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Double-well Bose-Hubbard model with nearest-neighbor and cavity-mediated
long-range interactions
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We consider a one-dimensional Bose-Hubbard model (BHM) with on-site double-well potentials and study the
effect of nearest-neighbor repulsion and cavity-mediated long-range interactions by calculating the ground-state
phase diagrams with quantum Monte Carlo simulations. We show that when the intrawell repulsion is as strong
as the on-site repulsion, a dimerized Mott-insulator phase appears at the tip of the dimerized density-wave phase
for a density of one particle per double well. Furthermore, we find a dimerized Haldane-insulator phase in
the double-well BHM with nearest-neighbor interaction, which is identical to a dimerized BHM with repulsive
interactions up to the third neighbor.
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I. INTRODUCTION

Since its introduction, the Bose-Hubbard model (BHM) [1]
has been a focus of research. In the simplest form, where tun-
neling between neighboring sites and a repulsive on-site inter-
action exist, the ground-state phase diagram is characterized
by two phases. For commensurate fillings and large on-site re-
pulsions compared to the bosonic tunneling, a Mott-insulator
(MI) phase appears, while for incommensurate fillings or
weak on-site repulsion, the superfluid (SF) phase exists.

Jaksch et al. showed [2] that the dynamics of ultracold
bosons, which are contained by an optical lattice, realize a
BHM. This was experimentally shown by Greiner et al. [3]
and led, consequentially, to a broad study of experiments of
ultracold bosons in optical lattices [4–8].

The universality class of the SF-MI phase transition in the
BHM is generally of mean-field type, except for the multi-
critical point, where particle-hole symmetry holds [1]. At this
point, the universality class changes to the type of the (d + 1)-
dimensional XY model [9–11], where the two-dimensional
XY model [12,13] has a topological Kosterlitz-Thouless
phase transition [14,15]. Furthermore, when the occupa-
tion per site is restricted to zero, one, and two bosons
per site, the one-dimensional BHM can be described by a
quantum spin-1 chain, which features a gapped Haldane-
insulator phase, characterized by a nonlocal order parameter
[16–20].

The quantum critical phenomena of the BHM were stud-
ied extensively with quantum Monte Carlo (QMC) methods,
like the path-integral [21,22], world-line [23,24], and worm-
algorithm QMC [25,26], of which we use the latter in this
work. Also, approximate methods were used, like the mean-
field theory [1,27] and density-matrix renormalization-group
method [28].

There are many different modifications and extensions
to the BHM, originating from the addition of interactions
or changes to the confining potentials. Possible interactions

*johannes@lusi.uni-sb.de

are the nearest-neighbor interaction [28–35] (also referred
to as extended BHM), next-nearest-neighbor interaction
[16,36] and hopping [37], cavity-mediated long-range inter-
action [4,38–40], and combinations of nearest-neighbor and
long-range interaction [41,42]. Changes to the confining po-
tentials include, for instance, disordered potentials [43,44] and
double-well potentials [45–51].

Two superimposed optical lattices with different wave-
lengths form a so-called superlattice, like the double-well
lattice, in which each site consists of a double-well potential
[45,52]. With the help of double-well lattices, quantum infor-
mation processes can be studied [53,54] because they allow,
for example, to manipulate atoms individually [55] or study
the many-body dynamics and entanglement of a double-well
chain [48]. Furthermore, the hard-core double-well BHM is
the bosonic counterpart of the Su-Schrieffer-Heeger model
[56] for free fermions, which possesses a nontrivial topo-
logical insulator phase. For the hard-core double-well BHM,
this topological phase was shown as well [51,57], and the
ground-state properties were studied recently [58].

In this paper, we study the ground-state phase diagram of
the one-dimensional extended double-well BHM with cavity-
mediated long-range interaction. In this model, each lattice
site consists of one double-well potential, and these potentials
are aligned in a chain. We consider nearest-neighbor inter-
action between the sites; therefore, bosons in both wells of
the double well on one site feel the interactions between all
wells of the neighboring double-well sites. Also, the intrawell
repulsion between the two wells of each double well is taken
into account.

The model’s parameter space includes a one-dimensional
extended single-well BHM with long-range interaction, where
additional density-wave (DW), supersolid (SS), and Haldane-
insulator (HI) phases appear [42], and a one-dimensional
dimerized BHM, where intrawell repulsion and hopping
strength alternate between every other site [7,58–62] and
bond-ordered phases appear [63].

Open questions that we will address in this paper include
(1) the dependence of the existence of the bond-ordered
(dimerized) phase on the particle density, (2) the differences
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FIG. 1. Sketch of two sites of the double-well Bose-Hubbard
model according to the interactions in Hamiltonian (1) without the
ĤUd term. Each site consists of a double well with a left (L) and a
right (R) well. In each well, bosons experience an on-site repulsion
U when two or more bosons are present. Intrawell tunneling t1

is possible between the left and right wells of the same site, and
interwell tunneling t2 is possible between the left and right wells of
adjacent sites. Intrawell repulsion ULR is present between the left
and right wells of the same site, and the nearest-neighbor interaction
V interacts between all wells of adjacent sites.

between strong and weak intrawell potentials, and (3) the
effect of cavity-mediated long-range interactions on the phase
diagram of the double-well BHM.

This paper is organized as follows: In Sec. II, the Hamil-
tonian of the one-dimensional extended double-well BHM
with cavity-mediated long-range interaction is defined, and
the order parameters are introduced. Then, a description of the
occurring phases is given, and the analytically solvable ground
states without hopping terms are discussed. Section III con-
tains the QMC worm-algorithm results for the ground states
of the standard and extended double-well BHMs. First, we
examine the standard double-well BHM, before giving results
for the extended double-well BHM and double-well BHM
with cavity-mediated long-range interaction. The conclusions
are given in Sec. IV.

II. MODEL

A. Hamiltonian of the double-well BHM

We state the one-dimensional extended double-well BHM
Hamiltonian with cavity-mediated long-range interaction. In
Fig. 1 we depict all interactions of the Hamiltonian except
for the cavity-mediated long-range interaction. Each site po-
sition contains one double well and is labeled by the index
i ∈ 1, . . . , L, while the left and right wells of the respective
double well are given by σ ∈ {L,R}. Here, L is the length
of the chain. We use periodic boundary conditions; thus,
L + 1, σ ≡ 1, σ .

The Hamiltonian operator for the one-dimensional ex-
tended double-well BHM with cavity-mediated long-range
interaction reads

Ĥ = Ĥt + ĤU + ĤULR + ĤV + Ĥμ + ĤUd , (1)

where the particular terms have the following forms.
Ĥt denotes the hopping terms,

Ĥt = −t1
∑

i

(b̂†
i,Lb̂i,R + H.c.) − t2

∑
i

(b̂†
i,Rb̂i+1,L + H.c.),

(2)

where t1 is the intrawell hopping parameter between the left
and right wells of a single double well on each site and t2
is the interwell hopping parameter between adjacent left and
right wells of double wells next to each other.

ĤU = U

2

∑
i

σ=L,R

n̂i,σ (n̂i,σ − 1) (3)

is the on-site interaction on each site in both wells, and

ĤULR = ULR
∑

i

n̂iL n̂i,R (4)

defines the intrawell repulsion between bosons located in
different wells on the same site. The repulsive interaction
between neighboring sites is given by

ĤV = V
∑

i
σ,σ ′=L,R

n̂i,σ n̂i+1,σ ′ ≡ V
∑

i

n̂in̂i+1. (5)

Here we assume that the spatial distance between neigh-
boring sites is much larger than the distance between the left
and right wells of the double well on one site and therefore
that V is independent of the well index σ . To abbreviate the
notation, we define n̂i = n̂i,L + n̂i,R and can omit most of the
σ indices in the Hamiltonians.

The chemical potential term is

Ĥμ = −μ
∑

i
σ=L,R

n̂i,σ ≡ −μ
∑

i

n̂i, (6)

with the total boson number operator N̂ = ∑
i n̂i. The last

Hamiltonian,

ĤUd = − Ud

L

⎛
⎜⎜⎝ ∑

i even
σ=L,R

n̂i,σ −
∑
i odd

σ=L,R

n̂i,σ

⎞
⎟⎟⎠

2

= − Ud

L

(∑
i even

n̂i −
∑
i odd

n̂i

)2

, (7)

represents the cavity-mediated long-range interaction between
even and odd chain sites.

Hamiltonian (1) is identical to a dimerized chain with

Ĥtdim = −t
∑

j

[1 + (−1) j+1δ](b̂†
j b̂ j+1 + H.c.), (8)

where t = (t1 + t2)/2 is the mean hopping strength and δ =
(t1 − t2)/(t1 + t2) is the bond dimerization. Likewise, the
intrawell repulsion can be understood as a dimerized nearest-
neighbor interaction,

ĤULR, dim = −ULR
2

∑
j

[1 + (−1) j+1]n̂ j n̂ j+1. (9)

The index j is here the combination of the i, σ notation into
one index, where j ≡ i,L and j + 1 ≡ i,R. Therefore, the
chain length is doubled.
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FIG. 2. Sketch of the dimerized chain described by Eq. (1).
The ĤUd term is not depicted. The dotted circles around two sites
are a guide to the eye and correspond to the double wells in
Fig. 1. The indices i,L (i,R) match j ( j + 1) and result in a
dimerized chain length that is twice as long as the double-well
chain.

Figure 2 represents Hamiltonian (1) in the form of a dimer-
ized chain BHM, where the depicted interactions correspond
to Fig. 1. The cavity-mediated long-range interaction is not
shown. Each double well is equal to a pair of sites in the
dimerized chain, highlighted by the dotted circle around the
pair. Therefore, even and odd sites of the double-well BHM
are an even and odd pair of sites of the dimerized chain,
which is important to note for the cavity-mediated long-range
interaction and the definition of the notation of the phases used
in this work.

The intrawell repulsion acts as a dimerized interaction
itself and can be regarded, for instance, as an interchain
nearest-neighbor interaction of a two-leg ladder model [64];
however, the alignment of the sites is different between this
model and the double-well Bose-Hubbard chain used in this
work.

B. Simulation method and order parameters

We use the exact QMC worm algorithm (WA) [25,26] to
obtain the phase diagrams. This method operates in the grand-
canonical ensemble; thus, the boson number is not fixed. We
consider chain lengths up to L = 64, where each site consists
of one double-well potential. We elaborate the QMC-WA
further in the Appendix.

From the QMC-WA simulations we obtain the boson den-
sity

ρ = 1

L

∑
i

〈n̂i〉 (10)

and the superfluid density

ρs = 〈W 2〉L
2t2β

, (11)

with W being the winding number, which is defined as the
difference between boson lines crossing the periodic boundary
condition in one direction versus the other direction. For the
relation between superfluid density and winding number in
world-line QMC, see [21].

Furthermore with the density-density correlation D(r) =
1
L

∑
i〈n̂in̂i+r〉, the structure factor is defined as

S(k) = 1

L

∑
r

eikrD(r). (12)

TABLE I. Order parameters for the phases studied in this paper.
We differentiate between (dimerized) MI and DW phases with even
(e) and odd (o) particle numbers per double well.

ρs S(π ) Os( L
2 ) Op( L

2 ) ζ �

SF �=0 0 0 0 �=0 �=0
SS �=0 �=0 �=0 �=0 �=0 �=0
DW(Xo, 0) 0 �=0 �=0 �=0 0 1/2
DW(Xe, 0) 0 �=0 �=0 �=0 0 0
MI(Xo) 0 0 0 �=0 0 1
MI(Xe) 0 0 0 �=0 0 0
HI(1) 0 0 �=0 0 0 �=0

D-DW(Xo, 0) 0 �=0 �=0 �=0 �=0 �=0
D-DW(Xe, 0) 0 �=0 �=0 �=0 �=0 �=0
D-MI(Xo) 0 0 0 �=0 �=0 �=0
D-MI(Xe) 0 0 0 �=0 �=0 �=0
D-HI(1) 0 0 �=0 0 �=0 �=0

With these order parameters we are able to distinguish be-
tween the MI, SF, DW, and SS phases. As shown in the
single-well BHM with nearest-neighbor interactions, the so-
called Haldane-insulator phase can emerge at the tip of the
DW lobes [16,20], originating from the spin-1 antiferromag-
netic Heisenberg chain [17,18]. To determine the HI we must
introduce two nonlocal observables, the string and parity
operators,

Os(|i − j|) =
〈
δn̂i exp

⎧⎨
⎩iπ

j∑
k=i

δn̂k

⎫⎬
⎭δn̂ j

〉
, (13)

Op(|i − j|) =
〈

exp

⎧⎨
⎩iπ

j∑
k=i

δn̂k

⎫⎬
⎭

〉
, (14)

where δn̂i = n̂i − ρ is the difference between the particle
number and density. Due to periodic boundary conditions,
both observables are evaluated for |i − j| = L/2.

Up until the HI(1) phase of Table I shows the phases which
can be identified in the ground-state phase diagram with the
help of the above-mentioned order parameters. As notation,
we use for Mott-insulator phases MI(X ), where X is the
number of bosons in each double well. For the density-wave
phases we use DW(X,Y ), with X being the boson number on
even sites and Y being the boson number on odd sites.

To further differentiate the behavior of the double-well
dynamics, we introduce the intrawell fluctuation parameter

ζ ∝ 〈b̂i,Lb̂†
i,R + H.c.〉 (15)

as an indicator of the bosonic movement inside a double well
between the left and right wells. It is linked to the kinetic-
energy operator for dimerized models [59]. Furthermore, we
define the well occupation difference

� = 1

L

∑
i

〈|n̂i,L − n̂i,R|〉. (16)

When � = 0, the boson distribution inside a double well is
symmetric, meaning that as many particles are present in the
left well as in the right well for every site. If � > 0, the
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FIG. 3. Schematic representation of the phases in the double-well BHM. Localized bosons are depicted as blue saturated circles. In the
case of the SF phase, all boson wave functions adopt one ground state and are delocalized. The blue blurred circles indicate the presence of
delocalized bosons in the lattice, which are not bound to one position. In the SS phase, delocalized bosons are present on top of a localized
density-wave structure. For the HI phase an additional representation of the occupation per site is given with the triplet {−, 0, +}. It shows the
deviation from the mean particle number per site ρ = 1. The structure factor S(π ) is used to differentiate between MI and DW phases, while
the intrawell fluctuation ζ indicates, for vanishing superfluid density ρs, dimerized phases. When ρs �= 0, either a SF or SS phase is present,
depending on the structure factor.

symmetry is (partially) broken, which happens when intrawell
fluctuations become stronger. When ζ = 0, all fluctuations
inside the double wells vanish. For ζ > 0 and ρs = 0 the
movement inside the double wells can be compared to the
dimerized BHM, where the finite bond dimerization leads
to dimerized-Mott-insulator (D-MI), dimerized-density-wave
(D-DW), and dimerized-Haldane-insulator (D-HI) phases
[59]. The bottom part of Table I shows the dimerized phases,
which are characterized by ζ and �.

In the following, we express all parameters in units of
the on-site repulsion by the abbreviated form μ̃ = μ/U , with
analogous notation for all other parameters.

C. Ground states of the double-well BHM

The characteristic features of the phases defined in Table I
are sketched in Fig. 3. In the SF phase, all bosons are delocal-
ized, and the U(1) symmetry is broken, while in the MI phase,

bosons localize uniformly on each site, and a particle-hole
energy gap exists [1]. When the site occupation is restricted
to 0, 1, and 2 and the density is fixed to 1, the BHM and
Heisenberg chain are similar [20]. For the Heisenberg chain
an underlying nonlocal discrete Z2 × Z2 symmetry for the
phases is associated [65]. While the HI phase breaks both
Z2 symmetries, resulting in a nonvanishing string operator, in
the MI phase the string operator vanishes. For the DW phase,
the string operator is nonvanishing, but the structure factor is
nonzero as well [66].

The intrawell fluctuation parameter describes the move-
ment of bosons inside the double wells, while the superfluid
density is related to the hopping of bosons along the double-
well chain, in particular the hopping of bosons between sites.
Hence, when the intrawell fluctuation parameter is nonzero
but the superfluid density remains zero, a dimerization inside
the double-well potentials occurs. When the superfluid density
is nonzero, either a SF or SS phase is present. In the first case,
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FIG. 4. Ground-state sketch of Hamiltonian (1) without hopping
terms (t1 = t2 = 0) for Ṽ > 0, Ũd = 0 (left) and Ṽ = 0, Ũd > 0
(right) in the two cases ŨLR = 0 and ŨLR = 1. X is an integer
number, while Xe represents only even integer numbers. When Ṽ = 0
and Ũd = 0, DW phases vanish, and only MI phases persist.

all bosons are delocalized, while in the latter a long-range
density order exists next to the superfluidity.

The structure factor S(π ) is used to distinguish between MI
and DW as well as SF and SS phases. A nonzero superfluid
density ρs determines whether a SF or SS phase is present.
If the intrawell fluctuation is nonzero while the superfluid
density remains zero, a dimerization of the phases occurs.
The string and parity operators are used to differentiate the
HI phase from the MI and DW phases.

The ground-state phase diagram of Hamiltonian (1) can be
calculated analytically when the hopping terms are neglected
because the number operator is diagonal in the Fock basis.
In analogy to the ground-state phase diagrams of the single-
well BHM and dimerized BHM we expect MI phases and DW
phases to appear.

We do not differentiate between various boson configura-
tions inside each double well. This is determined by the ratio
of on-site repulsion and intrawell repulsion ULR/U = ŨLR.
If ŨLR < 1, the symmetric filling of the left and right wells
on each site is most favorable, and in the case of odd boson
numbers, the last particle can be located in either well, result-
ing in two equally likely configurations for each double-well
site.

In the case with ŨLR = 1, on-site repulsion and intrawell
repulsion are equally strong. Thus, the energy gain from in-
creasing the boson number in one well by one and the energy
gain from increasing the boson number in the neighboring
well on one site are the same. As a result, all boson distri-
butions inside the double well share the same energy, and the
degeneracy can be determined by combinatorics. To distribute
X bosons in two wells, there are

(X+2−1
X

) = X + 1 possible
arrangements per site.

Figure 4 shows the ground-state phase diagram of the
double-well BHM with cavity-mediated long-range interac-
tion Ud and nearest-neighbor interaction V for ŨLR = 0 and
ŨLR = 1.

Generally, nearest-neighbor and cavity-mediated long-
range interactions have a lot of commonalities in their
ground-state behavior, like on a mean-field level, where they
show identical phase diagrams [38]. For ŨLR = 0, the occu-
pation of the left and right wells on each site is symmetric;
thus, only even particle numbers per site occur. One difference
is the behavior when the interaction becomes sufficiently large
compared to the on-site repulsion because for the cavity-

mediated long-range interaction there is no global energy
minimum and thus no ground state anymore. One can see
the reason for this in the energy per site which the system
gains via the nearest-neighbor interaction and the long-range
interaction,

εV = 4V XY,

εUd = −Ud

4
(X 2 + Y 2 − 2XY ), (17)

where X and Y give the particle numbers on even and odd
sites. Apparently, the nearest-neighbor interaction increases
the energy when neighboring sites are occupied. This includes
the MI phases, while DW phases remain unaffected. The re-
verse is true for the long-range interaction, where the energy
decreases when an imbalance of particle occupation between
even and odd sites is present, like for the DW phases, while
the MI phases are unaffected by the long-range interaction.
Hence, when the energy decrease from the long-range inter-
action is more than the energy gain from the on-site repulsion,
the global energy function becomes a concave function, and
no energy minimum exists anymore.

We can also explain why the transition points for ŨLR = 0
are halved compared to ŨLR = 1, as seen in Fig. 4. For
ŨLR = 0, the Hamiltonian (1) without hopping terms scales
by a factor of 2 in its on-site repulsion per site, while the
nearest-neighbor and cavity-mediated long-range interactions
both scale by a factor of 4 per site. On the other hand, for the
ŨLR = 1 case, we first rewrite the on-site repulsion term (3)
as

ĤU = U

2

∑
i

n̂i(n̂i − 1) − U
∑

i

n̂i,Ln̂i,R (18)

and see that the intrawell repulsion (4) and last term in
Eq. (18) cancel each other out. What remains is the Hamil-
tonian of a single-well BHM, in which on-site repulsion and
nearest-neighbor and cavity-mediated long-range interactions
scale equally.

III. RESULTS

With the QMC-WA, we study the double-well BHM with
inter- and intrawell hopping terms to analyze the ground-state
phase diagrams for various parameter settings. We start with
a brief summary of our key findings.

First, we discuss the ground states of the standard
double-well BHM (without cavity-mediated long-range and
nearest-neighbor interactions). We are interested in whether
the dimerization of hopping terms results in dimerized MI
and DW phases with noninteger densities, as expected from
the dimerized chain [51,57]. Our results show the existence of
dimerized MI phases with noninteger density. We furthermore
study the D-MI(1) phase in detail for several dimerization
strengths and its effects on the widths of the D-MI(1) lobe.

Next, we study the influence of the nearest-neighbor and
long-range interactions. Of special interest for us is the
ρ = 1 lobe. In the one-dimensional single-well BHM, a HI
phase occurs at the tip of this lobe when a nearest-neighbor
interaction is present, while a MI phase appears for cavity-
mediated long-range interactions [42]. For the double-well
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FIG. 5. Phase diagram of the standard double-well BHM with Ṽ = Ũd = 0 and t̃1 = 2t̃2 for (a) ŨLR = 0 and (b) ŨLR = 1. For t̃2 = 0, only
MI phases are present in both cases, as discussed in Sec. II C. (a) When t̃2 > 0, SF phases emerge between vacuum and D-MI phases, where
D-MI phases replace the MI phases. A small D-MI(1) emerges between vacuum and the D-MI(2) phase. The tip of the D-MI(2) lobe is estimated
to be around t̃2 ≈ 0.22 with the help of the analysis of the order parameters along the constant-particle-density line μ̃ = −2.6 t̃2 + 0.605.
(b) When t̃2 > 0, the D-MI phases persist for lower values of μ̃ and stronger hopping strengths until the transition into SF phases compared to
the ŨLR = 0 case. This indicates a stabilizing effect of the intrawell hopping for all D-MI(X ) phases.

BHM we show that its phase diagram is qualitatively sim-
ilar to that for the single-well BHM when the strengths
of the intrawell potential and of the on-site repulsion are
equal for both the nearest-neighbor and cavity-mediated in-
teractions. For vanishing intrawell repulsion it turns out
that noninteger-density D-DW phases also exist for soft-core
bosons with nearest-neighbor interactions, which correspond
to third-nearest-neighbor interactions in the dimerized BHM,
and cavity-mediated long-range interactions.

Finally, we show that the intrawell hopping does not affect
the existence of dimerized HI phases in the nearest-neighbor
interaction case (independent of the intrawell potential), while
for the double-well BHM with cavity-mediated long-range
interactions and vanishing intrawell potential, the intrawell
hopping suppresses a MI or HI phase at the tip of the ρ = 1
lobe.

A. Standard double-well BHM

The standard double-well BHM without intrasite repulsion
ŨLR = 0 can be interpreted as a single-well dimerized BHM
with double chain length (see Fig. 2). Then, the hopping
terms correspond to the dimerized BHM via t1 = t + δ and
t2 = t − δ, with t being the mean hopping strength and δ

being the dimerization factor. Therefore, the phase diagram
of this parameter setting is expected to be identical to the
phase diagram of the dimerized single-well BHM, where
D-MI phases emerge, which are a combination of MI and
bond-ordered phases [51,57,59]. The latter appear due to the
broken translational symmetry of the dimerized model and are
characterized by the alternating strengths of the bond kinetic
energy [63].

The phase diagram is depicted in Fig. 5(a) and shows the
expected behavior. For t̃2 > 0 the MI phases are replaced
by D-MI phases, where bosons move between the left and
right wells of the sites. The D-MI(2) phase is identical to
the D-MI(1) phase of a single-well dimerized BHM. We
calculate the order parameters under the constant-density
line μ̃ = −2.6t̃2 + 0.605 to analyze the phase transition at

the tip of the lobe and show the results in Fig. 6. For
ρs = 0, the D-MI(2) phase is present, while the transition
to the SF phase takes place at around t̃2 ≈ 0.22, where
the superfluid density becomes nonzero and independent of
the system size. We compare the phase-transition point of
our grand-canonical method to the canonical density-matrix
renormalization-group technique used in [59], where the tran-
sition point is located around t̃2 ≈ 0.23, and can confirm that
our results match the single-well dimerized BHM.

This agreement includes the fact that for any dimerization,
δ �= 0, the MI phases are replaced by D-MI phases. The re-
placement to dimerized phases is also true for the DW and HI
phases, which become D-DW and D-HI phases, respectively.
The reason is the higher energy of the intrawell hopping
compared to the interwell hopping. Fluctuations inside the
double wells are more favorable than those between neighbor-
ing sites, which leads to different kinetic-energy contributions

FIG. 6. Intrawell fluctuation ζ , structure factor S(π ), intrawell
occupation difference �, and superfluid density ρs order parameters
along the μ̃ = −2.6t̃2 + 0.605 line with constant particle density
ρ = 2 for different chain lengths. While ρs = 0, D-MI(2) is present.
The tip of the lobe can be approximated by the position, where the su-
perfluid densities of the different chain lengths overlap at t̃2 ≈ 0.22.
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FIG. 7. (a) Density ρ, superfluid density ρs, intrawell fluctuation ζ , structure factor S(π ), and intrawell occupation difference � order
parameters for t̃2 = 0.125. The position μ̃a ≈ −0.165 is a guide to the eye where � peaks. While ρs goes to zero, ζ remains monotonically
increasing. In the inset the behavior of the superfluid density for increasing chain lengths is depicted, where a dip for ρ = 1 is visible and
indicates the presence of the D-MI(1) phase. (b) The particle density ρ over the chemical potential μ̃ for different ratios of t̃1/t̃2. A plateau is
formed for all dimerized hopping strengths and becomes broader the more the hopping strengths differ in size.

between the bond of the left and right wells in one double well
and the bond between wells of neighboring sites.

The existence of a D-MI(1) phase in the standard
double-well BHM with ŨLR = 0 is in accordance with the
single-well BHM, in which no insulating phase exists, when
the chain is not dimerized [28], but a MI-bond-order phase
with ρ = 1/2 emerges when the chain is dimerized [51,57].

In Fig. 7, we investigate this phase in more detail. Begin-
ning from the vacuum state, when the chemical potential is
increased, bosons start to occupy the empty chain and can
move inside the system via intrawell hopping (between the left
and right wells of each double well on each site) or interwell
hopping (between the left and right wells of double wells
of neighboring sites). Approaching ρ = 1, nearly all double
wells are occupied by one boson, and the well occupation
difference � is maximized, as seen at μ̃a in Fig. 7(a). As a
result, when a boson hops to a double well of a neighboring
site where another boson is already localized, it hinders the in-
trawell movement of that boson and cannot hop inside the new
double well itself. This is energetically unfavorable, so the
interwell hopping is suppressed. This effect will be overcome
and the double-well chain will populate further with bosons
only when the chemical potential becomes stronger. In the in-
set of Fig. 7(a) one can see the chain-length dependence of the
superfluid order parameter, underlining the interwell hopping
decrease around ρ = 1. Increasing the ratio t̃1/t̃2 enhances the
aforementioned effect even further, and the D-MI(1) phase
becomes bigger, as depicted in Fig. 7(b). When t̃1/t̃2 < 1,
there is a plateau as well, although the intrawell hopping is
weaker than the interwell hopping. This is no surprise, as
a negative bond dimerization δ changes only the alternating
order of the dimerized chain [Eq. (8)]. The shift of the density
with respect to μ̃ is explainable due to the change in the mean
hopping strength.

For ŨLR = 1, the energy of a boson being in the same well
as another one is equivalent to a boson being located in the
neighboring well on the same site. Hence, the movement of a
boson inside a double well is dependent solely on the intrawell

hopping parameter t̃1 and not on the arrangement of bosons
inside the double well. Figure 5(b) shows the phase diagram
for the double-well BHM with ŨLR = 1 and t̃1 = 2t̃2.

The resemblance to the single-well BHM [28] is evident,
as each double well in the double-well BHM for intrawell
repulsion strength ŨLR = 1 behaves similarly in most ways to
a single well. The important exception is the intrawell hopping
t̃1, which introduces more energy due to the movement of
bosons inside the double well and thus leads to a shift of
the D-MI phases in the phase diagram to lower μ̃ values
and higher hopping values compared to the single-well BHM
phase diagram, where t̃ = 3

2 t̃2.

B. Double-well BHM with nearest-neighbor and
long-range interactions

We study the nearest-neighbor and cavity-mediated long-
range interactions for different parameter settings and show
the phase diagrams in Fig. 8. We have chosen the nearest-
neighbor and long-range interaction strengths to be in the
regime where, for t̃2 = 0, only DW phases are present (see
Fig. 4). We compare our results with the standard double-well
BHM and the (dimerized) single-well BHM. For the nearest-
neighbor interaction, at the tip of the DW(2,0) lobe a HI phase
is found in the undimerized case [29], and a D-HI is found
in the dimerized BHM [61]. For the single-well BHM with
cavity-mediated long-range interaction a MI phase is located
at the tip of the DW(2,0) lobe [42].

Regarding all phase diagrams presented in Fig. 8, when
the hopping is greater than zero, MI, DW, and HI phases will
become dimerized phases, meaning that bosons are localized
in the double well on one site and fluctuate between the left
and right wells of this double-well.

For ŨLR = 0, D-DW(Xo, 0) phases emerge between
integer density phases for nearest-neighbor [Fig. 8(a)] and
long-range [Fig. 8(c)] interactions. The reason for this is anal-
ogous to the D-MI(1) phase in the standard double well BHM
in Fig. 5(a). Additionally, the D-DW phases are carried out for
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(a) (b)

(c) (d)

FIG. 8. Phase diagrams of the double-well BHM for (a) {ŨLR = 0, Ṽ = 0.4, Ũd = 0}, (b) {1, 0.75, 0}, (c) {0, 0, 0.3}, and (d) {1, 0, 0.6}
and t̃1 = 2t̃2. For t̃2 = 0, only DW phases are present. Phases with noninteger densities are colored orange to better distinguish between the
phases, and the tips of the D-DW(2, 0) lobes, where ρ = 1, are enhanced in the inset for all phase diagrams. The detailed behavior of the order
parameters at the tip for constant densities is carried out along the red lines in Fig. 9. (a) When t̃2 > 0, D-DW(Xo, 0) phases with odd particle
numbers per site Xo appear between D-DW(Xe, 0) phases with even particle numbers. The transition between the SF phase and the SS phase
is depicted via the blue line and is expected to engulf the D-DW(1,0) phase completely, so no direct transition from the SF to D-DW phase
exists. The transitions from SS phases to SF phases for higher values of μ̃ lie at higher hopping values than presented here. At the tip of the
D-DW(2,0) phase a D-HI(1) phase is present. (b) When t̃2 > 0, D-DW(X, 0) phases emerge and are completely surrounded by SS phases. The
transition between the SF phase and SS phase is depicted via the blue line. The transitions from SS phases to SF phases for higher values of
μ̃ are not presented here. A D-HI(1) phase appears at the tip of the D-DW(2,0) lobe, and a transition from D-HI(1) to SF can be determined
at the position of the green star. (c) D-DW(Xe, 0) phases, where Xe is even, appear as soon as hopping is included. In between, D-DW(Xo, 0)
phases, with Xo being odd, emerge due to the stabilizing effect of the intrawell hopping. The transition from the SF to SS phase is depicted via
the blue line and is expected to engulf the D-DW(1,0) phase. Transitions from SS to SF phases for higher values of μ̃ are not presented here.
(d) D-DW(X, 0) phases appear when the hopping terms are included. The D-DW phases are surrounded by a narrow SS phase, but only the
transition at the tip is depicted via the blue line. At the tip of the D-DW(2,0) phase a transition to a D-MI(1) phase can be seen.

bigger hopping values. When Ṽ > 0, the SF and SS phases
are shifted to higher energy values, while the D-DW phases
are unaffected by the nearest-neighbor term and thus persist
longer as in the standard double-well BHM. For the long-
range interaction, when Ũd > 0, the argumentation reverses.
The energy of the D-DW phases decreases, while the SF and
SS phases are unaffected. Hence, the D-DW phases persist not
only for bigger hopping terms but also for smaller values of μ̃.

For ŨLR = 1, the argumentation that D-DW phases are
present at higher hopping strengths and shift to lower μ̃ val-
ues for the long-range interaction compared to the ŨLR =
0 case remains the same for the phase diagrams with
nearest-neighbor [Fig. 8(b)] and long-range [Fig. 8(d)] in-
teractions. However, in contrast to the ŨLR = 0 case, the
D-DW(Xo, 0) phases become broader when they approach
t̃2 = 0.

For the extended double-well BHM [Figs. 8(a) and 8(b)],
at the tip of the D-DW(2,0) phase, a D-HI(1) phase can be
identified, while for the long-range interaction [Figs. 8(c) and
8(d)] only at the tip of the D-DW(2,0) lobe for the ŨLR =
1, Ũd = 0.6 diagram can a D-MI(1) phase be extrapolated.

Figures 9(a)–9(d) show the order parameters along the
constant-density lines of the corresponding phase diagrams in
Figs. 8(a)–8(d). For small hopping values t̃2, the D-DW(2,0)
phase is present in all panels of Fig. 9, where the superfluid
density ρs is zero and all other parameters have nonzero
values.

For the extended double-well BHM in Figs. 9(a) and
9(b) the D-DW(2,0) phase transitions into a D-HI(1) phase,
where the structure factor S(π ) and parity order parameter
Op drop to zero, while the string order parameter Os remains
nonzero. The superfluid density becomes nonzero but is size
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FIG. 9. Intrawell fluctuation ζ , structure factor S(π ), intrawell occupation difference �, superfluid density ρs, and string Os and parity
Op order parameters along the constant-density (ρ = 1) lines (a) μ̃ = −2.33 t̃2 + 0.75 for {ŨLR = 0, Ṽ = 0.4, Ũd = 0}, (b) μ̃ = −4.25 t̃2 +
2.5225 for {1, 0.75, 0}, (c) μ̃ = −1.65 t̃2 − 0.13 for {0, 0, 0.3}, and (d) μ̃ = −2.5 t̃2 + 0.405 for {1, 0, 0.6} and t̃1 = 2t̃2. In the D-DW(2,0)
phase, only the superfluid density is zero, while all other order parameters are nonzero. (a) At the transition point to the D-HI(1) phase at
around t̃2 ≈ 0.31, S(π ) and Op vanish, while Os keeps a finite value. The superfluid density ρs attains nonzero values but approaches zero for
larger chain lengths. (b) At the transition point to the D-HI(1) phase at around t̃2 ≈ 0.49, S(π ) and Op vanish, while Os keeps a finite value.
The superfluid density ρs attains nonzero values but approaches zero for larger chain lengths. The transition to the superfluid phase can be
determined at t̃ = 0.56 when ρs becomes size independent and Os vanishes. (c) At the transition point t̃2 ≈ 0.312 the SS phase appears, as Os

and Op vanish, while S(π ) remains present. No dimerized HI or MI phase can be identified between the D-DW(2,0) and SS phases. (d) At the
transition point t̃2 ≈ 0.49 a D-MI(1) phase appears, as Os and S(π ) vanish, while Os remains present and ρs approaches zero for larger chain
lengths. Because the point where the superfluid density becomes nonzero is highly dependent on the system size, we extrapolated it for the
different sizes to obtain a better approximation of the transition point to the D-MI(1) phase.

dependent and becomes zero in the limit L → ∞. Fur-
thermore, in Fig. 9(b) the transition to the SF can also
be seen, where ρs is size independent and nonzero, while
Os approaches zero. Comparing these results for the D-HI
phase with the results for the single-well extended BHM
[29,42] shows that the topological HI phase persists in the
double-well BHM in a dimerized way, in which the in-
trawell hopping does not break the long-range order of the
HI phase.

Since the nearest-neighbor interaction of our double-well
BHM is identical to the dimerized chain where the nearest-
neighbor interaction acts on neighboring pairs of sites, we
showed that the D-HI phase also persists for the dimerized
chain with interactions up to the third neighboring site. This
is an expansion of the results of Sugimoto et al. [61], in
which a D-HI phase was found in the dimerized chain with
nearest-neighbor interaction.

For the cavity-mediated long-range interaction with
ŨLR = 0, Ũd = 0.3, shown in Fig. 9(c), the D-DW(2,0) di-
rectly transits into the SS phase, where ρs and S(π ) are

nonzero and Os and Op are zero. To understand why no D-
MI(1) phase exists at the tip of the D-DW(2,0) lobe, in contrast
to the single-well BHM, in which a MI phase is present at the
tip of the DW(2,0) lobe, we reiterate why the MI(1) phase
exists in the single-well BHM in the first place.

The MI(1) phase appears at the tip of the DW(2,0) lobe in
the single-well BHM because the intersite particle fluctuation
per site scales in the MI phase by the power of Ud/L, as
particles are evenly distributed between even and odd sites.
On the other hand, intersite particle fluctuation per site for
the DW(X, 0) phases scales by the factor X 2Ud/4, making
it independent of system size. This argumentation also holds
true for the double-well BHM but is expanded by the effect of
the intrawell hopping, in which the bosons in the D-DW(2,0)
phase are able to fluctuate inside every second double well.
This overcomes the effects of the cavity-mediated long-range
interaction on the interwell fluctuations for the D-DW(2,0)
phase and results in the D-DW(2,0) being present until the
hopping strengths are strong enough that a direct transition
into the SS phase occurs.
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For the ŨLR = 1, Ũd = 0.6 case, shown in Fig. 9(d), a
transition to the D-MI(1) phase can be seen, where Op persists
while ρs goes to zero for larger system sizes. Due to the strong
variance of the starting point, where the superfluid density
becomes nonzero according to system size, an extrapolation
was carried out to determine the position of the transition to
the D-MI(1) phase. The occurrence of a D-MI(1) at the tip of
the D-DW(2,0) lobe in the double-well BHM with long-range
interaction Ũd = 0.6 matches the finding of a MI(1) phase
at the tip of the DW(2,0) lobe in the single-well BHM with
cavity-mediated long-range interaction [42]. This is reason-
able, as we showed in Sec. II C for the double-well BHM
without hopping that the double-well BHM with ŨLR = 1
is identical to a single-well BHM. Our results confirm that
a dimerization of the hopping keeps the structure of a MI(1)
phase at the tip of DW(2,0) but dimerizes these phases to
D-MI(1) and D-DW(2,0), respectively.

IV. CONCLUSION

Short- and long-range order plays a fundamental role in the
critical behavior of ultracold bosons in a quantum gas; thus,
the ground-state behavior of the double-well BHM was stud-
ied numerically for different interactions. Furthermore, the
results were compered to resembling dimerized chain models.

The one-dimensional double-well BHM with nearest-
neighbor and cavity-mediated long-range interactions in-
cludes a variety of well-established models, such as the single-
well BHM and the dimerized BHM. When dimerization
is present, dimerized-Mott-insulator, dimerized-density-wave,
and dimerized-Haldane-insulator phases exist, characterized
by a combination of a bond-ordered phase [63] and a MI,
DW, and HI phase, respectively. It turns out that dimerized
hopping stabilizes the D-DW phases with noninteger boson
densities, in agreement with results from dimerized chains
[51,57]. When the intrawell repulsion is as strong as the
on-site repulsion per well, each double well can be treated
as a single well. Hence, in this case, the ground-state phase
diagram is identical to the single-well BHM [28], with the
exception that the intrawell hopping leads to dimerized phases
and a shift of the D-MI phases to lower chemical potentials
and higher hopping values.

Interactions between particles in neighboring double-well
potentials imply interactions up to the third neighbor in the
corresponding dimerized BHM. For those a D-HI phase at the
tip of the D-DW lobe with a particle density of 1 exists, which
was previously reported for a dimerized chain with solely
nearest-neighbor interaction [61]. For noninteger densities D-
DW phases exist, as was recently shown for the dimerized
Bose-Hubbard chain with nearest-neighbor interactions [58].

In the presence of cavity-mediated long-range interactions
a D-MI phase appears at the tip of the D-DW lobe with
a density of 1 when the intrawell repulsion is as strong as
the on-site repulsion, which is in agreement with results for
the single-well chain BHM [42]. This D-MI phase at the tip
of the D-DW phase disappears when the intrawell repulsion
vanishes. This is due to the intrawell hopping, which distin-
guishes the D-DW phase in the double-well BHM and the

DW phase of the single-well BHM. Moreover, D-DW phases
exist for noninteger densities in the double-well BHM with
cavity-mediated long-range interaction, which is reminiscent
of the double-well BHM with nearest-neighbor interaction
and underpins the equivalence of nearest-neighbor and cavity-
mediated long-range interactions on a mean-field level [38].

APPENDIX: QUANTUM MONTE CARLO
WORM ALGORITHM

In this Appendix we discuss the quantum Monte Carlo
worm algorithm we used to obtain the phase diagram of
Hamiltonian (1) in more detail. We split the Hamiltonian
into an on-diagonal part Ĥon and off-diagonal part Ĥoff

with regard to the Fock-basis representation of the one-
dimensional (1D) chain |ni〉 = |n1 · · · nL〉i. Hence, Ĥon |ni〉
gives the on-diagonal energy value εi. With the inverse tem-
perature β and the Dyson series, we can write the partition
function as

Z (C) =
∞∑

m=0

∑
n1···nm

e−βε1

∫ β

0
dτm · · ·

∫ τ2

0
dτ1

× (
eτmε1Ĥn1nm

off e−τmεm
) · · · (eτ1ε2Ĥn2n1

off e−τ1ε1
)
, (A1)

with Ĥnin j

off = 〈ni|Ĥoff|n j〉. The partition function is the sum
over all possible configurations, where m denotes the number
of vertices in the system, as it counts the number of Ĥoff terms.
The imaginary-time dimension is in the range [0, β] and is
segmented by the vertices in different lengths τm. Addition-
ally, the Fock states at the beginning and the end must be the
same |n0〉 = |nm〉.

Now, the worm is inserted by including a
b̂† n′

cnc

i (τc) b̂n′
ana

i (τa) or b̂n′
ana

i (τa) b̂† n′
cnc

i (τc) pair at an arbitrary

FIG. 10. Schematic movement of a worm inside the 1D chain.
Solid black lines represent closed boson lines. Dashed black lines
show vacancies. The open boson line is colored green and has the
worm head (red) and tail (blue) as ends. The ends can move through
the system as implied by the red arrows for the worm head. When
head and tail collide, the worm closes, leaving new closed boson
lines behind. Note that when at one site more than one boson is
present, any of these bosons may perform a hopping, as they are all
indistinguishable. The depiction here was chosen to easily see the
occupation number per site. Also, the boson configuration at the start
τ = 0 must be the same as that at the end τ = β.
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site i and imaginary-time position τc = τa. In the first case,
between the operators, a boson is removed, while in the
second case a boson is created. Obviously, the worm is
inserted only if a boson can be removed or the maximal
number of bosons on one site is not surpassed when there is
such a limit defined.

So the extended configuration for the partition function
kernel reads

Cext = (
eτmε1Ĥn1nm

off e−τmεm
) · · · (eτcε

′
c b̂†n′

cnc

i e−τcεc
) · · ·

× (
eτaε

′
a b̂n′

ana

i e−τaεa
) · · · (eτ1ε2Ĥn2n1

off e−τ1ε1
)

(A2)

and vice versa for the other pairing. Without loss of generality
we define the creator operator as the head and the annihilator
operator as the tail. They can move through the configuration
space by advancing forwards and backwards in imaginary
time or by hopping according to the off-diagonal term Ĥoff.
When they come across an already existing vertex that they

cannot pass through (because the commutator does not van-
ish), one of three following scenarios occurs: (1) The vertex
gets deleted, (2) the vertex is relinked to another site according
to Ĥoff, or (3) nothing happens, and the worm end moves in
the other direction. The worm movement ends when the head
and tail collide. Figure 10 sketches the 1D quantum chain,
expanded with imaginary time to a classical two-dimensional
model and the insertion of a worm.

With the QMC-WA it is possible to obtain grand-canonical
and canonical observables. During worm movements the bo-
son number is variable, allowing us directly to obtain the
Green’s function, for example. When the worm is deleted, the
particle number is constant, and canonical observables can be
calculated. The usual approach is via importance sampling,

〈O〉 = 1

Z
∑
C

O(C)Z (C). (A3)
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