires tracking
all possible configurations in the {𝑁 } space. We aim to for-
mulate a coarse-grained mesoscopic description of the aver-
age particle occupancy, which fluctuates stochastically. This
reduces the complexity of tracking the mesoscopic dynamics
compared to the Master Equation.

3.1. Doi-Peliti field theory

A. Introduction

DPFT utilizes the second quantized to classical many-body
systems [20–28, 32]. Due to its second quantized formula-
tion, DPFT incorporates the discreteness of the microscopic
system in the mesoscopic description. Moreover, DPFT has
obtained the mesoscopic description using a Poissonian mea-
sure over the microscopic particle occupancy. The phe-
nomenological coarse-grained mean-field description does
not account for Poissonian fluctuations or microscopic dis-
creteness. Poissonian occupancy has prominent importance
in the low-particle density limit. In this regime, the coarse-
grained mean-field description fails due to the importance of
Poissonian noise [13, 14]. Importantly, it qualitatively and
quantitatively affects the thermodynamic dissipation [11].
Hence, it has prominent importance for the thermodynam-
ically consistent coarse-graining.

B. Doi representation

The second quantized state for the 𝑁 #
𝑖 number of the type

𝑖 particles at the lattice site # is denoted by |𝑁 #
𝑖 ⟩, and the cor-

responding dual ⟨𝑁 #
𝑖 | [20–22]. The second quantized states

satisfy the following ladder operator relations,

(𝜂#
𝑖 )

† |𝑁 #
𝑖 ⟩ = |𝑁 #

𝑖 + 1⟩, 𝜂#
𝑖 |𝑁 #

𝑖 ⟩ = 𝑁 #
𝑖 |𝑁 #

𝑖 − 1⟩, (4)

The creation (annihilation) operators (𝜂#
𝑖 )

† (𝜂#
𝑖 ) acting on

|𝑁 #
𝑖 ⟩ increase (decrease) the occupancy state by 1. Anal-

ogously, the number operator 𝑁̂𝑖# = (𝜂#
𝑖 )

†
𝜂#
𝑖 satisfies

(𝜂#
𝑖 )

†
𝜂#
𝑖 |𝑁 #

𝑖 ⟩ = 𝑁 #
𝑖 |𝑁 #

𝑖 ⟩. In contrast to the quantum notation,
the classical notation asymmetrically distributes the eigen-
value 𝑁 #

𝑖 over the creation and annihilation operators. The
consequence of combinatorics is that there are 𝑁 #

𝑖 different
possibilities of annihilating a particle, but only 1 possibility
of creation.

C. SecondQuantized Hamiltonian

The second quantized Hamiltonian for Δ#
𝛾𝛾 ′ and Δ

®D#
𝑖

is
given by [20–22]:

𝐻̂
®D#

𝑖 = 𝑑𝑖

[
(𝜂#

𝑖 )
† − (𝜂 ®D#

𝑖 )
†
] [
𝜂#
𝑖 𝑒

𝜖#
𝑖 +

1
2
®D· ®𝑓 𝑠𝑝

𝑖 − 𝜂 ®D#
𝑖 𝑒𝜖

®D#
𝑖

− 1
2
®D· ®𝑓 𝑠𝑝

𝑖

]
,

𝐻̂ #
𝛾𝛾 ′ = 𝑑𝛾𝛾 ′

[
(𝜂#

𝛾 )
† − (𝜂#

𝛾 ′ )†
] [
𝜂#
𝛾𝑒

𝜖#
𝛾 − 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′ − 𝜂#

𝛾 ′𝑒
𝜖#
𝛾 ′+

1
2 𝑓

𝑐ℎ
𝛾𝛾 ′

]
.

(5)

The total second quantized Hamiltonian 𝐻̂ for all possible
transitions is:

𝐻̂ = 𝐻̂ R + 𝐻̂D . (6)

Here, 𝐻̂ R =
∑

{Δ#
𝛾𝛾 ′ }

𝐻̂ #
𝛾𝛾 ′ and 𝐻̂D =

∑
{Δ ®D#

𝑖
} 𝐻̂

®D#
𝑖

are the re-
active and diffusive contributions, respectively.

D. The coherent state and master equation

The coherent state |𝜙#
𝑖 ⟩ for the type 𝑖 particle at # and its

dual counterpart ⟨(𝜙#
𝑖 )∗ | are defined as:

|𝜙#
𝑖 ⟩ = 𝑒𝜙

#
𝑖 (𝜂#

𝑖 )
†
|0⟩, ⟨(𝜙#

𝑖 )∗ | = ⟨0|𝑒 (𝜙#
𝑖 )∗𝜂#

𝑖 . (7)

The Taylor series expansions of it are |𝜙#
𝑖 ⟩ =∑

𝑙

(𝜙#
𝑖 )𝑙

(
(𝜂#

𝑖 )
†
)𝑙

𝑙 ! |0⟩ and ⟨(𝜙#
𝑖 )∗ | = ⟨0|∑𝑙

( (𝜙#
𝑖 )∗)𝑙 (𝜂𝑖 )𝑙

𝑙 ! . It
has an inherent probabilistic interpretation, namely
|𝜙#

𝑖 ⟩ =
∑

𝑙 𝑃 (𝑙) |𝑁 #
𝑖 ⟩. Thus, 𝑃 (𝑙) =

(
𝜙#
𝑖

)𝑙 /𝑙 ! gives a re-
alization of the Poissonian distribution for the particle
occupancy[33]. Importantly, (𝜂#

𝑖 )
† |𝜙#

𝑖 ⟩ = 𝜙#
𝑖 |𝜙#

𝑖 ⟩ and
⟨(𝜙#

𝑖 )∗ |𝜂#
𝑖 = ⟨(𝜙#

𝑖 )∗ | (𝜙#
𝑖 )∗, therefore, 𝜙#

𝑖 is the eigenvalue
of the coherent state. Therefore, the inner product of
any operator using the coherent state is equivalent to
taking the Poisson probability measure for the particle
occupancy. The expectation value of an operator 𝑂̂ over
the Poissonian occupancy probability measure is defined as
⟨𝑂̂⟩ = ⟨{𝜙∗}|𝑂̂ |{𝜙}⟩/⟨𝜙∗ |𝜙⟩. The composite coherent state
for the whole lattice is defined as:

|{𝜙}⟩ =
∏
𝑖,#

⊗|𝜙#
𝑖 ⟩ ⟨{𝜙}| =

∏
𝑖,#

⊗⟨𝜙#
𝑖 |. (8)

In eq. (8), ⊗ denotes the tensor product of the coherent states
for all types of particles and lattice indices. The ladder op-
erators commute for particles of different types; thus, |{𝜙}⟩
is the tensor product of |𝜙𝑖⟩ over all types of particles and
lattice indices.

The time-dependent Schrödinger equation 𝜕𝑡 |{𝜙}⟩ =

−𝐻̂ |{𝜙}⟩ for the coherent state is equivalent to the master
eq. (3) for 𝑃{𝑁 } (𝑡). This formulates the analogue between the
classical many-body systems and its second quantized quan-
tum representation.
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E. Normal ordering

Computing the expectation values for the operators (rele-
vant physical quantities) becomes a cumbersome task using
the second-quantized methods. To simplify this computation,
one needs to obtain the normal ordered form : 𝑂̂ : of the op-
erator 𝑂̂ . In the normal ordered form, the creation and anni-
hilation operators are replaced by the eigenvalues of |{𝜙}⟩,

in particular (𝜂#
𝑖 )

† → 𝜙#
𝑖 and 𝜂#

𝑖 → (𝜙#
𝑖 )∗. The reason is that

the coherent state is an eigenvector of the creation operator
with eigenvalue 𝜙#

𝑖 . Thus, ⟨𝑂̂⟩ is computed trivially using
the normal ordered form. For the non-interacting particles,
eq. (5) is normal ordered. In contrast, the interacting nature
of the particles poses a challenge due to the exponential de-
pendence of 𝐻̂ on the number operator 𝑁̂ #

𝑖 = (𝜂#
𝑖 )

†
𝜂#
𝑖 . The

normal ordering of eq. (5) derived in appendix A reads:

: 𝐻̂ #
𝛾𝛾 ′ : = 𝑑𝛾𝛾 ′

[
(𝜂#

𝛾 )
† − (𝜂#

𝛾 ′ )†
] [
𝑒

∑
𝑗 𝑁̂

#
𝑗

(
𝑒
𝛽𝑣𝛾 𝑗 −1

)
− 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′𝜂#

𝛾 − 𝑒
∑

𝑗 𝑁̂
#
𝑗

(
𝑒
𝛽𝑣𝛾 ′ 𝑗 −1

)
+ 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′𝜂#

𝛾 ′

]
,

: 𝐻̂ ®D#
𝑖 : = 𝑑𝑖

[
(𝜂#

𝑖 )
† − (𝜂 ®D#

𝑖 )
†
] [
𝑒

∑
𝑗 𝑁̂

#
𝑗

(
𝑒
𝛽𝑣𝑖 𝑗 −1

)
− 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′𝜂#

𝑖 − 𝑒
∑

𝑗 𝑁̂
®D#
𝑗

(
𝑒
𝛽𝑣𝑖 𝑗 −1

)
+ 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′𝜂

®D#
𝑖

]
.

(9)

3.2. The mesoscopic Doi-Peliti Action

A. The mesocscopic Doi-Peliti Lagrangian

In DPFT, the mesoscopic description of eq. (3) is obtained
using the mesoscopic Doi-Peliti action S𝐷𝑃 . It is constructed
using the coherent state path integral approach [20–23, 32].
S𝐷𝑃 is obtained by computing an expectation value of the
transition Hamiltonian in eq. (6) over the coherent state. S𝐷𝑃

is rewritten as an integral of a Lagrangian, S𝐷𝑃 [{𝜙∗, 𝜙}] =∫ 𝑡𝑓

𝑡𝑖
𝑑𝑡L [{𝜙∗, 𝜙}]. The exact expression for L [{𝜙∗, 𝜙}] ob-

tained using eq. (6) reads [20–23, 32]:

L [{𝜙∗, 𝜙}] =
{
−⟨𝜕𝑡 {𝜙∗}|{𝜙}⟩ + ⟨{𝜙∗}|𝐻̂ |{𝜙}⟩

⟨{𝜙∗}|{𝜙}⟩

}
. (10)

In eq. (10), the first term corresponds to the evolution of
the fields in time, the left-side of the master equation. The
second term encapsulated the transition jumps, the RHS
of the master equation. Defining the transition Hamilto-

nians H #
𝛾𝛾 ′ [{𝜙∗, 𝜙}] = −

⟨{𝜙∗ } |𝐻̂ #
𝛾𝛾 ′ | {𝜙 }⟩

⟨{𝜙∗ } | {𝜙 }⟩ , H ®D#
𝑖

[{𝜙∗, 𝜙}] =

− ⟨{𝜙∗ } |𝐻̂ ®D#
𝑖

| {𝜙 }⟩
⟨{𝜙∗ } | {𝜙 }⟩ and H [{𝜙∗, 𝜙}] = − ⟨{𝜙∗ } |𝐻̂ | {𝜙 }⟩

⟨{𝜙∗ } | {𝜙 }⟩ . Using

eq. (9), the Hamiltonian for Δ#
𝛾𝛾 ′ and Δ

®D#
𝑖

are as follows:

H #
𝛾𝛾 ′ [{𝜙∗, 𝜙}] = −𝑑𝛾𝛾 ′

[
(𝜙#

𝛾 )∗ − (𝜙#
𝛾 ′ )∗

] [
𝜙𝛾𝑒

∑
𝑗 (𝜙#

𝑗 )∗𝜙#
𝑗

(
𝑒
𝛽𝑣𝛾 𝑗 −1

)
− 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′ − 𝜙𝛾 ′𝑒

∑
𝑗 (𝜙#

𝑗 )∗𝜙#
𝑗

(
𝑒
𝛽𝑣𝛾 ′ 𝑗 −1

)
+ 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′

]
,

H ®D#
𝑖 [{𝜙∗, 𝜙}] = −𝑑𝑖

[
(𝜙#

𝑖 )∗ − (𝜙 ®D#
𝑖 )∗

] [
𝜙𝑖𝑒

∑
𝑗 (𝜙#

𝑗 )∗𝜙#
𝑗

(
𝑒
𝛽𝑣𝛾 𝑗 −1

)
− 𝜙 ®D#

𝑖 𝑒

∑
𝑗 (𝜙

®D#
𝑗

)∗𝜙 ®D#
𝑗

(
𝑒
𝛽𝑣𝑖 𝑗 −1

) ]
.

(11)

The transition probability measure P [{𝜙∗, 𝜙}] is obtained
using S𝐷𝑃 reads,

P [{𝜙∗, 𝜙}] = 𝑒−S𝐷𝑃 [ {𝜙∗,𝜙 } ] . (12)

The normalization factor for eq. (12) is obtained by imposing
the probability conservation

∫
𝔻{𝜙∗}𝔻{𝜙}P [{𝜙∗, 𝜙}] = 1.

Here, 𝔻 in eq. (12) represents the path integral over all re-
alizations of the coherent state eigenvalues {𝜙}. The eq. (12)
formulates the path integral representation for stochastic dy-
namics.

B. Cole-Hopf Transform

The ladder operators are not a natural realization of the
change of a physically quantifiable observable of the classi-
cal many-body system, in contrast to the quantum case. Thus,
the coherent state path integral formalism leads to a scalar
Lagrangian as a function of eigenvalues 𝜙 and 𝜙∗ of the co-
herent state, which is not related to a physical observable. To
address this issue, one needs to deploy a canonical transfor-
mation called the Cole-Hopf transform [34–36]. It defines the
relationship between the occupancy of the particles 𝑁 #

𝑖 and
𝜙#
𝑖 and (𝜙#

𝑖 )∗. The Cole-Hopf transform is defined as:

𝜙#
𝑖 = 𝑁 #

𝑖 𝑒
−𝜒#

𝑖 , (𝜙#
𝑖 )∗ = 𝑒 𝜒

#
𝑖 . (13)
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The particle number is the eigenvalue of the number operator,
therefore 𝑁 #

𝑖 = (𝜙#
𝑖 )∗𝜙#

𝑖 is rather trivial. 𝜒#
𝑖 is referred to as a

conjugate field, noise field, or bias field. It realizes the genera-
tor for the microscopic transition. For example, the transition
Δ#
𝛾𝛾 ′ implies (𝜂#

𝛾 )
†
𝜂#
𝛾 ′ → 𝑁 #

𝛾 ′𝑒
𝜒#
𝛾 −𝜒#

𝛾 ′ , where 𝜒#
𝛾 − 𝜒#

𝛾 ′ signifies
conjugate field of the generator for the transition Δ#

𝛾𝛾 ′ . The
change in the conjugate field due to the transition (stochastic
or driven) represents the most-likelihood force that generates
the transition. Note that 𝜒𝑖 is an intensive field. Importantly,
the Cole-Hopf transform also addresses imaginary noise for
coarse-grained fields, which was identified as a problem asso-

ciated with obtaining a Langevin equation using DPFT [34–
36].

C. The mesoscopic Doi-Peliti Lagrangian in the
occupancy-noise picture

Inserting the Cole-Hopf transform eq. (13) into eq. (11),
the transition Hamiltonian is expressed in occupancy-noise
fields.

H #
𝛾𝛾 ′ [{𝑁, 𝜒}] = 𝑑𝛾𝛾 ′

[ (
𝑒
𝜒#
𝛾 ′−𝜒

#
𝛾 − 1

)
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ +

(
𝑒
𝜒#
𝛾 −𝜒#

𝛾 ′ − 1
)
𝑒
µ#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

]
,

H ®D#
𝑖 [{𝑁, 𝜒}] = 𝑑𝑖

[ (
𝑒 𝜒

®D#
𝑖

−𝜒#
𝑖 − 1

)
𝑒µ

#
𝑖 +

1
2
®D· ®𝑓 𝑠𝑝

𝑖 +
(
𝑒 𝜒

#
𝑖 −𝜒

®D#
𝑖 − 1

)
𝑒µ

®D#
𝑖

− 1
2
®D· ®𝑓 𝑠𝑝

𝑖

]
.

(14)

Where, µ#
𝑖 = ln𝑁 #

𝑖 + ∑
𝑗 V𝑖 𝑗𝑁

#
𝑗 is the mesoscopic Boltzmann

weight of the mesostate𝑁 #
𝑖 . The mesoscopic interaction coef-

ficient V𝑖 𝑗 =
(
𝑒𝛽𝑣𝑖 𝑗 − 1

)
. The non-linear dependence (renor-

malization) of V𝑖 𝑗 on 𝑣𝑖 𝑗 is attributed to the Poissonian oc-
cupancy statistics. Importantly, for strongly interacting sys-
tems, incorporating the Poissonian mesostate occupancy is
qualitatively more important. The simplification of eq. (10)
leads to the Lagrangian in the density-noise picture.

L [{𝑁, 𝜒}] = ®𝜒 · 𝜕𝑡 ®𝑁 −H [{𝑁, 𝜒}] . (15)

The eq. (15) reveals the more familiar structure between the
Hamiltonian and the Lagrangian, justifying their previous
definitions. The transition probability measure eq. (12) is re-
duced to,

P [{𝑁, 𝜒}] = 𝑒−S𝐷𝑃 [ {𝑁,𝜒 } ], (16)

with a normalization constraint
∫
𝔻{𝑁 }𝔻{𝜒}P [{𝑁, 𝜒}] = 1

for the probability conservation. 𝔻 represents the path in-
tegral over all realizations of occupancy {𝑁 } and conju-
gate noise fields {𝜒}. Thus, the Cole-Hopf transformation
{𝜙, 𝜙∗} → {𝑁, 𝜒} illuminates the underlying physical struc-
ture.

D. Mesoscopic Energy Functional and Interaction
Coefficients

µ#
𝑖 is further decomposed into its reciprocal and non-

reciprocal contributions such that µ#
𝑖 = µ𝑟

𝑖 + F 𝑛𝑟
𝑖 . Where,

µ𝑟
𝑖 = ln𝑁 #

𝑖 + ∑
𝑗 V𝑟

𝑖 𝑗𝑁
#
𝑗 and F 𝑛𝑟

𝑖 =
∑

𝑗 V𝑛𝑟
𝑖 𝑗 𝑁

#
𝑗 . The de-

composition of the interaction coefficient V𝑖 𝑗 = V𝑟
𝑖 𝑗 + V𝑛𝑟

𝑖 𝑗 ,
by construction, satisfies V𝑟

𝑖 𝑗 = V𝑟
𝑗𝑖 and V𝑛𝑟

𝑖 𝑗 = −V𝑛𝑟
𝑗𝑖

[11]. Where, V𝑟
𝑖 𝑗 = (V𝑖 𝑗 + V𝑗𝑖 )/2, which leads to V𝑟

𝑖 𝑗 =(
cosh

(
𝛽𝑣𝑛𝑟𝑖 𝑗

)
𝑒
𝛽𝑣𝑟

𝑖 𝑗 − 1
)

and V𝑛𝑟
𝑖 𝑗 = (V𝑖 𝑗 − V𝑗𝑖 )/2 leads to

V𝑛𝑟
𝑖 𝑗 = sinh

(
𝛽𝑣𝑛𝑟𝑖 𝑗

)
𝑒
𝛽𝑣𝑟

𝑖 𝑗 . The reciprocal part of the interac-
tion between the mesostate 𝑁 #

𝑖 and 𝑁 #
𝑗 is derived from a sin-

gle energy functional of the lattice. The energy functional for
the reciprocal interactions reads, E𝑖𝑛𝑡 = 1

2
∑

𝑖, 𝑗,# V𝑟
𝑖 𝑗𝑁

#
𝑖 𝑁

#
𝑗 .

The decomposition of V𝑖 𝑗 into its reciprocal V𝑟
𝑖 𝑗 and non-

reciprocal V𝑛𝑟
𝑖 𝑗 parts is not unique. Subsequently, E𝑖𝑛𝑡 is also

not unique. Choosing a particular decomposition is a gauge-
fixing. Utilizing the reciprocal and non-reciprocal parts as
the symmetric and antisymmetric interactions is the unique
gauge fixing corresponding to the orthogonal decomposition
[11]. This particular choice of the gauge fixing preserves the
microscopic symmetry (𝑣𝑟𝑖 𝑗 = 𝑣𝑟𝑗𝑖 and 𝑣𝑛𝑟𝑖 𝑗 = −𝑣𝑛𝑟𝑗𝑖 ) on the
mesoscale (V𝑟

𝑖 𝑗 = V𝑟
𝑗𝑖 and V𝑛𝑟

𝑖 𝑗 = −V𝑛𝑟
𝑗𝑖 ).

E. Mesoscopic Local detailed balance condition

On the mesoscopic level, a microscopic reactive transition
Δ#
𝛾𝛾 ′ generates a mesoscopic reactive transition 𝑁 #

𝛾 ′ → 𝑁 #
𝛾

with transition rate K#
𝛾𝛾 ′ . Similarly, a microscopic diffusive

transition Δ
®D#
𝑖

generates a mesoscopic diffusive transition
𝑁 #
𝑖 → 𝑁

®D#
𝑖

with transition rate K ®D#
𝑖

. The mesoscopic Local
detailed balance condition is obtained using the mesoscopic
transition Hamiltonian eq. (14) [11].

K#
𝛾𝛾 ′

K#
𝛾 ′𝛾

= 𝑒
µ#
𝛾 ′−µ

#
𝛾+𝐹𝑐ℎ𝛾𝛾 ′ ,

K ®D#
𝑖

K ( ®D#)−1

𝑖

= 𝑒µ
#
𝑖 −µ

®D#
𝑖

+ ®D· ®𝐹𝑠𝑝
𝑖 . (17)

Equation (17) is the thermodynamically consistent identifica-
tion of the microscopic Local detailed balance condition on
the mesoscale. Hence, all transition dynamics for {𝑁 #

𝑖 } are
constrained/generated by the mesoscopic Boltzmann weights
{µ#

𝑖 }.
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4. COARSE-GRAINING: MESOSCOPIC TO MACROSCOPIC

The mesoscopic description is suitable for systems that ex-
hibit a finitely small number of particles per lattice site. In
addition, the increasing number of particles suppresses the
importance of the microscopic fluctuations in the observ-
able mesoscopic quantity. Thus, the particle number and
the transition current scale as 𝑂 (𝑁 ), in comparison, fluctua-
tions scale as 𝑂 (1). In the limit of the number of large par-
ticles per lattice site, we define the macrostate density field
𝜌𝑖 (®r) = 𝑁 #

𝑖 /Ω. Here, the density 𝜌𝑖 is defined in accordance
with the Large Deviation Theory [37], where the intensive
variable 𝜌𝑖 is 𝑂 (1) and its fluctuations are 𝑂 (1/Ω). Hence,
the lattice index is converted to the spatial position vector ®r.
Ω quantifies the average number of particles per lattice site.
Thus, 𝜌𝑖 is defined as an intensive finite variable; compared
to 𝑁 #

𝑖 , which is an extensive variable. This macroscopic limit
is an inherent assumption in the formulation of the chemi-
cal reaction networks and active matter models, that relies
on the van Kampen closure expansion [38]. Here, we have
rather demonstrated this as a coarse-graining step from the
mesoscopic to the macroscopic description.

4.1. Scale-invariance and renormalization

A. EquilibriumThermodynamics: Energy functional and
Boltzmann weights

The macroscopic interaction energy functional obeys the
extensive scaling in Ω. Thus, it satisfies Ω𝐸𝑖𝑛𝑡 = E𝑖𝑛𝑡 ,
similar to the scaling between 𝜌𝑖 and 𝑁𝑖 . It leads to the
scaling between the macroscopic 𝑉 𝑟

𝑖 𝑗 and the mesoscopic
V𝑟

𝑖 𝑗 interaction coefficients, 𝑉 𝑟
𝑖 𝑗 = ΩV𝑟

𝑖 𝑗 . Hence, 𝑉 𝑟
𝑖 𝑗 =

Ω
(
cosh

(
𝛽𝑣𝑛𝑟𝑖 𝑗

)
𝑒
𝛽𝑣𝑟

𝑖 𝑗 − 1
)
. The macroscopic energy functional

reads, 𝐸𝑖𝑛𝑡 = 1
2

∫
®r 𝑑r

∑
𝑖, 𝑗 𝑉

𝑟
𝑖 𝑗𝜌𝑖𝜌 𝑗 . Thus, the reciprocal macro-

scopic Boltzmann weight 𝜇𝑟𝑖 for the density field 𝜌𝑖 is 𝜇𝑟𝑖 =

ln (𝜌𝑖 ) +
∑

𝑗 𝑉
𝑟
𝑖 𝑗𝜌 𝑗 . Here, the first and second terms are the

Boltzmann entropic contribution due to the degeneracy of
the macrostate and the reciprocal interactions, respectively.
Writing 𝜇𝑖 = 𝛿𝐸/𝛿𝜌𝑖 as a gradient of the energy functional,
we obtain the total energy functional 𝐸 = 𝐸𝑖𝑛𝑡 − 𝑆𝑏 , where
𝑆𝑏 = −∑

𝑖 𝜌𝑖 ln (𝜌𝑖/𝑒) is the Boltzmann entropic contribution.
The macroscopic Boltzmann weight 𝜇𝑖 for the density field 𝜌𝑖
is 𝜇𝑖 = ln (𝜌𝑖 ) +

∑
𝑗 𝑉𝑖 𝑗𝜌 𝑗 , where 𝑉𝑖 𝑗 = 𝑉 𝑟

𝑖 𝑗 + 𝑉 𝑛𝑟
𝑖 𝑗 . Such that

𝜇𝑖 = 𝜇
𝑟
𝑖 +𝐹𝑛𝑟𝑖 is satisfied with 𝐹𝑛𝑟𝑖 =

∑
𝑗 𝑉

𝑛𝑟
𝑖 𝑗 𝜌 𝑗 quantifying the

non-reciprocal part of 𝜇𝑖 .
The microscopic interaction coefficients 𝑣𝑖 𝑗 are 𝑂 (1/Ω).

This enforces the microscopic Boltzmann weight 𝜖#
𝑖 as an

intensive physical quantity. Subsequently, this ensures that
𝑉𝑖 𝑗 ,V𝑖 𝑗 ∝ 𝑂 (1/Ω), physically this ensures the extensive scal-
ing of the interaction energy functional across the observ-
able scales; the microscopic, mesoscopic, and macroscopic.
From a thermodynamic point of view, the thermodynami-
cally consistent models need to ensure the intensive Boltz-
mann weights that lead to the extensive interaction energy.

This important feature is usually overlooked in lattice gas
models, where the interaction energy might scale super-/sub-
extensively. Here, the requirement of a thermodynamically
consistent framework across the scale requires careful treat-
ment.

B. Non-equilibrium dynamics: The dynamical rate
functional

Similarly to the energy functional, the macroscopic Doi-
Peliti action S𝐷𝑃 [{𝜌, 𝜒}] follows the scaling in Ω. The
scaling is ΩS𝐷𝑃 [{𝜌, 𝜒}] = S𝐷𝑃 [{𝑁, 𝜒}] , ΩL [{𝜌, 𝜒}] =

L [{𝑁, 𝜒}] and ΩH [{𝜌, 𝜒}] = H [{𝑁, 𝜒}]. This is trivially
verified by substituting Ω𝜌𝑖 (®r) = 𝑁 #

𝑖 in eqs. (14) and (15).
Hence, the macroscopic Lagrangian and Hamiltonian are ob-
tained by 𝑁 #

𝑖 → 𝜌𝑖 , 𝜒#
𝑖 → 𝜒𝑖 , µ#

𝑖 → 𝜇𝑖 . The macroscopic
transition probability measure P [{𝜌, 𝜒}] is reduced to the
following,

P [{𝜌, 𝜒}] = 𝑒−ΩS𝐷𝑃 [ {𝜌,𝜒 } ] . (18)

Here, Ω plays the role of the large deviation parameter.
Hence, P [{𝜌, 𝜒}] converges to the path of the most like-
lihood obtained by extremizing S𝐷𝑃 [{𝜌, 𝜒}]. Importantly,
L[{𝜌, 𝜒}] is the same rate functional as that previously ob-
tained to delineate the orthogonal decomposition symme-
try of the EPR [39–55]. Our novel formulation generalizes
its existence to the non-reciprocal systems. Its thermody-
namically consistent framework enables the correct identi-
fication of the EPR discussed in Ref [11]. In addition to the
Ω, for the externally driven systems, the observable time-
integrated current scales with the observation time 𝜏 . This
further leads to the scaling S𝐷𝑃 [{𝜌, 𝜒}] = 𝜏S̃𝐷𝑃 [{𝜌, 𝜒}] and
L [{𝜌, 𝜒}] = 𝜏L̃ [{𝜌, 𝜒}] [29, 30]. Hence, it quantifies the dy-
namical rate functional for the transition dynamics [37, 56].

C. Dynamics: Macrosocpic Local detailed balance
condition

Analogous to Mesoscopic LDB eq. (17), the macroscopic
LDB is obtained using the macroscopic transition Hamilto-
nian H[{𝜌, 𝜒}]. It reads,

𝐾𝛾𝛾 ′

𝐾𝛾 ′𝛾
= 𝑒

𝜇𝛾 ′−𝜇𝛾+𝐹𝑐ℎ𝛾𝛾 ′ ,
𝐾

®D
𝑖

𝐾
( ®D)−1

𝑖

= 𝑒𝜇𝑖−𝜇
®D
𝑖
+ ®D· ®𝐹𝑠𝑝

𝑖 . (19)

where, 𝐾𝛾𝛾 ′ is the reactive transition rate 𝜌𝛾 ′ → 𝜌𝛾 and its
reverse transition rate𝐾𝛾 ′𝛾 for 𝜌𝛾 ′ → 𝜌𝛾 , defined between the
density macrostates. Similarly, 𝐾 ®D

𝑖
is the diffusive transition

rate for the density field 𝜌𝑖 in the direction ®D. The transition
affinities for the reactive and diffusive transitions are defined
as, 𝐴𝛾𝛾 ′ = 𝜇𝛾 ′ − 𝜇𝛾 + 𝐹𝑐ℎ

𝛾𝛾 ′ and 𝐴 ®D
𝑖

= 𝜇𝑖 − 𝜇
®D
𝑖

+ ®D · ®𝐹 𝑠𝑝
𝑖

,
respectively.
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4.2. Hamilton-Jacobi equation: Minimum action principle

The eq. (18) implies convergence to the most likely path in
the limit Ω → ∞. The first-order variation of S𝐷𝑃 [{𝜌, 𝜒}]
leads to 𝛿S𝐷𝑃 [{𝜌, 𝜒}]. The instanton equation obtained
reads,

𝜕𝑡𝜌𝑖 = 𝜕𝜒𝑖H [{𝜌, 𝜒}] ,
𝜕𝑡 𝜒𝑖 = −𝜕𝜌𝑖H [{𝜌, 𝜒}] . (20)

The eq. (20) with 𝜒𝑖 = 0 gives the deterministic continuity
equation for 𝜌𝑖 . The non-trivial solution of eq. (20) (𝜒𝑖 ≠ 0)
corresponds to the instanton. Here, the instanton corre-
sponds to the minimum action path that gives the trajec-
tory of the transition from one attractor to another attractor.
Due to the violation of time-reversal symmetry, the instan-
ton does not necessarily coincide with the gradient-descent
dynamics of the energy functional.

Here, we are rather interested in the fluctuating dynam-
ics of the macrostate confined to the basin of attraction of
the fixed point. Thus, we aim to incorporate the Gaus-
sian fluctuations of transitions. The second-order variation
𝛿2S𝐷𝑃 [{𝜌, 𝜒}] around the minimal action path encapsulates
the Gaussian fluctuations due to the transitions. The ampli-
tude of the Gaussian fluctuations is equal to the curvature of
the Hamiltonian, hence,

𝑇𝛾𝛾 ′ = −𝜕𝜒𝛾 𝜕𝜒𝛾 ′H [{𝜌, 𝜒}] |𝜒=0. (21)

𝑇𝛾𝛾 ′ and 𝑇 D
𝑖

correspond to the variance of the noise due to
transitions Δ𝛾𝛾 ′ and ΔD

𝑖
, respectively. The deterministic tran-

sition current in eq. (20) could further be decomposed into its
individual transition currents 𝐽𝛾𝛾 ′ = 𝜕𝜒𝛾 −𝜒𝛾 ′H [{𝜌, 𝜒}] |𝜒=0.
The derivation of eqs. (20) and (21) is detailed in appendix B.
This formulates the stochastic continuity equation for the
macrostate/mesostate. Its further analysis is detailed in sec-
tion 4 4.3. The higher-order variations of the Doi-Peliti ac-
tion satisfy 𝛿𝑛S𝐷𝑃 [{𝜌, 𝜒}] ∝ 𝑂 (1/Ω𝑛−1). Thus, Ω → ∞
corresponds to the deterministic limit where the determinis-
tic continuity eq. (20) suffices. For significantly large values
of Ω, 𝛿2S𝐷𝑃 [{𝜌, 𝜒}] gives the dominant contribution to the
transition noise, which effectively incorporates the Gaussian
fluctuations due to microscopic transitions. The mesoscopic
systems prone to Poissonian transition noise need a careful
treatment of the Poissonian noise [29].

The quadratic approximation of S𝐷𝑃 in 𝜒𝑖 leads to the
Gaussian approximation of the transition noise, which is
equivalent to the Onsager-Machlup functional [57, 58],
the Martin-Siggia-Rose action [7], or the Bausch-Janssen-
Wagner-de Dominicis action [8–10]. The Gaussian tran-
sition noise underestimates the thermodynamic cost com-
pared to the Poissonian transition noise. Subsequently, it
impacts the far-from-equilibrium optimal control formula-
tion of stochastic thermodynamics compared to the close-to-
equilibrium formulation [29–31]. Table I summarizes the dif-
ferent regimes for the transition and occupancy noise.

The nature
of noise

Poissonian Gaussian

Occupancy
noise

V𝑖 𝑗
V𝑖 𝑗 expanded for small values of
𝛽, 𝑣𝑖 𝑗 up to 𝑂 ((𝛽𝑣𝑖 𝑗 )2)

Transition
noise

S𝐷𝑃 [{𝑁, 𝜒}] S𝐷𝑃 expanded up to the quadratic
terms in 𝜒

TABLE I. This table summarizes the implications of the noise. The
noise in the occupancy statistics and transition statistics could either
be Poissonian or Gaussian. For interacting systems, the Poissonian
occupancy noise is reflected through the non-linear dependence
(renormalization) of the microscopic interaction coefficients 𝑣𝑖 𝑗 on
the mesoscopic interaction coefficients V𝑖 𝑗 . The Gaussian approxi-
mation of the transition noise leads to the Langevin eqs. (22) and (25)
for the fluctuating macro/mesostate. The thermodynamic implica-
tions of the Poissonian transition noise are detailed in Ref.[29–31].

4.3. Generalized Macroscopic Fluctuating Dynamics

Using eqs. (20) and (21), the stochastic equation of motion
for the macrostate 𝜌𝑖 derived in appendices B and C reads,

𝜕𝑡𝜌𝑖 = −∇ · ®𝐽 ®D
𝑖 −

∑︁
𝑖∈{𝛾𝛾 ′ }

𝐽𝛾𝛾 ′ +
√︂

1
Ω
∇ ·

(√︃
𝑇 D
𝑖

®̂
𝜉D𝑖

)
+

√︂
1
Ω

∑︁
𝑖∈{𝛾𝛾 ′ }

√︃
𝑇 R
𝛾𝛾 ′ 𝜉

R
𝛾𝛾 ′ ,

(22)

where, 𝐽𝛾𝛾 ′ and ®𝐽 ®D
𝑖

are the transition currents for Δ𝛾𝛾 ′ :
𝜌𝛾 ′ → 𝜌𝛾 and Δ

®D
𝑖

= 𝜌𝑖 → 𝜌
®D
𝑖

, respectively. Their exact ex-
pression for the transition currents derived in appendices B
and C are,

®𝐽 ®D
𝑖 = −𝐷 ®D

𝑖 ({𝜌}) ∇ ®D𝜇𝑖 + ®𝐽 𝑠𝑝
𝑖
,

𝐽𝛾𝛾 ′ = 2𝐷𝛾𝛾 ′ ({𝜌}) sinh
(
𝐴𝛾𝛾 ′

2

)
.

(23)

where, 𝐷𝑖 ({𝜌}) = 𝑑𝑖𝑒𝜇
𝑟
𝑖
+𝐹𝑛𝑟

𝑖 and 𝐷𝛾𝛾 ′ ({𝜌}) = 𝑑𝛾𝛾 ′𝑒 (𝜇𝛾+𝜇𝛾 ′ )/2

are the mobilities of the transitionsΔD
𝑖

andΔ𝛾𝛾 ′ , respectively.
The transition mobilities incorporate the reciprocal and non-
reciprocal microscopic interactions through 𝜇𝑟𝑖 and 𝐹𝑛𝑟𝑖 . For
ideal particles 𝜇𝑖 = log (𝜌𝑖 ) and 𝐹𝑛𝑟𝑖 = 0, which reduces

𝐷𝑖 ({𝜌}) = 𝜌𝑖 and 𝐷𝛾𝛾 ′ ({𝜌}) =
√
𝜌𝛾𝜌𝛾 ′ . ®̂

𝜉D
𝑖

and 𝜉R
𝛾𝛾 ′ are

the white Gaussian noise with unit variance and vanishing
mean. The diffusive and reactive transition traffic derived in
appendices B and C are,

𝑇 D
𝑖 = 2𝐷D

𝑖 ({𝜌}) , 𝑇𝛾𝛾 ′ = 2𝐷𝛾𝛾 ′ ({𝜌}) cosh
(
𝐴𝛾𝛾 ′

2

)
, (24)

quantifies the variance of the fluctuations for transitions. For
ideal particles 𝜇𝑖 = log (𝜌𝑖 ) and 𝐹𝑛𝑟𝑖 = 0 reduces 𝑇 D

𝑖
= 2𝜌𝑖

and 𝑇𝛾𝛾 ′ = 𝜌𝛾 + 𝜌𝛾 ′ . Using eqs. (23) and (24), the fluctuation-
response relation is satisfied between the currents and traf-
fics, 𝜕𝐽𝛾𝛾 ′/𝜕𝐴𝛾𝛾 ′ = 𝑇𝛾𝛾 ′/2 and 𝜕 ®𝐽 ®D

𝑖
/𝜕𝐴 ®D

𝑖
= 𝑇 D

𝑖
/2.

Defining, ®D = {∥,⊥} for the diffusive transitions in the
direction parallel and perpendicular to ®𝑓 𝑠𝑝

𝑖
, the simplified
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form derived in appendix C reads −∇ · ®𝐽 ®D
𝑖

= 𝑑
∥
𝑖
Δ∥𝑒𝜇𝑖 +

𝑑⊥𝑖 Δ
⊥𝑒𝜇𝑖 + ∇∥ · ®𝐽 𝑠𝑝

𝑖
, where 𝑑 ∥

𝑖
= 𝑑𝑖 cosh (𝑓 𝑠𝑝

𝑖
/2) and 𝑑⊥𝑖 = 𝑑𝑖 .

The first and second terms give the diffusive currents in the
direction parallel and perpendicular to the self-propulsion
force. ®𝐽 𝑠𝑝

𝑖
= 2𝑑𝑖𝑒𝜇𝑖 sinh ( ®𝑓 𝑠𝑝

𝑖
/2) gives the macroscopic self-

propulsion current. Defining the diffusion matrix; 𝔻𝑖 =

Diag[𝑑 ∥
𝑖
, 𝑑⊥𝑖 ], the gradient vector; ®∇ = (∇∥ ,∇⊥), the mobility

matrix; 𝕄𝑖 = Diag[𝑑 ∥
𝑖
𝑒𝜇𝑖 , 𝑑⊥𝑖 𝑒

𝜇𝑖 ], the shorthand notation for
−∇ · ®𝐽 ®D

𝑖
is ®∇ ·𝕄𝑖 · ®∇𝜇𝑖 .

The enhanced diffusion coefficient along the self-
propulsion direction has been exhibited before [59, 60].
Importantly, the different transverse and longitudinal dif-
fusion coefficients play a key role in the formation of the
novel phases [61–65]. In addition, 𝑑 ∥

𝑖
= 𝑑⊥𝑖 in the 𝑙 → 0 limit

oversimplifies the coarse-grained diffusive dynamics of the
macrostate. For microscopic systems with an inherent finite
diffusive length-scale, the anisotropic diffusion coefficient
should be incorporated into the coarse-grained macroscopic
description.

Multiplying eq. (22) by Ω, one obtains the mesoscopic
stochastic EOM for 𝑁 #

𝑖 ,

𝜕𝑡𝑁
#
𝑖 = −∇ · ®J ®D

𝑖 −
∑︁

𝑖∈{𝛾𝛾 ′ }
J #
𝛾𝛾 ′ + ∇ ·

(√︃
T D
𝑖

®̂
𝜉D𝑖

)
+

∑︁
𝑖∈{𝛾𝛾 ′ }

√︃
T #
𝛾𝛾 ′ 𝜉

R
𝛾𝛾 ′ .

(25)

The mesoscopic currents and traffic are analogous to eqs. (23)
and (24) obtained by replacing 𝜇𝑖 → µ#

𝑖 and 𝜌𝑖 → 𝑁 #
𝑖 . In ad-

dition, the discrete Gradient and Laplacian operator is used
in eq. (25), appendix C. In eq. (25), the variance of the noise
appears to be 𝑂 (1), this apparent effect is attributed to con-
sidering the EOM for an extensive variable 𝑁 #

𝑖 . In particu-
lar, eq. (25) is more useful than eq. (22) in the low-density
regime, where the number of particles is finitely small, which
makes the mean particle number (instead of density) a rele-
vant physical parameter.

5. MULTI-BODY MICROSCOPIC INTERACTIONS

The microscopic interactions of the form eq. (1) lead to
a quadratic macroscopic interaction energy functional 𝐸𝑖𝑛𝑡 .
However, for purely attractive microscopic reciprocal inter-
actions 𝑣𝑟𝑖 𝑗 < 0 implies V𝑟

𝑖 𝑗 ,𝑉
𝑟
𝑖 𝑗 < 0. Therefore, 𝐸𝑖𝑛𝑡 is

not bounded from below. This means that to ensure the
lower boundedness of 𝐸𝑖𝑛𝑡 , we need to introduce higher-
order multi-body interactions. To this end, we incorporate
the repulsive interaction terms of higher order, which intro-
duce additional terms to 𝐸𝑖𝑛𝑡 of the form 𝑉 4

𝑖 𝑗𝜌
2
𝑖 𝜌

2
𝑗 , such that

𝑉 4
𝑖 𝑗 > 0. Here, 𝑉 4

𝑖 𝑗 is an extra macroscopic control parame-
ter attributed to the higher-order microscopic repulsive in-
teraction. Hence, effectively 𝑉 𝑟

𝑖 𝑗 is reduced to the effective
interaction coefficient𝑉 𝑒 𝑓 𝑓

𝑖 𝑗
= 𝑉 𝑟

𝑖 𝑗 +𝑉 4
𝑖 𝑗𝜌𝑖𝜌 𝑗 with the effective

interaction energy 𝐸𝑖𝑛𝑡 = 1
2𝑉

𝑒 𝑓 𝑓

𝑖 𝑗
𝜌𝑖𝜌 𝑗 . For the higher values

of 𝜌𝑖 and 𝜌 𝑗 ,𝑉
𝑒 𝑓 𝑓

𝑖 𝑗
> 0 is satisfied, thus, 𝐸𝑖𝑛𝑡 is bounded from

below. For the smaller values of 𝜌𝑖 and 𝜌 𝑗 , the contribution
due to𝑉 𝑟

𝑖 𝑗 dominates over the𝑉 4
𝑖 𝑗 contribution. For 𝑖 = 𝑗 , one

recovers the Ginzburg-Landau type higher-order interaction
energy, 𝐸𝑖𝑛𝑡 = 1

2𝑉
𝑟
𝑖𝑖𝜌

2
𝑖 + 1

2𝑉
4
𝑖𝑖𝜌

4
𝑖 .

Note that we treat the higher-order multi-body repul-
sive interactions using the mean-field approximation. In the
higher-density regime, where the importance of repulsive in-
teractions becomes prominent, the discreteness of the parti-
cle number becomes less important. Thus, the mean-field ap-
proximation of higher-order multi-body interactions is phys-
ically justified. Moreover, 𝑉 𝑟

𝑖 𝑗 captures the dominant-order
Poissonian occupancy effect in the small particle number
regime, further justifying the mean-field approximation of
𝑉 4
𝑖 𝑗 .

6. APPLICATIONS

6.1. Comparison to other coarse-graining methods

A. Kawasaki-Dean coarse-graining method for diffusive
dynamics

For particles of type 𝑖 and 𝑗 with locally confined inter-
actions, the diffusive dynamics of the density field eq. (25)
reads,

𝜕𝑡𝑁𝑖 = Δ
(
𝑁𝑖𝑒

𝑁 𝑗 (𝑒𝛽𝑣𝑖 𝑗 −1)
)
+ ∇ ·

(√︃
𝑁𝑖𝑒

𝑁 𝑗 (𝑒𝛽𝑣𝑖 𝑗 −1) ®̂
𝜉D𝑖

)
(26)

with diffusive mobility 𝐷𝑖 = 𝑁𝑖𝑒
𝑁 𝑗 (𝑒𝛽𝑣𝑖 𝑗 −1) for 𝑁𝑖 . We ex-

pand eq. (26) using Taylor series for small 𝑣𝑖 𝑗 . 𝑂 (1) approx-
imation of diffusive mobility leads to diffusive mobility for
non-interacting (ideal) fields𝐷𝑖 = 𝑁𝑖 . Incorporating the first-
order𝑂

(
𝛽𝑣𝑖 𝑗

)
approximation of the chemical potential gradi-

ent, ∇µ𝑖 = (∇𝑁𝑖 )/𝑁𝑖+∇(𝛽𝑣𝑖 𝑗𝑁 𝑗 ). This simplifies the diffusive
currents to, ®𝐽 ®D

𝑖
= −𝐷𝑖 ∇𝜇𝑖 = ∇𝑁𝑖 + 𝑁𝑖∇(𝛽𝑣𝑖 𝑗𝑁 𝑗 ).

This reduces eq. (26) in the small interaction regime to the
Kawasaki-Dean equation [15, 16],

𝜕𝑡𝑁𝑖 = Δ𝑁𝑖 + ∇ · [𝑁𝑖∇(𝛽𝑣𝑖 𝑗𝑁 𝑗 )] + ∇ · (
√︁
𝑁𝑖

®̂
𝜉D𝑖 ) (27)

Substituting 𝑁𝑖 = 𝜌 (𝑥), 𝑣𝑖 𝑗 = 𝑣 (𝑥 −𝑦) and 𝑁 𝑗 = 𝜌 (𝑦), adding
to the interaction neighborhood 𝑦, eq. (27) is exactly equal
to the Kawasaki-Dean equation [15, 16]. Importantly, this
highlights that spatially extended interactions are trivially
incorporated by including non-local contributions to the mi-
croscopic Boltzmann weight. In conclusion, eq. (26) is the
Langevin equation for the particle occupancy of strongly in-
teracting particles, namely, the generalized Kawasaki-Dean
equation. The

In the Kawasaki-Dean eq. (27), the fluctuations of the
density fields depend on density, and interactions do not
play any role. Despite its wide applicability, eq. (27) does
not address this physical problem, particularly important for
strongly interacting particles. In addition, the fluctuation re-
sponse relation for interacting fields is easily accessible with
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eq. (26). In contrast to eq. (27), where even if the fluctuation-
response relation is formulated, it is the same for both the
non-interacting (ideal) and interacting particles.

B. Classical Stochastic Path Integral formulism for
reactive transition dynamics

We highlight the importance of the exact coarse-graining
procedure by comparing our results with the classical
stochastic path integral formalism (CSPIF) in Ref.[34], which
has been extensively utilized as a preferred coarse-graining
method for interacting particles. To this end, we consider
only two species of particles that interact in a single vol-
ume, which is equivalent to N spins, which can take pos-

itive (+) and negative (−) values, ferromagnetically inter-
acting with the strength 𝑣/𝑁 (𝑣 > 0). Particles with the
same/opposite spins attract/repel each other. Hence, the mi-
croscopic interaction rules are defined as 𝑣++ = 𝑣−− = −𝑣/𝑁
and 𝑣+− = 𝑣−+ = 𝑣/𝑁 .

We have defined the total particle number 𝑁 = 𝑁+ + 𝑁−
(which is a constant) and magnetization 𝑀 = 𝑁+ − 𝑁− .
For this microscopic system, the exact coarse-grained EOM
eq. (25) reads,

𝜕𝑡𝑁+ = J+− +
√︁
T+− 𝜉R+−

𝜕𝑡𝑁− = −J+− −
√︁
T+− 𝜉R+−

(28)

with the spin-flipping transition current J+− and traffic T+−

J+− = 𝑑+−

(
𝑒
𝑁

(
cosh

[
𝛽𝑣

𝑁

]
−1

) ) [
𝑁 sinh

(
𝑀 sinh

[
𝛽𝑣

𝑁

] )
−𝑀 cosh

(
𝑀 sinh

[
𝛽𝑣

𝑁

] )]
T+− = 𝑑+−

(
𝑒
𝑁

(
cosh

(
𝛽𝑣

𝑁

)
−1

) ) [
𝑁 cosh

(
𝑀 sinh

[
𝛽𝑣

𝑁

] )
−𝑀 sinh

(
𝑀 sinh

[
𝛽𝑣

𝑁

] )] (29)

Here, the mesoscopic interaction coefficients V++ = V−− =

𝑒−𝛽𝑣/𝑁 − 1 and V+− = V−+ = 𝑒𝛽𝑣/𝑁 − 1 were used to derive
the reactive transition current in eq. (29).

Using CSPIF, the coarse-grained EOM for the spin-flipping
dynamics has the same structure as eq. (28), with a different
spin-flipping current (𝐽𝐶𝑆𝑃𝐼𝐹+− ) and traffic (𝑇𝐶𝑆𝑃𝐼𝐹

+− ), which read
[34],

𝐽𝐶𝑆𝑃𝐼𝐹+− = 𝑑+−

[
𝑁 sinh

(
𝛽𝑣𝑀

𝑁

)
−𝑀 cosh

(
𝛽𝑣𝑀

𝑁

)]
𝑇𝐶𝑆𝑃𝐼𝐹
+− = 𝑑+−

[
𝑁 cosh

(
𝛽𝑣𝑀

𝑁

)
−𝑀 sinh

(
𝛽𝑣𝑀

𝑁

)] (30)

The small 𝛽𝑣/𝑁 approximation for hyperbolic functions:
sinh (𝛽𝑣/𝑁 ) = 𝛽𝑣/𝑁 , using this mean field approximation
for the particle occupancy, we find that eq. (30) is a deter-
ministic limit of the exact EOM eq. (29).

For large values of 𝛽𝑣𝑀/𝑁 , which means small 𝑁 , large
𝛽, 𝑣 and 𝑀 > 0 (i.e. in the ordered phase of the FM model),
the differences between eqs. (29) and (30) have substantial
consequences: eq. (29) then predicts a much larger current
and much larger fluctuations (traffic) in the vicinity 𝑀 ≈ 𝑁

(i.e. close to the FM ordered state). The origin of this dis-
crepancy is the mean field approximation of the particle
numbers 𝑁+ and 𝑁− in CSPIF, which treats the stochastic
variable as a deterministic quantity. Within DPFT, this is-
sue is carefully handled by construction, due to the require-
ment of normal-ordering needed to simplify from the second-
quantized formulism to the coherent state path integral. For
non-interacting particles or transition rates that do not de-
pend on particle occupancy, the mean-field treatment of tran-
sition rates using CSPIF is equivalent to DPFT.

6.2. Active Ising Model

Flocking models exhibit a first-order transition from or-
dered to disordered phase, accompanied by an intermediate
phase-co-existence regime [12, 13]. The width of the coexis-
tence regime reduces with increasing total density, such that
the limit of infinite total density corresponds to a second-
order transition. The Active Ising Model (AIM) is a proto-
typical, most simplified flocking model that encapsulates the
above-mentioned physical characteristics of flocking models
[12, 13]. However, the coarse-grained description of AIM de-
rived in Ref.[12, 13] fails in the low-particle-number regime.
The order and onset of the phase transition are incorrectly
predicted. Here, we highlight the importance of the role that
microscopic interaction coefficients, Poissonian particle oc-
cupancy, and the exact coarse-graining methods developed
play.

AIM models flocking with only two types of particles, pos-
itive (+) and negative (−), with self-propulsion direction
along + and − horizontal axes, respectively. The microscopic
alignment is modelled with the attractive/repulsive interac-
tion between the same/different types of particles. Thus,
𝑣++, 𝑣−− < 0 and 𝑣+−, 𝑣−+ > 0 [66]. In the AIM, the particles
can undergo diffusive or reactive transitions. The reactive
transitions are thermodynamically consistent. In contrast to
the thermodynamically consistent diffusive transitions for-
mulated in this paper, in the original AIM, the particles have
constant diffusive transition rates in addition to the biased
self-propulsion [11]. In the following, we elaborate on two
regimes corresponding to the low- and high-density regimes
of AIM, because different microscopic interaction coefficient
rules govern them. This difference will play a crucial role in
fulfilling the physical mismatch between the low- and high-



10

density regimes.

A. Low density regime

In the low-density regime, the minimum number of in-
teracting particles is one. Hence, the low-density limit cor-
responds to the microscopic interaction coefficients 𝑣+− =

𝑣−+ = 1 and 𝑣++ = 𝑣−− = −1. This leads to meso-
scopic interaction coefficients, V+− = V−+ = 𝑒𝛽 − 1 and
V+− = V−+ = 𝑒−𝛽 − 1 with mesoscopic Boltzmann weights
µ#
+ = log (𝑁 #

+) − sinh (𝛽)𝑀# + (cosh (𝛽) − 1)𝑁 # and µ#
− =

log (𝑁 #
−) +sinh (𝛽)𝑀#+ (cosh (𝛽)−1)𝑁 #. here, we denote the

total number and magnetization of particles by 𝑁 # = 𝑁 #
++𝑁 #

−
and 𝑀# = 𝑁 #

+ − 𝑁 #
− , respectively. The EOM eq. (25) for the

mean particle number at each lattice site reads:

𝜕𝑡𝑁
#
+ = −∇ · ®J ®D

+ + J #
+− + ∇ ·

(√︃
T D
+

®̂
𝜉D+

)
+

√︃
T R
+− 𝜉

R
+−

𝜕𝑡𝑁
#
− = −∇ · ®J ®D

− − J #
+− + ∇ ·

(√︃
T D
−

®̂
𝜉D−

)
−

√︃
T R
+− 𝜉

R
+−

J #
+− = 𝑑+−

(
𝑒𝑁

# (cosh (𝛽 )−1) [
𝑁 # sinh (𝑀# sinh [𝛽]) −𝑀# cosh (𝑀# sinh [𝛽])

] )
T #
+− = 𝑑+−

(
𝑒𝑁

# (cosh (𝛽 )−1) [
𝑁 # cosh (𝑀# sinh [𝛽]) −𝑀# sinh (𝑀# sinh [𝛽])

] )
(31)

The thermodynamically inconsistent diffusive transition
rates involve the modification of the diffusive mobilities
𝐷D
+ = 𝑑𝑁 #

+ and 𝐷D
− = 𝑑𝑁 #

− . Hence, −∇ · ®J ®D
+ = 𝑑 ∥Δ∥𝑁 #

+ +
𝑑⊥Δ⊥𝑁 #

+ − 2𝑑 sinh
(
𝑓 𝑠𝑝

2

)
∇∥𝑁 #

+ and −∇ · ®J ®D
− = 𝑑 ∥Δ∥𝑁 #

− +

𝑑⊥Δ⊥𝑁 #
−+2𝑑 sinh

(
𝑓 𝑠𝑝

2

)
∇∥𝑁 #

− . The deterministic part of EOM
eq. (31) is equivalent to the one obtained in Ref.[14], where
it was obtained by introducing Poissonian statistics into the
density. But eq. (31) is also valid for higher values of 𝑓𝑠𝑝
and incorporates stochasticity using multiplicative noise, go-
ing beyond the formulations in Ref.[14]. The linear stability
analysis of faster reactive transition currents exhibits a first-
order phase transition from the ordered to disordered phase
and an intermediate coexistence regime [14]. In contrast, the
mean-field hydrodynamic EOM fails to capture the ordered-
to-disordered first-order phase transition [13].

B. High density regime

In the high-density regime, each particle is surrounded by
𝑁 >> 1 particles, where 𝑁 is the average number of parti-
cles per lattice site. Hence, the microscopic interaction co-
efficients in the high-density limit are, 𝑣+− = 𝑣−+ = 1/𝑁
and 𝑣++ = 𝑣−− = −1/𝑁 , which ensures that 𝜇+ and 𝜇−
are intensive [67]. This leads to 𝑉+− = 𝑉−+ = 𝛽/𝜌 and
𝑉+− = 𝑉−+ = −𝛽/𝜌 . Thus, 𝜇+ = log (𝜌+) + 𝛽 (𝜌− − 𝜌+) /𝜌
and 𝜇− = log (𝜌−) + 𝛽 (𝜌+ − 𝜌−) /𝜌 , where the total den-
sity and magnetization are defined as 𝜌 = 𝜌+ + 𝜌− and
𝑚 = 𝜌+ − 𝜌− , respectively. The reactive transition currents
read 𝐽+− = 𝜌 sinh

(
𝛽𝑚

𝜌

)
−𝑚 cosh

(
𝛽𝑚

𝜌

)
. The mean-field EOM

for the particle densities reads:

𝜕𝑡𝜌+ = 𝑑 ∥Δ∥𝜌+ + 𝑑⊥Δ⊥𝜌+ − 2𝑑 sinh
(
𝑓 𝑠𝑝

2

)
∇∥𝜌+ + 𝐽+−

𝜕𝑡𝜌− = 𝑑 ∥Δ∥𝜌− + 𝑑⊥Δ⊥𝜌− + 2𝑑 sinh
(
𝑓 𝑠𝑝

2

)
∇∥𝜌− − 𝐽+−

(32)

The EOM eq. (32) are equal to the mean-field equations from
Ref.[12, 13], with different transverse and longitudinal diffu-
sion coefficients. Taking the 𝑙 → 0 limit implies𝑑 ∥

𝑖
= 𝑑⊥𝑖 = 𝑑𝑖 ,

which leads to the exact mean-field equations from Ref.[12].
The linear stability analysis of eq. (32) exhibits a second-order
phase transition from ordered to disordered phase [12]. The
fluctuations of dominant order (𝑂 (1/

√
Ω)) to eq. (32) are in-

corporated using the multiplicative noise
√︁
𝑇+−/Ω𝜉R+− , with

𝑇+− = 𝜌 cosh
(
𝛽𝑚

𝜌

)
−𝑚 sinh

(
𝛽𝑚

𝜌

)
.

In conclusion, our analysis reveals the key role that micro-
scopic interaction coefficients play in bridging the low- and
high-density regimes of AIM. In particular, the low-density
and high-density regimes of the AIM belong to different uni-
versality classes of EOM, which results in first-order and
second-order phase transitions from the disordered to or-
dered phase, respectively. Studied rigorously in Ref.[14] and
Ref.[13], respectively.

7. CONCLUSION

We study a generic class of microscopic interacting parti-
cles that follows the thermodynamically consistent stochas-
tic dynamics using the Master equation [11]. Using Doi-Peliti
field theory, we implement the coarse-graining procedure to
obtain Langevin dynamics of the mesoscopic (macroscopic)
particle number (density). This procedure relies on comput-
ing an exact large deviation functional for interacting particle
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systems. Importantly, DPFT encapsulates the impact of mi-
croscopic Poissonian particle occupancy fluctuations in the
coarse-grained description. Using diffusive dynamics for in-
teracting particles, we highlight the differences from the ex-
isting coarse-graining method, namely, the Kawasaki-Dean
equation. Using reactive dynamics for interacting Ising spins,
we highlight the differences between our approach and exist-
ing coarse-graining methods for interacting particles that do
not account for Poissonian occupancy. Moreover, we show
the importance of exact coarse-graining methods using a rig-
orously studied model, namely the Active Ising model (AIM).
We show that the noise effects play a crucial role in quan-
tifying the order of the phase transition in different density
regimes (high and low density) of the Active Ising model. Our

coarse-graining procedure formulates a tool to study inter-
acting particles using mesoscopic/macroscopic fields system-
atically. Importantly, this avoids the mean-field approxima-
tions by exactly incorporating Poissonian fluctuations of par-
ticle occupancy. This extends the importance of exact coarse-
graining methods to practical applications by bridging the
gap between experimental/numerical observations of micro-
scopic systems using field-theoretical coarse-grained macro-
scopic/mesoscopic descriptions.
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Appendix A: Coarse-Graining

1. Normal ordering the transition Hamiltonian: The
derivation of eq. (9) from eq. (5)

The second quantized Hamiltonian for the reactive transi-
tion is reorganized to obtain the normal ordered form.

𝐻̂ #
𝛾𝛾 ′ = 𝑑𝛾𝛾 ′

[
(𝜂#

𝛾 )
† − (𝜂#

𝛾 ′ )†
] [
𝜂#
𝛾𝑒

𝜖#
𝛾 − 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′ − 𝜂#

𝛾 ′𝑒
𝜖#
𝛾 ′+

1
2 𝑓

𝑐ℎ
𝛾𝛾 ′

]
= 𝑑𝛾𝛾 ′

[
(𝜂#

𝛾 )
† − (𝜂#

𝛾 ′ )†
] [
𝜂#
𝛾𝑒

(
𝜖#
𝛾𝛾+

∑
𝑗≠𝛾 𝜖#

𝛾 𝑗

)
− 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′ − 𝜂#

𝛾 ′𝑒

(
𝜖#
𝛾 ′𝛾 ′+

∑
𝑗≠𝛾 ′ 𝜖

#
𝛾 ′ 𝑗

)
+ 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′

]
= 𝑑𝛾𝛾 ′

[
(𝜂#

𝛾 )
† − (𝜂#

𝛾 ′ )†
] [
𝜂#
𝛾𝑒

𝛽

(
𝑣𝛾𝛾 (𝑁̂ #

𝛾 −1)+∑𝑗≠𝛾 𝑣𝛾 𝑗 𝑁̂
#
𝑗

)
− 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′ − 𝜂#

𝛾 ′𝑒
𝛽

(
𝑣𝛾 ′𝛾 ′

(
𝑁̂ #
𝛾 ′−1

)
+∑𝑗≠𝛾 ′ 𝑣𝛾 ′ 𝑗 𝑁̂

#
𝑗

)
+ 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′

]
.

(A1)

The second quantized Hamiltonian has exponential density
operator terms due to the interacting nature of particles. Fol-
lowing Ref. [68], the expression for the normal ordering of
the exponential density operator reads:

𝑒𝜆𝑁̂
#
𝑖 = : 𝑒𝑁̂

#
𝑖 (𝑒𝜆−1) : . (A2)

Which reduces the eq. (5) to eq. (9).

2. The derivation of eq. (14) from eq. (11)

−H #
𝛾𝛾 ′ [{𝑁, 𝜒}] = 𝑑𝛾𝛾 ′

[
𝑒 𝜒

#
𝛾 − 𝑒 𝜒

#
𝛾 ′
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𝑁 #
𝛾 𝑒

−𝜒#
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ln𝑁 #
𝛾 ′+

∑
𝑗 𝑁

#
𝑗

(
𝑒
𝛽𝑣𝛾 ′ 𝑗 −1

)
+ 1

2 𝑓
𝑐ℎ
𝛾𝛾 ′

]
= 𝑑𝛾𝛾 ′

[ [
1 − 𝑒 𝜒

#
𝛾 ′−𝜒

#
𝛾

]
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ +

[
1 − 𝑒 𝜒

#
𝛾 −𝜒#

𝛾 ′
]
𝑒
µ#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

]
= 𝑑𝛾𝛾 ′

( [
1 − 𝑒 𝜒

#
𝛾 ′−𝜒

#
𝛾

]
𝑒
µ𝑟
𝛾+F𝑛𝑟

𝛾 − 1
2 F

𝑐ℎ
𝛾𝛾 ′ +

[
1 − 𝑒 𝜒

#
𝛾 −𝜒#

𝛾 ′
]
𝑒
µ𝑟
𝛾 ′+F

𝑛𝑟
𝛾 ′ +

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
.

(A3)

Appendix B: Cummulants of the transition currents

The first and second cumulants of the transition currents
are denoted by JΔ and TΔ respectively, and it is computed
usingH . We adopt a shorthand notation JΔ = J #

𝛾𝛾 ′ , TΔ = T #
𝛾𝛾 ′

and Δ𝜒 = 𝜒𝛾 − 𝜒𝛾 ′ for Δ#
𝛾𝛾 ′ , and JΔ = J ®D#

𝑖
, TΔ = T ®D#

𝑖
and

Δ𝜒 = 𝜒
®D#

𝑖
− 𝜒#

𝑖 for Δ ®D#
𝑖

.

JΔ = 𝜕Δ𝜒ΔH|𝜒=0 = 𝑑𝛾𝛾 ′

(
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ − 𝑒µ

#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
,

TΔ = 𝜕2
Δ𝜒ΔH|𝜒=0 = 𝑑𝛾𝛾 ′

(
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ + 𝑒µ

#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
.

(B1)

The second cummulant of the current is given by the traffic
[56]. Here, the traffic is defined as the symmetric part of the
transition currents obtained by the modulus of the unidirec-

tional currents. The reactive and diffusive mean currents and
traffic reads:

J #
𝛾𝛾 ′ = 𝑑𝛾𝛾 ′

(
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ − 𝑒µ

#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
,

T #
𝛾𝛾 ′ = 𝑑𝛾𝛾 ′

(
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ + 𝑒µ

#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
.

J ®D#
𝑖 = 𝑑𝛾𝛾 ′

(
𝑒
µ#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ − 𝑒µ

#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
,

T ®D#
𝑖 = 𝑑𝛾𝛾 ′

(
𝑒
µ

®D#
𝛾 − 1

2 F
𝑐ℎ
𝛾𝛾 ′ + 𝑒µ

#
𝛾 ′+

1
2 F

𝑐ℎ
𝛾𝛾 ′

)
.

(B2)

Importantly, the 𝑛𝑡ℎ order cummulant J𝑛
Δ satisfies J𝑛

Δ =

𝜕𝑛Δ𝜒ΔH|𝜒=0. Thus, the recursive relation between the cur-
rent cummulants holds J𝑛

Δ = J𝑛−2
Δ . This enables utiliz-

ing Langevin(gaussian) approximation for the stochastic dy-
namics of the coarse-grained meso/macrostate valid for suffi-
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ciently large Ω. The mesoscopic systems prone to the poisso-
nian transition fluctuations need a more systematic analysis
[29, 30]. Here, our focus is on a valid coarse-grained macro-
scopic description, a regime in which transition fluctuations
are gaussian.

Appendix C: Diffusive transition Hamiltonian and current
cumulants

1. Mesoscopic Diffusion Hamiltonian

Here we consider the mesoscopic diffusive Hamiltonian

HD [
{𝑁 #

𝑖 , 𝜒
#
𝑖 }

]
=

∑︁
#,𝑖
𝑑𝑖

[ (
𝑒 𝜒

D∥ #
𝑖

−𝜒#
𝑖 − 1

)
𝑒µ

#
𝑖 +

1
2 𝑓

𝑠𝑝

𝑖 +
(
𝑒 𝜒

#
𝑖 −𝜒D∥ #

𝑖 − 1
)
𝑒µ

D∥ #
𝑖

− 1
2 𝑓

𝑠𝑝

𝑖 +
(
𝑒 𝜒

D∦#
𝑖

−𝜒#
𝑖 − 1

)
𝑒µ

#
𝑖 −

1
2 𝑓

𝑠𝑝

𝑖 +
(
𝑒 𝜒

#
𝑖 −𝜒D∦#

𝑖 − 1
)
𝑒µ

D∥ #
𝑖

+ 1
2 𝑓

𝑠𝑝

𝑖

+
(
𝑒 𝜒

D⊥#
𝑖

−𝜒#
𝑖 − 1

)
𝑒µ

#
𝑖 +

(
𝑒 𝜒

#
𝑖 −𝜒D⊥#

𝑖 − 1
)
𝑒µ

D⊥#
𝑖 +

(
𝑒 𝜒

D⊤#
𝑖

−𝜒#
𝑖 − 1

)
𝑒µ

#
𝑖 +

(
𝑒 𝜒

#
𝑖 −𝜒D⊤#

𝑖 − 1
)
𝑒µ

D⊤#
𝑖

]
(C1)

Where, we have utilized D ∥ · ®𝑓 𝑠𝑝 = 𝑓 𝑠𝑝 , D∦ · ®𝑓 𝑠𝑝 = −𝑓 𝑠𝑝 , D⊥ · ®𝑓 𝑠𝑝 = 0 and, D⊤ · ®𝑓 𝑠𝑝 = 0. Thus, the deterministic
transition currents read,

𝜕𝜒#
𝑖
HD [

{𝑁 #
𝑖 , 𝜒

#
𝑖 }

]
|{𝜒 }={0} = 𝑑𝑖

[
− 𝑒µ#

𝑖 +
1
2 𝑓

𝑠𝑝

𝑖 + 𝑒µD∥ #
𝑖

− 1
2 𝑓

𝑠𝑝

𝑖 − 𝑒µ#
𝑖 −

1
2 𝑓

𝑠𝑝

𝑖 + 𝑒µD∦#
𝑖

+ 1
2 𝑓

𝑠𝑝

𝑖 − 𝑒µ#
𝑖 + 𝑒µD⊥#

𝑖 − 𝑒µ#
𝑖 + 𝑒µD⊤#

𝑖

]
= 𝑑𝑖

[
cosh

(
𝑓
𝑠𝑝

𝑖

2

) (
𝑒µ

D∦#
𝑖 + 𝑒µD∥ #

𝑖 − 2𝑒µ
#
𝑖

)
+ sinh

(
𝑓
𝑠𝑝

𝑖

2

) (
𝑒µ

D∦#
𝑖 − 𝑒µD∥ #

𝑖

)
+ 𝑒µD⊥#

𝑖 + 𝑒µD⊤#
𝑖 − 2𝑒µ

#
𝑖

]
= 𝑑𝑖

[
cosh

(
𝑓
𝑠𝑝

𝑖

2

)
Δ∥𝑒µ

#
𝑖 + 2 sinh

(
𝑓
𝑠𝑝

𝑖

2

)
∇∥𝑒µ

#
𝑖 + Δ⊥𝑒µ

#
𝑖

]
= 𝑑𝑖

[
cosh

(
𝑓
𝑠𝑝

𝑖

2

)
∇∥

(
𝑒µ

#
𝑖

[
∇∥µ#

𝑖 + 2 tanh

(
𝑓
𝑠𝑝

𝑖

2

)])
+ ∇⊥

(
𝑒µ

#
𝑖∇⊥µ#

𝑖

) ]
(C2)

Where, Δ∥𝑒µ
#
𝑖 and Δ⊥𝑒µ

#
𝑖 are the discrete Laplacian opera-

tor in the direction parallel and perpendicular to the self-
propulsion respectively. ∇∥𝑒µ

#
𝑖 is the gradient operator in the

direction parallel to the self-propulsion. In the last line, we
have decomposed the Laplacian operator into the gradient
operator to obtain a more familiar form of the diffusive cur-
rents, Δ∥𝑒µ

#
𝑖 = ∇∥ ·

(
𝑒µ

#
𝑖∇∥µ#

𝑖

)
. The last line helps identify the

diffusive transition mobilities, 𝐷D ∥
𝑖

= 𝑑
∥
𝑖
𝑒µ

#
𝑖 , 𝐷D⊥

𝑖
= 𝑑⊥𝑖 𝑒

µ#
𝑖 ,

with 𝑑 ∥
𝑖
= 𝑑𝑖 cosh

(
𝑓
𝑠𝑝

𝑖

2

)
, 𝑑⊥𝑖 = 𝑑𝑖 . ∇𝜇#

𝑖 is the thermodynamic
force acting along the diffusive direction. Similarly, the vari-
ance of the transition fluctuations is given by the curvature

of the Hamiltonian,

−𝜕
𝜒

®D#
𝑖

𝜕𝜒#
𝑖
HD [

{𝑁 #
𝑖 , 𝜒

#
𝑖 }

]
|{𝜒 }={0} = 𝑑𝑖

[
𝑒µ

#
𝑖 +

1
2 𝑓

𝑠𝑝

𝑖 + 𝑒µ
®D#
𝑖

− 1
2 𝑓

𝑠𝑝

𝑖

]
(C3)

2. Macroscopic Diffusion Hamiltonian with infinitesimal
lattice spacing

The eq. (C2) derived for the mesoscopic discrete lattice sys-
tem holds for the macroscopic discrete lattice systems, by re-
placing µ#

𝑖 → 𝜇#
𝑖 and 𝑁 #

𝑖 → 𝜌#
𝑖 . In addition, the macroscopic

continuous description is obtained by replacing the discrete
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gradient and Laplacian operators with its continuous coun-
terpart. The macroscopic continuous limit corresponds to the
small lattice spacing 𝑙 , instead of the unit lattice spacing in

eq. (C2). Thus, 𝜇 ®D
𝑖

− 𝜇𝑖 = 𝑙∇𝜇𝑖 ∝ 𝑂 (𝑙), similarly 𝑓 𝑠𝑝
𝑖

∝ 𝑂 (𝑙)
which amounts to 𝑓 𝑠𝑝

𝑖
→ 𝑙 𝑓

𝑠𝑝

𝑖
. The macroscopic EOM is ob-

tained by the transformation of gradient and Laplacian oper-
ators, Δ → 𝑙2Δ and ∇ → 𝑙∇. Thus, the macroscopic counter-
part of eq. (C2) reads:

𝜕𝜒#
𝑖
HD [

{𝜌𝑖 , 𝜒#
𝑖 }

]
= 𝑑𝑖 cosh

(
𝑓
𝑠𝑝

𝑖

2

)
Δ∥𝑒𝜇𝑖 + 2𝑑𝑖

𝑙
sinh

(
𝑓
𝑠𝑝

𝑖

2

)
∇∥𝑒𝜇𝑖 + 𝑑𝑖Δ⊥𝑒𝜇𝑖 , (C4)

where, 𝑑𝑖 = 𝑑𝑖𝑙2 and 𝑓𝑠𝑝 = 𝑙 𝑓𝑠𝑝 . The continuous limit leads to

𝑑𝑖 = lim𝑙→0 𝑑𝑖𝑙
2, 𝑓 𝑠𝑝

𝑖
= lim𝑙→0

2
𝑙

sinh
(
𝑓
𝑠𝑝

𝑖

2

)
for small values

of 𝑓 𝑠𝑝
𝑖

. In the continuous limit, the transverse and longitu-
dinal diffusion coefficients are equal. The macroscopic self-
propulsion current reads ®𝐽 𝑠𝑝

𝑖
= 2𝑑𝑖𝑙 sinh

(
𝑙 𝑓

𝑠𝑝

𝑖

2

)
. Note that

eq. (C4) is 𝑂 (𝑙2), the scaled microscope diffusion coefficient

takes care of the macroscopic scaling of the small lattice spac-
ing. Importantly, in the limit 𝑙 → 0, ®𝐽 𝑠𝑝

𝑖
= 𝑑𝑖 𝑓

𝑠𝑝

𝑖
leads to the

linear relationship between the macroscopic self-propulsion
current and the microscopic self-propulsion force. This un-
derestimates the microscopic thermodynamic dissipation us-
ing the macroscopic continuous-space description.
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