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Abstract. The Bose glass (BG) phase is the Griffiths region of the disordered
Bose–Hubbard model (BHM), characterized by finite, quasi-superfluid clusters
within a Mott insulating background. We propose to utilize this characterization
to identify the complete zero-temperature phase diagram of the disordered BHM
in d > 2 dimensions by analysing the geometric properties of what we call
superfluid (SF) clusters, which are defined to be clusters of sites with non-integer
expectation values for the local boson occupation number. The Mott insulator
phase then is the region in the phase diagram where no SF clusters exist, and the
SF phase the region where SF clusters percolate—the BG phase is inbetween:
SF clusters exist, but do not percolate. This definition is particularly useful
in the context of local mean field (LMF) or Gutzwiller–Ansatz calculations,
where we show that an identification of the phases on the basis of global
quantities such as the averaged SF order parameter and the compressibility is
misleading. We apply the SF cluster analysis to the LMF ground states of the
two-dimensional disordered BHM to produce its phase diagram and find (a) an
excellent agreement with the phase diagram predicted on the basis of quantum
Monte Carlo simulations for the commensurate density n = 1 and (b) large
differences to stochastic mean field and other mean field predictions for fixed
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disorder strength. The relation of the percolation transition of the SF clusters
with the onset of non-vanishing SF stiffness indicating the BG to SF transition is
discussed.

S Online supplementary data available from stacks.iop.org/NJP/15/075029/
mmedia
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1. Introduction

The experimental proof of the Mott insulator (MI) to superfluid (SF) transition in ultracold
atomic systems [1] opened a wide field of interesting research. In particular, the influence of
disorder on a system of bosons in a regular (e.g. optical) lattice has received much interest since
the fundamental work of Fisher et al [2]. Here the phase diagram and transitions for bosons in a
disordered potential were analysed and the existence of a Bose glass (BG) phase was predicted.
BG represents a non-SF but, in contrast to the MI, a compressible phase displaying an excitation
spectrum with arbitrarily small excitation energies. The BG phase is the analogue of the Griffith
regions occurring, for instance, in disordered magnets, whose physics is dominated by rare
region effects due to arbitrarily large strongly coupled clusters [3–5].

Studies of the excitation spectrum of the disordered system as a function of the disorder
strength and time-of-flight measurements confirmed the predicted BG phase experimentally [6].
In addition to the well-controllable optical lattice, disorder is introduced either by a non-
commensurate periodic potential [6] or by speckle potentials [7, 8]. A new view on the
properties of ultracold bosonic gases has opened up, as high-resolution techniques allowed
access to single-site detection recently [9, 10]. This progress now yields a direct view on the
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population numbers within different phases and the in situ hopping dynamics of the bosons in
their optical potential.

Theoretically, the phase diagram of the disordered Bose–Hubbard model (BHM) has been
studied by various methods: the strong coupling expansion [11] is a perturbative method up to
third order in the tunnelling rate yielding a prediction on the Mott lobes. The disordered BHM
was widely studied by quantum Monte Carlo (QMC) methods in various dimensions [4, 12–17].
In addition, density-matrix renormalization group techniques were applied to one-dimensional
systems containing either quasi-periodic potentials [18–20] or a uniform distribution of disorder
strength [21, 22]. A frequently used alternative approach is the local mean field (LMF)
approximation [23], which replaces the nearest-neighbour hopping on the lattice by isolated
bosonic degrees of freedom interacting via an effective mean field coupling with the neighbours.
Based on the LMF approximation, several numerical techniques, such as stochastic mean field
(SMF) theory [24, 25] and LMF theory [26–28], were proposed.

An intriguing question has been for a long time the potential existence of a direct MI–SF
transition [4, 12–17], which is now excluded by a rigorous theorem [13]. The occurrence of
the BG phase intervening between the MI and SF is caused by Griffiths effects [2, 29] due to
arbitrarily large, but exponentially rare, clusters of one phase within a background of another
phase [3, 30, 31]. Since any exponentially rare event is hard to sample numerically, the existence
of an intervening BG phase might have been eluded from some studies, be it QMC [4, 14–17],
LMF [26–28] or SMF theory [24, 25]. One might speculate that, rather than calculating spatially
averaged quantities, a look at the aforementioned clusters in individual disorder realization itself
would tell us more about the actual state the system is in. In this paper, we propose a method
to identify the different phases of the disordered BHM on the basis of geometric properties
of what we call SF clusters, which are clusters of sites with non-integer boson occupation
number. The MI phase then is the region in the phase diagram where no SF clusters exist,
and the SF phase is the region where SF clusters percolate—the BG phase is in between: SF
clusters exist, but do not percolate. We apply this criterion to the results of LMF calculations
and compare it with the predictions of other methods: on one side we have SMF theory, where
the individual phases are identified on the basis of spatially averaged LMF quantities such as
SF order parameter or compressibility, and on the other side we have QMC simulations, which
are supposed to be exact up to statistical and extrapolation (L → ∞, T → 0) errors (which can,
of course, be quite large). Our aim is to demonstrate that the use of averaged quantities in LMF
theory leads to incorrect predictions and that the cluster analysis predicts the phase diagram
in d > 2 in very good agreement with the exact QMC results, even when applied to LMF
data.

The paper is organized as follows. In section 2 we recapitulate the LMF and SMF theories
for the disordered BHM. In section 3 we critically examine the use of the averaged SF order
parameter ψ̄ and the compressibility κ as indicators of the different phases of the disordered
BHM in the LMF and SMF theories and then introduce our new method to construct the phase
diagram on the basis of an analysis of SF clusters. We apply this cluster analysis in section 4 to
the two-dimensional (2D) disordered BHM with commensurate filling and with fixed disorder
strength and compare with prediction from QMC simulations and from SMF theory. Section 5
concludes with a discussion of the equivalence of the predictions of the SF cluster analysis
for the phase boundaries with the conventional definition of the MI–BG and BG–SF transition
points.
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2. The model

Ultracold bosonic atoms in a 2D square optical lattice can be described by the BHM

Ĥ =

∑
i

(εi −µ) n̂i +
U

2

∑
i

n̂i

(
n̂i − 1

)
− J

∑
〈i, j〉

â†
i â j , (1)

where i = 1, . . . ,M is the site index, M = L2 the number of sites and L the lateral size of the
square lattice. The chemical potential is described byµ, the inter-particle repulsion by U and the
tunnelling rate by J . The last sum runs over all nearest-neighbour pairs 〈i, j〉 of the underlying
lattice. The operator n̂i = â†

i âi is the particle number operator of bosons on site i , which are
annihilated and created by the operators âi and â†

i . Moreover, on-site disorder is introduced by
the parameter εi , which is drawn randomly from a box distribution p(ε)=2(1/2 − |ε|) /1,
where 1 is the strength of the disorder.

In the SF regime tunnelling dominates the system and in the limit J → ∞ the ground
state is a coherent state, which is an eigenstate of the tunnelling part of the Hamiltonian. The
SF parameter ψi = 〈âi〉 is the expectation value of âi evaluated in the ground state for T = 0,
which is non-zero for a coherent state. An eigenstate of the diagonal part of the Hamiltonian,
on the other hand, is a Fock state, which is the ground state of the system for small tunnelling
rates in the MI regime. The expectation value of âi in a Fock state is zero in any case. Hence,
the mean value of the SF parameters ψ̄ =

∑
i ψi/M is an order parameter for the SF phase (in

fact, |ψ̄ |
2 is proportional to the condensate fraction).

The phase diagram of the pure system as a function of J Z/U and µ/U consists of the
so-called Mott lobes, in which the system is an MI with a fixed integer number of atoms per
site. While in the MI regime the state is localized in real space, in the surrounding SF regime it
is localized in k-space. When disorder is introduced, the Mott lobes shrink and a new phase, the
BG phase, occurs. In order to distinguish all three phases, the compressibility κ = 〈n̂2

〉 − 〈n̂〉
2

is necessary. Among the three phases, only the MI is non-compressible and only in the SF phase
the SF order parameter is non-zero. Consequently, the phase of the system can be identified by
the SF order parameter ψ̄ =

∑
i ψi/M and the compressibility κ . While the SF order parameter

is a measure for the coherence in the system, the compressibility describes the variance of the
particle number per site.

In order to determine the phase diagram of the BHM, the ground state properties of the
LMF Hamiltonian can be studied via SMF theory [24, 25], which computes the probability
distribution (PD) self-consistently, or via LMF theory [23, 27, 28], which solves the coupled
set of equations for the local SF parameter directly on the lattice. We will first describe the
approximations made in LMF theory, followed by a discussion of the additional assumptions
made in the SMF approach.

2.1. Local mean field theory

In LMF theory the tunnelling part of the Hamiltonian can be approximated via

âi â
†
j ≈ âi〈â

†
j 〉 + â†

j 〈âi〉 − 〈âi〉〈â
†
j 〉, (2)

where terms of the form (âi − 〈âi〉)(â
†
j − 〈â†

j 〉) are neglected [23]. The central quantities are the
local SF parameters

ψi = 〈gs|âi |gs〉, (3)
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which are defined as the expectation values of the annihilation operator at the individual site
i in the ground state of the system. Because of the U (1)-symmetry, they can be chosen to be
positive and real, which leads to

âi â
†
j ≈ ψ j âi +ψi â

†
j −ψiψ j . (4)

Thus, the Hamiltonian can be decomposed in a sum of diagonal operators

Ĥ =

∑
i

Ĥ i ,

Ĥ i = (εi −µ)n̂i +
U

2
n̂i(n̂i − 1)− Jηi(âi + â†

i −ψi), (5)

whose tunnelling rate is replaced by an effective local rate Jηi , which depends on the local SF
parameter of the neighbouring sites ηi :=

∑
j Ai jψ j , with Ai j = 1 for i and j nearest neighbours

on the square lattice with periodic boundary conditions and zero otherwise. This approximation
reduces the full quantum problem to M quantum sites, which are coupled in a mean field way
with a spatially varying coupling rate.

In order to compute the phase diagram in LMF theory, the coupled set of the self-
consistency equations

ψi = 〈âi〉, i = 1, . . . ,M, M = L2 (6)

is solved on an L × L lattice, where the expectation value is evaluated in the ground state of Ĥi ,
that itself depends on the local SF parameter ψi . As a result of the decomposition (5) all states
considered (in particular the ground state) are a direct product of individual single-site states.
This means, in particular, that they are Gutzwiller states of the form

|9〉 =

M∏
i=1

(
∞∑

n=0

ci
n|n〉i

)
, (7)

with single-site states |φi〉 =
∑

∞

n=0 ci
n|n〉i given in particle number basis, and |ci

n|
2 describes

the probability to find n bosons at site i and fulfils
∑M

i=1 |ci
n|

2
= 1. In particular, the local SF

parameter is then given by ψi =
∑

∞

n=0 ci
n−1

∗
ci

n

√
ni and the local boson number is represented

by 〈n̂i〉 =
∑

∞

n=0 |ci
n|

2ni .
For the numerical implementation, starting from a random initial configuration for ψi on

the 2D lattice, the set (6) of equations is solved recursively. This involves solving the eigenvalue
problem on each site and computing the expectation value of the annihilator in the numerically
determined ground state. This is repeated until the averaged SF order parameter

ψ̄ =

[
1

M

M∑
i=1

ψi

]
av

(8)

is determined with an accuracy of 10−4. In the disordered case the results are averaged over
200 different realizations of disorder, indicated by the brackets [. . .]av. Since we are working in
a regime in which the maximum average particle number per site is three, it was numerically
checked that it is sufficient to truncate the basis of the Hilbert space for each site at n = 10.
With the solution found for the local SF parameters ψi on the lattice, the ground state of
Hamiltonian (5) is calculated numerically. Afterwards all desired expectation values and finally
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the compressibility

κ =

[
〈N̂ 2〉 − 〈N̂ 〉

2
]

av
(9)

with N̂ =
∑

i n̂i can directly be computed. The PD

P(ψ)=

[
1

M

M∑
i=1

δ(ψ −ψi)

]
av

(10)

is determined on the basis of the complete set of values of ψi , additionally averaged over
disorder realizations.

2.2. Stochastic mean field theory

The central idea of SMF theory is to circumvent the computation of all local order parameters
ψi by deriving a self-consistency equation for the PD P(ψ) directly [24, 25]. Additional
approximations are of course necessary. The SF order parameter ψ = 〈gs|â |gs〉, which is
derived from the ground state of the full quantum Hamiltonian, can be determined by the
ground state of the single-site Hamiltonian (5) as a function of the stochastic variables ε and
η. The parameter ε is then a stochastic variable drawn from the disorder distribution p (ε) and
as a result ψ = 〈gs|â |gs〉 is a stochastic variable, drawn from the PD P (ψ), which must be
determined self-consistently. Since η is the sum of the SF parameters of the neighbouring sites
it also is a stochastic variable drawn from Q (η). The problem of computing the ground state of
the full quantum system for all lattice sites simultaneously is thereby replaced by analysing the
ground state |gs (ε, η)〉 of the site-independent Hamiltonian

Ĥ = (ε−µ) n̂ +
U

2
n̂(n̂ − 1)− Jη(â + â†

−ψ) (11)

as a function of ε and η. Thus, the PD

P(ψ)=

∫
dηQ (η) P̃η(ψ) (12)

depends on the distribution Q (η) of the occurring values of η and the distribution P̃η (ψ) of the
local SF parameters for given η. A direct analysis of 〈gs (ε, η) |â |gs (ε, η)〉 as a function of ε
and η yields

P̃η(ψ)=
d

dψ

∫
dεp (ε)2

(
ψ − 〈gs(ε, η)|â|gs(ε, η)〉

)
. (13)

Since η is the sum of the local SF parameters ψ of the neighbouring sites, its distribution is
given by

Q (η)=

∫
∞

0

Z∏
i=1

dψiPZ (ψ1, . . . , ψZ) δ

(
η−

Z∑
i=1

ψi

)
, (14)

where PZ (ψ1, . . . , ψZ) is the connected PD function of the local order parameters ψ1, . . . , ψZ

of the Z neighbour sites of a single site. Assuming that these Z local SF parameters are
statistically independent,

PZ (ψ1, . . . , ψZ)=

Z∏
i=1

P (ψi) , (15)
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equation (14) transforms into a convolution

Q (η)=

∫
∞

0

(
Z∏

i=1

dψi P (ψi)

)
δ

(
η−

Z∑
i=1

ψi

)
. (16)

Since assumption (15) implies the absence of correlations of the local SF parameters, one
expects that it is not justified close to the phase boundaries, where the correlation length even
diverges, when the transition is second order. We examine the validity of this approximation as
a function of the system parameter J Z/U and µ/U in appendix A.

After determining the PD P(ψ), the SF order parameter ψ̄ =
∫

dψP (ψ)ψ is given by

the mean value of the distribution. The compressibility κ = [〈N̂ 2〉 − 〈N̂ 〉
2]av with N̂ =

∑
i n̂i is

computed. With these quantities at hand, one can, on the basis of the underlying approximations,
estimate the phase boundaries of the transitions between MI, BG and SF. They are shown in
figures 4 and 5 and will be discussed in the following.

3. Criterion for phase transition

In this section we will first discuss the well-known SF order parameter ψ̄ and the compressibility
κ , which are expected to indicate the phase transition. The ground state in the MI regime is a
Fock state, which is incompressible (κ = 0) and non-coherent ψ̄ = 0, while conversely in the
SF regime it is described by a coherent state ψ̄ = 0, which is compressible (κ > 0). If disorder
is introduced, those phases are separated by the BG phase, which is compressible (κ > 0), but
not coherent ψ̄ = 0. We will see that a precise prediction of the transition point on the basis of
ψ̄ or κ is not possible in LMF theory. Instead we will introduce an identification criterion of the
different phases on the basis of the complete set of local occupation numbers.

3.1. Superfluid order parameter and compressibility

In the ordered case, the on-site energies εi are zero and the lattice is homogeneous. The SF order
parameter ψ̄ clearly marks the location of the MI–SF phase transition, as shown in figure 1 on
the left-hand side for µ/U = 1.05 and 0.32. While the SF order parameter is zero for small
tunnelling rates in the MI phase, it becomes non-zero and positive above a critical value of the
tunnelling rate in the SF phase. The compressibility κ shows the same behaviour at the phase
transition as the SF order parameter in the ordered case. Moreover, we analysed different lattice
sizes L and the LMF results show no visible finite-size effects. In this way the phase transition
in the ordered case can be determined very precisely, within both SMF and LMF theories. The
resulting phase transition agrees perfectly with the perturbation predictions [32]

µ

U
= −

1

2

(
J Z

U
− 2n + 1

)
±

√
1

4

(
J Z

U
− 1

)2

−
J Z

U
n, (17)

where n denotes the mean number of particles per site and simultaneously counts the number of
lobes. The calculation in [11] predicts that in the disordered case the upper (lower) part of the
Mott lobes is shifted downwards (upwards) by 1/2, but the shape remains unchanged.

The situation for the disordered case is shown in figure 1 on the right-hand side. The SF
order parameter is shown for µ/U = 1.05 and 0.32 as a function of the tunnelling rate for
a disorder of 1/U = 0.6. Whereas the SMF theory predicts a direct BG–SF transition, at a
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Figure 1. Comparison of the LMF and SMF predictions for the average SF
order parameter ψ̄ and the compressibility κ for fixed chemical potential µ/U
and varying tunnelling rate J Z/U . Left: homogeneous case (1/U = 0); right:
disordered case with 1/U = 0.6. The top row is for µ/U = 1.05, where the
ordered system displays a MI–SF transition and the disordered system a BG–SF
transition (κ > 0 for all values of J Z/U ). The bottom row is for µ/U = 0.32,
where the ordered system again displays an MI–SF transition and the disordered
system is expected to display MI, BG and SF phases (see section 3.2). For LMF
theory the results for a 2D lattice with L = 100 (line), L = 50 (◦), L = 10 (+) are
depicted, which shows that finite-size effects can be neglected.

critical value J Z/U ≈ 0.0241 and 0.1092, see figures 1(b) and (d), above which ψ̄ becomes
non-zero, the behaviour of ψ̄ as predicted by LMF theory does not indicate a transition at all, it
varies smoothly with the tunnelling rate J . This is not a finite-size effect as we have checked by
examining different lattice sites, as shown in figure 1. The compressibility, which indicates the
MI–BG transition, displays the same behaviour.

It turns out that the reason for the failure of the average SF order parameter to predict the
location of the BG–SF boundary is the following: in the disordered case the value of the local
SF parameter varies substantially from site to site due to the variation of the local potential
of εi . Close to phase transition there are sites with zero local SF parameter and others where
the local SF parameter is still positive. This has been interpreted as an overestimation of the
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phase coherence in LMF description [24]. Our interpretation, however, is different: it is only
the average SF order parameter ψ̄ that overestimates the phase coherence. A closer look at
the complete PD P(ψ) of the local SF parameters and their geometrical features provides an
estimate of the SF regions in the phase diagram. Its prospects are discussed in section 4.3. In
the next section we discuss how a deeper understanding of the mechanisms driving the phase
transitions and their location in the phase diagram can be obtained by studying the geometric
characteristics of the spatial inhomogeneities of the local SF parameters ψi and particle number
per site 〈n̂i〉.

3.2. Identification of phases via local boson occupation number

The MI and SF phases can be discriminated by the boson number statistics at individual sites,
as has also been demonstrated experimentally in [1]. The ground state in the extreme MI limit
(J → 0) is a Fock state with a definite number of particles n at each site. In the extreme SF
limit (U → 0), the ground state is a coherent state, in which the local boson number distribution
is close to a Poissonian. Although, in the regime between these two extreme limits the ground
state wave function can no longer be written as simple product states, still the MI phase is
characterized by a sharp, integer boson number per site and the SF phase by a fluctuating
boson number per site, i.e. a non-vanishing variance of the boson number distribution pi

n = |ci
n|

2

(cf the expansion coefficient in the Gutzwiller wave function (7)). In other words in the MI
regime, the expectation value of the number of bosons per site 〈n̂i〉 is an integer, whereas in the
SF regime it is a non-integer.

Whereas in the ground state of the homogeneous BHM either all sites have an integer
boson number (MI regime) or all sites have a non-integer boson number (SF regime), this is
different in the disordered BHM. In particular, outside the MI regime one expects to encounter
spatially inhomogeneous situations, in which some sites have sharp (integer) boson occupation
numbers and others have fluctuating (non-integer) boson numbers. Introducing phase operator
8̂i that is canonically conjugate to the boson number operators n̂i the BHM can be mapped
upon a Josephson junction array or more general to a quantum rotor model [2], in which
superfluidity is indicated by long-range order in these phases (d > 2). Because of the Heisenberg
uncertainty relation sites with sharp phases correspond to sites with fluctuating boson numbers,
and connected clusters of sites with fluctuating boson numbers tend to have, roughly speaking,
all the same phase. These clusters can therefore be identified with SF regions, although true
superfluidity only exists in the infinite system. Indeed, once these phase-ordered clusters
percolate, true superfluidity emerges, signified by a non-vanishing SF stiffness, which is the
extra free energy cost to impose a uniform twist on the phases. Since such a uniform twist can
be introduced by applying a certain twist at the boundary phases in one space direction, it is
clear that the SF stiffness is zero as long as the clusters do not percolate: in the absence of
long-range order in the phases, such a twist at the boundary does not cost energy.

On the basis of this qualitative picture, we hypothesize that the BG–SF transition in
the d-dimensional BHM (d > 2) coincides with the percolation transition of the connected
clusters of lattice sites with a non-integer boson number expectation value 〈n̂i〉. We expect this
coincidence to hold as long as the SF phase displays true long-range order, characterized within
the phase description by a non-vanishing long distance limit of phase correlations—which
means it should hold for d > 2. The BG–SF transition in one-dimensional BHM might not
be related to a percolation transition, since in d = 1 the SF phase has only quasi-long-range
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order (algebraically decaying correlations). We should note that the relation between the BG–SF
transition and percolation has already been pointed out in [26, 33, 34], but has neither been used
in a quantitative manner to determine phase boundaries nor checked against, for instance, Monte
Carlo results.

In the following, we denote sites with non-integer boson occupation number 〈n̂i〉 as SF
sites, and sites with integer 〈n̂i〉 as MI sites. Analogously, we discriminate between SF clusters
and MI clusters. Formally, we map the boson occupation numbers to a discrete field Si that is
set to Si = 1 for SF sites and Si = 0 for MI sites. Then we identify the different phases of the
disordered BHM as follows:

MI phase. Si = 0 for all sites i . All boson occupation numbers are integers (and identical),
consequently the compressibility κ is zero.

SF phase. Si = 1 for a macroscopic fraction of sites, which form a percolating connected
cluster. According to what we discussed above, the percolating cluster has phase long-range
order and thus yields a non-vanishing SF stiffness (which is proportional to the SF density).

BG phase. Characterized by a non-vanishing density of sites with Si = 1, none of the
connected clusters formed by the SF sites percolates. The BG phase is thus characterized by
isolated SF clusters within an MI sea. The phases of the isolated clusters are uncorrelated,
hence phase long-range order is lacking and the SF density vanishes (no SF order). Moreover,
due to the number fluctuations on the SF sites the BG phase is compressible (κ > 0).

Within LMF theory the expectation values of the local boson occupation numbers are
straightforward to calculate via ni = 〈gs|n̂i |gs〉, where |gs〉 is the ground state of the LMF
Hamiltonian (5). For numerical reasons we introduce a threshold γn into the definition of the
discrete field

Si =

{
0 if I − γn 6 〈n̂i〉6 I + γn, I = 0, 1, 2, . . . ,

1 else,
(18)

where γn = 5 × 10−3 is chosen to serve as the cut-off in this algorithm. In the whole parameter
range, where sites with integer particle number occur, the histogram of the particle number
〈n̂i〉 has narrow peaks of width γn at integer values. The width decreases when we increase the
number of iteration steps to solve the self-consistency equations (6). The threshold parameter
γn introduced to identify MI sites (and complementarity SF sites) can be reduced by increasing
the numerical effort without changing the final results.

In figure 2, typical results for one realization of disorder for1/U = 0.6 andµ/U = 1.0455
are shown for three different values of the tunnelling rate J Z/U for the three phases. In the first
row the local SF parameter ψi , in the second the particle number per site 〈n̂i〉 and in the third the
resulting discrete map Si are shown. In the MI regime all sites are occupied by the same integer
number of particles (in this case one, since we are in the first Mott lobe). At the transition from
the MI to the BG regime, SF sites (Si = 1) with non-integer particle number occur. Because of
these locally occurring SF sites ψi > 0 the SF order parameter ψ̄ is small but not zero in this
regime. Since the SF islands are compressible, this phase has positive compressibility. In the
BG phase the SF islands do not yet percolate. They grow in number and size, until one of them
finally percolates. The percolation represents the actual transition to the SF regime in parameter
space. Just after the percolation, the phase in the system is coherent macroscopically, which
means that all local SF parameters ψi are positive and compressible, as described above.
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Figure 2. Configurations of the local SF parameter ψi , the occupation number
〈n̂i〉 and the discrete variable Si (18) for a single realization of disorder for
1/U = 0.6. The first row shows an example for MI (J Z/U = 0.0242, µ/U =

0.4394) followed by one for BG (J Z/U = 0.0182, µ/U = 1.0455) and SF
(J Z/U = 0.141, µ/U = 1.0455). Note that blue marks the minimal value (zero
in the left and right, one in the middle column) and green the maximal value (one
in the left and right, two in the middle column). A video illustrating in more detail
the evolution of the configurations with increasing tunnelling rate can be found in
the supplementary data (video 1, available from stacks.iop.org/NJP/15/075029/
mmedia).

3.3. Percolation analysis

In this section, we demonstrate how we determine numerically the percolation transition via a
cluster analysis of the discrete map Si and finite-size scaling [35]. Assume that we study the
phase diagram as a function of the system parameters called x and y. Then, the percolation
probability pPerc, i.e. the probability of having a percolating cluster, is given for fixed y as a
function of x and will be determined for different system sizes L . The percolation probability is
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Figure 3. The percolation probability pPerc of the SF cluster (top) and finite-
size scaling plot (bottom). The critical tunnelling rate according to the finite-size
scaling (19) is given by Jc Z/U = 0.15 for µ/U = 0.439 (left) and Jc Z/U =

0.04 for µ/U = 1 (right); the critical exponent is ν = 1.33.

expected to obey the finite-size scaling form

pPerc (L , x)= p̃(L1/ν(x − xc)), (19)

where xc is the percolation threshold, i.e. the value above which a percolating cluster exists with
probability one, and ν is the critical exponent determining the divergence of the mean lateral
cluster size at the transition. The scaling function p̃(X) approaches zero for X � 0 and one for
X � 0, which means that exactly at the transition xc the curves for different system sizes should
intersect (in the scaling limit). This intersection point, which can easily be identified with the
system sizes behaviour at hand, is thus a reliable indicator for the percolation transition.

The cluster analysis of the discrete map Si is reformed for every disorder realization.
Afterwards the results are averaged over 200 (L = 50, 100) and 2500 (L = 10) realizations of
disorder. The percolation probability pPerc for this case is shown in figure 3 for different system
sizes as a function of the tunnelling rate J Z/U . Moreover, the finite-size scaling analysis for the
percolation transition at µ/U = 0.439 and 1 for 1/U = 0.6, yielding Jc Z/U = 0.15 and 0.04,
respectively, and the critical exponent ν = 1.33 in both cases, is depicted. Thus, this transition
is in the universality class of conventional 2D percolation [35]. We find the same universality
class of the percolation transition for all parameter values that we studied.
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Figure 4. Left: LMF cluster analysis phase diagram for commensurate boson
density n̄ = 1 determined with the discretized boson occupation number field
Si (18). The percolation transition of the SF sites (Si = 1) occurs when crossing
the red line, which indicates the BG–SF phase boundary. The blue line marks the
boundary of the MI region, in which all sites are MI sites (Si = 0). The black line
indicates the MI–BG transition according to the perturbative result (17). Right:
prediction for the phase diagram for commensurate boson density n̄ = 1 based
on the results of QMC simulations (data taken from [12]).

4. Results

4.1. Commensurate filling—comparison with quantum Monte Carlo results

In this section, we determine the complete phase diagram for commensurate density as a
function of 1/2J and U/J , for which a prediction on the basis of QMC simulations is
available [12]. We fix the particle density to n̄ = 〈

∑M
i=1 n̂i〉/M = 1 with an accuracy of 10−4

by adjusting the chemical potential for each point (1/2J , U/J ) in the phase diagram that we
study. Outside of the Mott lobes this result is unique, whereas in the MI regime the chemical
potential is fixed to the middle of the MI gap. In the µ/1 versus J Z/U representation, where
the Mott lobes are visible and which we will discuss in section 4.2, this n̄ = 1 line always passes
the tip of the first Mott lobe. In the 1/2J versus U/J parameter space, the corresponding line
for fixed 1 is a straight line through the origin with slope 1/2U .

With the chemical potential that fixes the density n̄ to one, we compute the ground state of
the LMF Hamiltonian (5) and determine the discretized boson number field Si (18), which we
use to identify the MI, BG and SF phases. The resulting phase diagram is shown in figure 4 on
the left. As expected [13] the SF region is completely surrounded by the BG phase (except
at 1= 0). Its boundary has some characteristic features: it extends in a slight bump up to
quite large disorder strength (up to 1/2J ∼ 75) and in a pronounced nose up to the interaction
strength U/J ∼ 52. This nose gives rise to a re-entrant behaviour: moving vertically from a
point within the MI phase, which has a long-range positional order, one enters first the BG
phase, which is disordered and then, upon further increasing the disorder strength, enters the
SF phase, which has off-diagonal long-range order. Weak disorder thus supports superfluidity
in the BHM, as has been observed before [12, 17, 36, 37].

Remarkably, our prediction on the basis of a cluster analysis of LMF ground states agrees
very well with the results of QMC simulations [12] shown for comparison in figure 4 on the
right. The shape of the BG–SF phase boundary with its characteristic nose and bumps clearly
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coincides. The quantitative agreement is very good, too, regarding the substantial error bars
of the QMC data in the large disorder and large interaction regime (the QMC estimate for
the extreme value of 1 in the bump is 1/2J ∼ 72 ± 4 and of inter-particle interaction in the
nose U/J = 49 ± 3, cf figure 2 in [12]). Moreover, with our method we could also explore the
weak interaction region, which is hardly accessible by QMC methods and we found a singular
behaviour and a steep rise of1with U → 0, which is compatible with the analytically predicted
behaviour 1∝

√
U [38]. Note that 1 rises steeply for U → 0; and in order to obtain data for

1< 20, it would be necessary to compute the ground state of even larger system sizes. Finally,
we conclude that the percolation criterion that we introduced in section 3.2 to locate the SF–BG
transition produces remarkably accurate predictions even in the LMF theory.

Our result for the MI–BG transition line, which denotes the appearance of non-integer
boson occupation numbers and thus SF sites, agrees well with the perturbative result (17), shown
in figure 4 on the left. Moreover, they agree with the line 1= Eg/2 obtained using the gap data
from [39], shown in figure 4 on the right.

In passing, we note that for weak disorder the MI clusters percolate close to the BG–SF
transition line, whereas for stronger disorder they percolate deeper inside the BG phase.
Whereas for weak disorder the individual sites of an MI cluster in the BG phase all have the
same integer occupation number, this is in general not the case any more for strong disorder:
the integer occupation number of MI clusters can vary from site to site.

Finally, we note that SMF theory as described in section 3.1 predicts a direct MI–SF
transition along the lower border of the SF region in the parameter range shown in figure 4. The
characteristic BG region for small disorder strength is absent in this parameter range, which is
in contradiction with the theorems proven in [13], which exclude a direct MI–SF transition in
any disordered system. Besides, we checked that the BG phase occurs for even higher values of
U/J , which is in agreement with the results to be presented in the next section.

4.2. Fixed disorder—comparison with stochastic mean field theory

After we have seen in the last section that our method to determine the phase diagram of the
2D disordered BHM leads to results that agree very well with QMC predictions, we determine
in this section the (µ/U–J Z/U ) phase diagram for fixed disorder strength 1/U = 0.6 and
compare it with predictions of SMF theory. In this phase diagram the Mott lobes occur and the
line given by n̄ = 1 always passes the tip of the first one.

In section 2.2, we introduced SMF theory and already emphasized that SMF theory is based
on the same approximation to the Hamiltonian as LMF theory, but it involves the additional
approximation (15) on the distribution PZ (ψ1, . . . , ψZ). The validity of this restriction fails
close to the phase transitions as we show in appendix A. Despite or perhaps because of this
approximation, the SF order parameter ψ̄ as well as the compressibility κ computed within
SMF theory are exactly zero in specific regions of the parameter space (cf figure 1), which one
might want to identify with the MI and BG phases, as was done in [24, 25], cf section 3.1. The
LMF cluster analysis and SMF [24, 25] phase diagrams for fixed disorder strength 1/U = 0.6
are shown in figure 5. One immediately observes substantial differences. Firstly, in LMF
theory the BG phase always separates the MI phase from the SF phase. The intervening BG
phase is actually predicted to be quite large even at the tip of the Mott lobes, not just a ‘thin
sliver’ [2]. SMF theory, however, predicts a direct MI–SF transition, in contradiction to [13].
Secondly, large differences in the critical tunnelling rate for the BG–SF transition occur
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Figure 5. Comparison of LMF cluster analysis and SMF phase diagram for
fixed disorder strength 1/U = 0.6. Left: LMF cluster analysis phase diagram
determined with the discretized boson occupation number field Si (18). The
percolation transition of the SF sites (Si = 1) occurs when crossing the red line,
which indicates the BG–SF phase boundary. The blue line marks the boundary
of the MI region, in which all sites are MI sites (Si = 0). The black line is
the MI–BG transition according to the perturbative result given by (17). Right:
SMF phase diagram determined by using the SF order parameter ψ̄ and the
compressibility κ [24, 25]. The red line indicates the critical tunnelling rate
where the SF order parameter ψ̄ becomes non-zero; the blue line indicates the
critical tunnelling rate, where the compressibility κ becomes non-zero.

especially in the region around µ= 1. Assume that we fix the chemical potential there. In this
case the SMF theory predicts the phase transition at J Z/U = 0.0241. The percolation of the
SF cluster, however, takes place at J Z/U = 0.0430. Thus, significant changes of the system
in this case occur for values of the tunnelling rate twice as large as predicted by ψ̄ in SMF
theory.

A direct comparison of our results with the QMC data of [12] is not possible here, since the
latter are obtained for the canonical ensemble, where the chemical potential is absent. However,
we can take our LMF estimate for the value of µ that fixes the particle density at n̄ = 1 for fixed
U/J and 1/2J to obtain an approximate comparison—see table 1, where we also show the
prediction of the strong coupling expansion [11] for the MI–BG transition for 1/U = 0.6. One
observes deviations of the QMC and strong coupling predictions from our LMF cluster analysis
results at the tip of the Mott lobe, but a good agreement for stronger disorder,1/U = 2. At this
disorder strength also a QMC prediction for the quantum rotor model exists [37], which differs
by 25% from the predictions for the BHM, ours and the one from QMC. We also note that the
tapered shape of the Mott lobe predicted by the strong coupling expansion [11] agrees well with
our result of the LMF cluster analysis shown in figure 5.

In addition to our LMF cluster analysis and the SMF theory discussed above, a number
of other approximative methods have been applied to calculate the phase diagram of the BHM
at fixed disorder. In the zero-temperature mean field phase diagram of [40], the BG phase is
completely absent, which might be true in infinite dimensions, but certainly not in d = 2 or 3.

A LMF theory has been used in [26, 27] to solve the self-consistency equation (3)
and to calculate an LMF expression for the stiffness or SF fraction and the compressibility.
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Table 1. Comparison of the parameters at the tip of the first Mott lobe of quantum
models (1) with LMF cluster analysis results. The chemical potential µ/U for
the QMC results of [12] is our LMF estimate for a density n̄ = 1 and fixed values
of J Z/U and1/2J . The BG–SF predictions of [12] were not obtained by QMC
of the disordered BHM, but are based on gap data for the ordered BHM [39].

MI–BG BG–SF
J Z/U µ/U J Z/U µ/U 1/U

LMF (cluster analysis) 0.1115 0.4644 0.1509 0.4434 0.6
QMC results [12] 0.124 (0.4561) 0.2012 (0.4082) 0.6
Strong-coupling expansion [11] 0.1253 0.4345 0.6
LMF (cluster analysis) 0.0942 0.4868 1
QMC results [12] 0.1047 (0.4846) 1
LMF (cluster analysis) 0.0934 0.5043 2
QMC results [12] 0.1062 (0.4950) 2
Quantum rotors model [37] 0.112 0.375 2

Using these two observables the (µ/U–J Z/U )-phase diagram is then determined, which
displayed a round shape of the Mott lobes, a direct MI–SF transition for small disorder and
an intervening BG phase at larger disorder. It should be noted that although the starting point
of the calculation in [26, 27], the LMF approximation, is identical to ours, the use of a different
criterion to identify the phases leads to a phase diagram that differs significantly from the one
predicted by us.

A multi-site LMF theory is introduced in [41], where every plaque of two-by-two sites
is treated quantum, which keeps the spatial correlation therein. Instead of single sites, these
plaques are coupled in a LMF way (analogous to section 2.1). The Mott lobe is determined
for both, the single-site and multi-site LMF theory, on the basis of the condensate fraction. In
agreement with [27] and SMF theory, it shows a round shape at the tip. The multi-site LMF
theory predicts a larger MI region than the single-site LMF theory. Note that the condensate
fraction smoothly approaches zero, analogous to our observations on the SF order parameter
and the compressibility made in section 3.1; a linear fit is used to determine the transition point.

In [42] the so-called Gutzwiller projected variational techniques are introduced in order to
determine a canonical transformation of the quantum Hamiltonian, which requires the truncation
of the hopping term. Thus, it is possible to minimize the expectation value of the transformed
Hamiltonian in Gutzwiller-type LMF states with respect to its variational parameters. Finally,
the SF stiffness and the compressibility yield the phase diagram, which shows a remarkably
narrow BG region between the MI and the SF phases.

In all mean field calculations mentioned, the tip of the Mott lobe is predicted for far higher
values of the tunnelling rate as our results based on the LMF cluster analysis, and results of
QMC or strong coupling expansion methods, as listed in table 1.

4.3. Probability distribution of the local superfluid parameter

In this section, we take a closer look on the PD of the local SF parameter and describe its three
different characteristic shapes. Moreover, we will discuss the occurring deviations of the PD in
the LMF and SMF theories.
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Figure 6. PD P(ψ) of the local SF parameter at fixed chemical potential
(µ/U = 1.05) for different tunnelling rates J Z/U , (top) in the ordered case
(1/U = 0) and (bottom) in the disordered case (1/U = 0.6) as predicted by
the LMF (blue) and SMF (red) theory. The crosses (×) at the ψ-axis represent
the mean of the PD, which is the average SF order parameter ψ̄ . In the ordered
case, the PD is a delta function. With disorder all local SF parameters are zero for
the MI; the PD in the BG phase is a superposition of a delta function at ψ = 0
and a SF tail; the SF phase is characterized by a broad distribution of positive
non-zero local SF parameters.

In LMF theory, for every realization of disorder, the self-consistent solution of (6) is
determined. The resulting PDs of each are averaged over 200 different realizations of disorder
and shown in figure 6 in blue for fixed chemical potential µ/U = 1.05 and disorder strength
1/U = 0 and 0.6. In the ordered case, depicted in the first row, all local SF parameters are
identical since all sites have the same on-site energy. The averaged order parameter ψ̄ , depicted
as a blue cross, is identical to each local SF parameter ψi and the variance of this value is zero.
Therefore, the PD P(ψ) is a delta function at the values of ψ̄ . Within the MI region the local SF
parameter is zero everywhere and thus the PD is a delta function at ψ = 0. In the SF regime still
the PD is a delta function but at positive ψ , which increases with the tunnelling strength. This
situation changes if disorder is introduced, since then the on-site energy is different on every
site resulting in a variety of different values of the local SF parameter ψi . Although, in the MI
regime the PD is a sharp delta function at ψ = 0 still, it becomes a broad distribution in the
BG and SF phases. In the BG phase sites with zero local SF parameter (corresponding to MI
sites with Si = 0) coexist with sites which have non-zero local SF parameter (corresponding to
SF sites with Si = 1) and where called SF islands before. In the SF regime, the PD is a broad
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distribution representing a variety of positive values for the local SF parameter. Owing to this
characteristic behaviour the PD can be written as a superposition of a delta function at ψ = 0
and a broad distribution representing the values ψ > 0. We call this distribution PSF(ψ), since
it represents sites, which we referred to as SF sites (Si = 1) before:

P(ψ)= aδ(ψ)+ PSF(ψ). (20)

Starting with the same Hamiltonian (11) as LMF, SMF theory introduce the additional
approximation (15), yielding a self-consistent equation for the PD itself, which is given by
equation (12). The resulting distributions are shown in figure 6 in red. Whereas no deviations
between LMF and SMF theories occur in the ordered (1/U = 0), they become visible in the
disordered case. For 1/U > 0 both distributions show roughly the same shape, but especially
for small values of ψ , which are crucial for the determination of the phase transition, they differ
significantly in the BG and SF phases.

In order to identify the reason for these deviations we have to take a closer look on
the validity of the additional SMF restriction (15). We checked its validity by comparing the
LMF results for the product of the PD of two different sites P(ψi)P(ψ j) with the pair PD
PZ(ψi , ψ j) and determined their deviation 1P in appendix A. As shown in figure A.1 the
approximation (15) is best in the MI regime and the BG for very small tunnelling rates. But for
increasing J Z/U it becomes worse and especially at the phase boundary it fails. In figure A.2
where P(ψi)P(ψ j) and PZ(ψi , ψ j) are shown for different parameters; it is evident that they
disagree especially for small values of the ψ . This disagreement is due to the presence of
correlation of the local SF parameters ψi at different sites in the vicinity of the transition points,
which are neglected in SMF theory and are therefore responsible for the deviation of the SMF
PD from the LMF PD shown in figure 6.

5. Conclusion

In this paper, we have introduced a new criterion to identify the different phases of the disordered
BHM in d > 2 on the basis of the complete set of local boson occupation numbers {ni} of
each sample and applied it to the ground states calculated using the LMF approximation. In
the MI phase all 〈n̂i〉 are integers; in the BG phase some of them are non-integer and form
SF clusters in a MI background and in the SF phase at least one of these clusters percolates.
The emergence of SF clusters, with an average lateral size that is expected to be of the order
of the SF correlation length, have a finite density, which gives rise to a non-vanishing mean
of the average SF parameters although the system is not SF. The latter happens only when
these SF clusters percolate, which is the hallmark of the BG–SF transition. Moreover, the SF
clusters have a fluctuating boson occupation number resulting in a small but non-vanishing
compressibility. Thus, their appearance is the indicator of the MI–BG transition, i.e. from the
incompressible (κ = 0) to the compressible (κ > 0) phase. Consequently, the BG phase displays
arbitrarily small but non-vanishing values for ψ̄ and κ and all approaches to determine the
LMF phase boundaries of the disordered system on the basis of the site and disorder averaged
parameters, such as the SF order parameter ψ̄ , the compressibility κ , the SF or condensate
fraction, overestimate the SF and MI phases substantially and are doomed to fail. The putative
phase boundaries move systematically and substantially when increasing or decreasing the
threshold by only a small amount.
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The resulting cluster analysis phase diagram for a fixed commensurate density n̄ = 1
is in excellent agreement with the prediction of QMC simulations, not only qualitatively
in reproducing the characteristic shape of the SF region in the (1–U )-diagram but also
quantitatively within the numerical error bars. This is remarkable, since other LMF approaches
using averaged quantities, such as the mean SF order parameter or the compressibility, as
indicators, predict much larger MI regions in the phase diagram or even fail to identify the
BG transition, since the used indicator varies smoothly at the expected phase transition. Small
deviations between QMC calculations and our LMF cluster analysis might be because the local
occupation numbers calculated by using the LMF approximation deviate in some regions of the
phase diagram from the exact expectation values. Obviously, it would be desirable to calculate
the latter by QMC simulations, and to perform the cluster analysis we propose on these data.

The questions that immediately arise in this context are: (i) is the MI–BG transition in
the disordered BHM exactly where SF sites occur? And more interestingly: (ii) is the BG–SF
transition actually identical to the percolation transition of SF clusters?

Concerning question (i), although not proven rigorously, the MI–BG transition is supposed
to occur where the gap Eg/2, i.e. the energy for particle–hole excitations, of the pure, ordered
BHM is equal to the disorder strength 1 [2]. It seems plausible that when this happens,
individual sites or small clusters will occur, where the addition or removal of a particle does
not cost energy and thus the local boson occupation number fluctuates, i.e. 〈n̂i〉 is non-integer.
This is how we propose to identify the MI–BG transition.

Concerning question (ii), we argued in section 3.2 on the basis of the BHM to quantum
rotor models, that the SF stiffness will always vanish as long as SF clusters within a MI
background do not percolate. This BG situation then is a reminiscent of a d + 1-dimensional,
classical XY model with columnar disorder, in a state with (quasi) phase-ordered finite clusters
in a phase-disordered background. Application of a phase twist at the system boundaries will
only cost a macroscopic amount of energy when the ordered regions actually percolate in the
SF region. Note that this argument is based on the existence of true long-range order in the SF
phase of the pure, ordered BHM, thus we expect it to be valid for d > 2.

A complementary picture is based on the path-integral computation of the SF density [43],
which is used in QMC simulations to identify SF order. The SF density or stiffness is
proportional to the mean square of the winding number of boson world lines in the path-integral
representation. When on average a finite fraction of boson world lines wrap around the whole
system, the mean-square winding number is positive and the system is SF. To wrap around
the whole system (with periodic boundary conditions), a boson world line, on its way through
imaginary time, has to move along a path that traverses the whole system, thus attributing
particle number fluctuations to the individual sites of this path. These sites will consequently
attain non-integer expectation values for the boson occupation numbers 〈n̂i〉 (since for some
time the boson was there and for some time not); thus in the end there must be at least one
percolating SF cluster in the system.

It should be noted that other quantum phase transitions of disordered systems are naturally
percolation transitions, too, the critical point of the random transverse Ising model is governed
by an infinite randomness fixed point (in d > 1 dimensions [3, 30, 44, 45]), which signals the
percolation of strongly coupled clusters that away from criticality constitute the Griffiths phase.
The percolation transition that we observe in our calculations falls into the universality class of
a conventional, 2D site percolation—which means it does not carry the signature of the critical
properties of the proper BG–SF transition. This is most probably a consequence of the LMF
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approximation that we use, since it does not properly account for spatial correlations. If applied
to the exact ground state one would expect the critical exponents of the percolation transition to
be related to the critical exponents of the BG–SF transition.

In addition to providing an intuitive picture and a deeper understanding of the underlying
physics of the phase transitions in the disordered BHM, the cluster analysis may serve as a
reliable tool to locate the transitions in situations, in which the application of other criteria to
discriminate the different phase might lead to erroneous predictions—as for instance in LMF
theories. Finally, since experiments recently reached the regime of single-site detection [9, 10]
and are now able to observe the particle numbers at each site, an experimental application of the
cluster analysis that we propose appears in reach.

Appendix A. Local superfluid parameter correlations

In this appendix, we check the statistical independence assumption underlying SMF theory. In
addition to the LMF approximation (4) made in the tunnelling part in the Hamiltonian, SMF
theory assumes that the local SF parameters ψ1, . . . , ψZ of the Z neighbours of a chosen site
i are uncorrelated and identically distributed, which is introduced by approximation (15). On
the basis of LMF calculations, we want to test this approximation by comparing P(ψi)P(ψ j)

and PZ

(
ψi , ψ j

)
, of which some examples are shown in figure A.2. The function P (ψi) P

(
ψ j

)
is the product of the PD, describing the distribution of the local SF parameter as discussed in
section 4.3. The function PZ(ψi , ψ j) is the PD of pairs (ψi , ψ j), where i and j are neighbouring
sites; it represents the probability of having a specific value for the pair (ψi , ψ j). Exactly as
P
(
ψ j

)
, PZ(ψi , ψ j) is computed for every realization of disorder and finally averaged. Both

distributions should coincide if assumption (15) is valid. In figure A.1 the integral difference

1P =

∫
dψi

∫
dψ j |P (ψi) P

(
ψ j

)
−PZ

(
ψi , ψ j

)
| (A.1)

of both distributions is shown in parameter space.
In the MI region, where the P(ψ) is a delta function at ψ = 0 and for very small tunnelling

rate J Z/U the deviations are small, whereas they are significant in the region of the phase
transition and in the SF regime. For illustration both PDs are shown in figure A.2 along a line of
µ/U = 1.0455 and at the tip of the Mott lobe, where the deviation1P reaches its maximal value
(corresponding to the black dots in figure A.1). In addition to the fact that all distributions are
symmetric naturally, P(ψi)P(ψ j) shows a rectangular symmetry, which intrinsically follows
from the fact that it is a product of the same PD P(ψ). The PD PZ(ψiψ j), containing further
information of the occurring pairs, shows systematic deviations. Whereas the values on the
diagonal are reproduced quite well, the off-diagonal contributions are squeezed to the diagonal.
This is especially pronounced in figures A.2(d) and (h), which corresponds to the tip of the
Mott lobe. These main differences in comparison with P(ψi)P(ψ j) can be observed for all
parameters shown in figure A.2 and mainly occur in the regime of small local SF parameters.
Figure A.1 illustrates that assumption (15) made in the SMF theory, is well fulfilled in the MI
regime, but becomes worse in the region of the phase transition. Whether this theory predicts
the phase transition reliably in this regime is therefore to be questioned.

The deviations occurring for small local SF parameters in the limit of small ψ as shown in
figure 6 have also been discussed in [24]. In this work, the authors concluded that LMF theory
overestimates the phase coherence in the BG regime. But this is also true for SMF theory, since
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Figure A.1. The deviation 1P between P(ψi)P(ψ j) and PZ(ψi , ψ j) is shown
as a function of the system parameter. In the MI regime and for very small
tunnelling rates, the deviations are small, whereas they grow at the phase
transitions and in the SF regime. The black dots make the parameters used in
figure A.2 along a line µ/U = 1.0455 and at the tip of the Mott lobes, where the
deviation is maximal.

Figure A.2. The first column shows PZ(ψi , ψ j) and the second P(ψi)P(ψ j)

in the disorder case (1/U = 0.6). In the first row the parameters are given by
J Z/U = 0.0283, µ/U = 1.0455 followed by J Z/U = 0.0586, µ/U = 1.0455
and J Z/U = 0.1414, µ/U = 1.0455 and J Z/U = 0.1434, µ/U = 0.4394 in
the last row corresponding to the black dots in figure A.1.

it is based on the same approximation of the tunnelling term of the Hamiltonian. In this paper,
we resolved this apparent problem by interpreting the BG–SF phase transition as a percolation
transition (cf sections 4.1 and 4.2).
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Figure B.1. Regions of the three characteristic shapes of P(ψ) for fixed density
〈n̂〉 = 1 (left) and fixed disorder 1/U = 0.6 (right). The black line represents
the MI–BG transition according to the perturbative result given by (17). Inside
of the blue line P(ψ) consists only of a delta function atψ = 0. Within the region
bounded by the red line on the left and to the right of the red line on the right
P(ψ) only has a continuous part PSF(ψ). In other parts of the parameter space it
is a superposition of the delta function at ψ = 0 and PSF(ψ).

Appendix B. Characteristic shapes of the probability distribution

In section 4.3, we discussed three different shapes of the PD in the disordered case, which
are depicted at the bottom of figure 6. In the MI phase the PD is given by a delta function
at ψ = 0, whereas in the BG and SF phases a broad distribution occurs, which means that
P(ψ) can be represented by a superposition of a delta function at ψ = 0 and a continuous part
PSF(ψ) caused by SF sites with ψ > 0 as defined in equation (20), and in the following denoted
as SF distribution. Here, we will identify regions of the three different shapes of P(ψ) in
parameter space and discuss their connection to the phase transitions determined in sections 4.1
and 4.2.

Numerically, we identify two different benchmark of the histograms representing P(ψ)
that we generate. The first one is the value of the histogram at the first bin, P0, representing
the potential delta function of P(ψ). The second characteristic point is the value of the
histogram at the second bin, P1, which is given by P1 = P(ψ = δψ) with δψ being the
bin size of the histogram representing P(ψ) (δψ = 0.0025 in LMF and δψ = 0.015 in SMF
theory).

In figure B.1 the regions determined on the basis of these benchmarks are shown for fixed
density n̄ = 1 on the left and fixed disorder strength 1/U = 0.6 on the right. The LMF results
are depicted with circles and the SMF results with crosses. The blue curves enclose the regions
in which P(ψ) is just a delta function at ψ = 0 (numerically P0 > 0 and P1 < 10−3), i.e. the
system contains only MI sites and is therefore in the MI phase. The red curves delimit the
regions, in which the delta function part of P(ψ) vanishes (numerically P0 < 10−6) which
means that all sites are SF sites. In the remaining part of the phase diagram P(ψ) consists
of a superposition of a delta function at ψ = 0 and a continuous part PSF(ψ), i.e. the system
has MI and SF sites. In this region, the system can be either in the BG phase, or, if the SF sites
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percolate, in the SF phase. Therefore, only the MI–BG phase boundary can be extracted from
the characteristics of the PD of the local order parameter, P(ψ), but not the BG–SF boundary.

The LMF and SMF theories coincide very well at the blue line, which describes the
occurrence of the SF distribution. Deviations are visible at the red line, where the delta function
atψ = 0 disappears and PD is purely given by PSF(ψ). While these deviation are rather small for
small disorder strengths and U/J > 23, they enlarge with increasing disorder. In appendix A,
we tested the validity of the SMF approximation (15) by comparing the LMF results for the
product of the PD of two different sites P(ψi)P(ψ j) with the pair PD PZ(ψi , ψ j). In figure A.1
its deviation 1P is shown as a function of µ/U and J Z/U for fixed disorder 1/U = 0.6. In
comparison with the diagram on the right, in figure B.1, it is obvious that in the region of the blue
line the SMF assumption (15) for P(ψ) is valid. However, at the red curve, deviations between
LMF and SMF theories occur, since close to the BG–SF phase transition the approximation (15)
is expected to be invalid.
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