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1 Model of the cell

1.1 Microtubules
The microtubules(MTs) are represented as semiflexible filaments, therefore the Hamiltonian of a single MT is given by:

H =
κ

2

∫ L

0

∣∣∣∣ ∂~t∂s
∣∣∣∣2, (1)

where κ is bending rigidity( 2.2 ∗ 10−23Nm2 ), L is the length of MT, s is arc length, ~t = ∂~r
∂s is unit tangent vector and

~r(s) is a position (1). A single MT is represented as a chain of N beads with coordinates ~r1, ..., ~rN connected by N − 1
tangents ~ti = ~ri+1 − ~ri of the length k = L/(N − 1). In the present model, the length k = 0.8µm was used. Since the
MT is an inextensible polymer discretized into N beads, N − 1 constraints must be fulfilled:

Cmicro
i = |~ri − ~ri+1| = k i = 1, ..., N − 1 (2)

The length of the MTs varies considerably, but since short MTs are not relevant for repositioning, we include only just
MTs that reach from the MTOC to the IS in the first seconds of repositioning. The maximum length of a MT should be
L > π ∗ RCell to always reach from MTOC to IS. In order to reach the IS in the first stages of repolarization, the length
must be L > 3

4 ∗ π ∗RCell. Thus, the number of beads N is uniformly distributed between 15 and 20.

1.1.1 Bending forces of the microtubule

The Hamiltonian for the discretized MT can be expressed as:

Hbend = κd

N−2∑
i=0

(
1−

~ti~ti+1

|~ti||~ti+1|

)
, (3)

where κd = κ/k is the bending rigidity of the discretized model. The bending force acting on bead i is the derivative of
the discretized Hamiltonian with the respect to ~ri:

~F bend
i = −∂Hbend

∂~ri
. (4)

If we consider the simplest case (sketched in Fig. 2) of three points with coordinates ~r1, ~r2 and ~r3 connected with the
tangents ~t1 and ~t2, the bending forces acting on the beads are:

Figure 1: Bead-rod model of the microtubule. The MT is divided into 8 point connected by 7 rods. The circles correspond
to the positions of the beads. The lengths of rods connecting beads remain constant.

~F bend
1 =

κd

|~t1|

(
−
~t2

|~t2|
+

~t1

|~t1|

(
~t1·~t2
|~t2||~t1|

))
, (5a)

~F bend
3 =

κd

|~t2|

(
~t1

|~t1|
−

~t2

|~t2|

(
~t1·~t2
|~t2||~t1|

))
(5b)

~F bend
2 = −~F bend

3 − ~F bend
1 . (5c)
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Figure 2: The sketch of bending forces acting on the MT composed of three beads. The filled circles represent the beads
of the MT. The bending force is determined by the angle Θ between the tangents ~t1 and ~t2. The narrow arows depict
bending forces acting on beads.

1.1.2 Drag coefficient

The drag force on an object depends on the speed of the object, the viscosity µ of the fluid, the size, and the shape of
the object. The intracellular viscosity is very hard to measure or estimate, since the space between the nucleus and cell
membrane is far from homogenous. The viscosity of aqueous domains of cell cytoplasm corresponds to the viscosity of
water (2). On the other hand, in other microdomains, the local viscosity differs from the viscosity of water by more than
three orders of magnitude (3). The effective viscosity in our model was chosen as:

µ ∼ 30µw = 0.03Pa · s, (6)

where µw = 0.9775mPa · s is the viscosity of water at temperature of T = 21◦C.
The MT is divided into segments of a cylindrical shape whose length is substantially bigger than the diameter. The

drag depends on the object’s area projected normal to the direction of the motion. Therefore, drag forces for the motions
parallel and perpendicular to the object are defined as F = γ‖ẋ and F = γ⊥ẋ, respectively, where ẋ is speed of the object.
Parallel γ‖ and perpendicular γ⊥ drag coefficients (4) are defined for the case of a cylinder in the fluid with viscosity µ
as:

γ‖ =
2πµk

ln(k/d)− 0.2
(7a)

γ⊥ =
4πµk

ln(k/d) + 0.84
, (7b)

where k and d are the length and the diameter of the cylinder, respectively. Therefore, the friction of the cylinder is
anisotropic γ⊥ ∼ 2γ‖. However, the anisotropy is hard to implement, as the orientation of segments varies. Therefore,
the anisotropy is not implemented. For the case of simplicity, the perpendicular drag coefficient is considered in the
simulation to the beads of MT and the same drag coefficient is attributed to all MTOC points.

1.2 Drag force of organelles
EM, Golgi and mitochondria are the organelles with different structures and sizes. However, their drag force can be
estimated from their volume and surfaces. A dynamic shape factor(5), Ksf, can be defined to calculate the drag coefficient
of the nonspherical particle:

γ = 3πdvµKsf, (8)

where dv is the diameter of the sphere with the same volume as the object. The drag force can be divided between the
form drag, coming from the pressure on the surface, and tangential shear stress. Form drag is determined by the objects
area projected normal to the direction of the motion. It can be expressed through the Stokes law form drag on a sphere,
whose projected area equals to the projected area of a nonspherical object. The diameter of such a sphere is dn. The
friction force on the surface can be expressed by the friction on the sphere with the same effective surface, which has the
diameter ds. The dynamic shape factor can be defined as:

Ksf =
dn + 2ds

3dv
. (9)

The number of mitochondria were measured(just the case of one cell) in (6) (44 mitochondria in a T-Cell). The size
and shape of MTs varies greatly, since they can shrink, grow, go through fission and fusion (7–11). We consider the
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most common spherocylindrical shape approximated by the cylinder, whose diameter and the length were estimated as
0.75µm and 1.5µm, respectively. Golgi apparatus is a very complex structure composed from multiple classes of cisternae
differing in form, function and composition that are stacked in various ways (12–15). The endoplasmic reticulum (ER) is
also a complex organelle composed from a bilayer forming nuclear envelope and a network of sheets and dynamic tubules
(16–20). Golgi, ER and mitochondria are connected to cytoskeleton (21) and (6).

For the rough approximate evaluation of drag force we consider the estimates from (22), table 12. The major organelles
including EM and Golgi are close to the center and they are in contact. Consequently, effective viscosity in the regions
close to the nucleus of the cell is different from more aqueous domain close to the cell membrane where the rotation of
the cytoskeleton takes place. Therefore, we assume that the effective viscosity of the medium in which EM and Golgi
travel is µ2 = 10 ∗ µ. We will express the drag coefficient of organelles as a function of viscosity and compare it with the
drag coefficient of the cytoskeleton. For the estimate of the cytoskeleton drag coefficient, the cytoskeleton of 100 MTs
was considered and the drag coefficient were calculated using (9).

γGSER ∼ 0.00131µ (10)
γRER ∼ 0.00160µ (11)
γMito ∼ 0.00257µ (12)
γCyto ∼ 0.00270µ (13)

From the equations (10) it can be seen that the γtotal = (γCyto + γMito + γRER + γGSER) ∼ 3 ∗ γCyto. Consequently, to
consider the drag force from the organelles in the cell, the drag coefficient of MT is tripled. Thus, the equation (7) can be
rewritten as:

γ‖ = 3 ∗ 2πµk

ln(k/d)− 0.2
(14a)

γ⊥ = 3 ∗ 4πµk

ln(k/d) + 0.84
. (14b)

1.3 Confinement of the cytoskeleton
The cytoskeleton moves between the wall of the cell and the nucleus. They have a spherical shape and they are modeled
as force fields. The force of the wall is null if |~ri| <= R. Otherwise, the force acting on the bead of the MT or the MTOC
is expressed as:

~Fwall
i = −1

~ri
|~ri|

k1exp(k2(|~ri| −R)), (15)

where R is the radius of the cell and k1 = 20pNµm−1 and k2 = 1m−1 are chosen constants. The force of nucleus is null
if |~ri| > Rnucleus(radius of the nucleus). Otherwise, it can be expressed by:

~F nucleus
i =

~ri
|~ri|

k1exp(k2(Rnuc − |~ri|)), (16)

where Rnuc is the radius of the nucleus.

1.4 Dynein motors
Unfortunately, since the results from the measurements differ greatly, the mechanical properties of dynein remain uncer-
tain. Therefore, the parameters in this section are estimations. The dynein has an anchor and attachment points connected
by a stalk. The anchor point has a stable position and the attachment point walks on the MT. The force acting on the MT
is determined by the length of the stalk, whose relaxed length was estimates as L0 = 18nm (23–26).

Unattached dynein is represented just with one point on the surface of the cell. If the dynein is closer to the MT than
L0, the motor protein can attach to the filament. Fluctuations of the membrane can move the dynein motor to the MT.
Therefore, the attachment probability is defined as:

pa = 5s−1 dmd <= L0 (17)

pa = 5 · exp(−(dmd − L0)/pd)s−1 dmd > L0, (18)

where dmd is the distance of the dynein point to the closest point of the MT and pd = 10−7 is a chosen parameter. If the
MT is attached, the anchor and attachment points of the dynein motor are placed to the same point on the MT. Attachment
probability of dynein is unknown; therefore, the attachment probability pa corresponding to the attachment ratio of kinesin
is considered (27). The force of dynein motor comes from the elastic properties of the stalk:

|FDynein
i | = 0, |~rDynein| < L0 (19)

~FDynein
i = kDynein(|~rDynein| − L0)

~rDynein

|~rDynein|
|~rDynein| > L0, (20)
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where ~rDynein = ~ranchor−~rattach is the distance between the anchor and the attachment points. The measurements of elastic
modulus of the stalk differ (28–31) , therefore, the elastic modulus was estimated to kDynein = 400pNµm−1 (32). If the
force is null or parallel to the preferred direction of stepping, the probability of stepping to the minus end is:

p− =
VF
dstep

, (21)

where VF is the forward speed of dynein and dstep is the length of the step. The steps of dynein have multiple lengths
(33–38). Nevertheless, just the most frequently measured length dstep = 8nm is considered. The forward speed was
estimated or measured in various sources (33, 34, 39–45). For our purposes it is estimated to be VF = 1000nms−1. In
the case of the force of the dynein being in the opposite direction to the preferred movement and smaller than a stall force
FS , the attachment point steps to the minus end with probability:

p− =
VF
dstep

(1− |F
Dynein|
FS

). (22)

The value of the stall force varies greatly (33, 33–36, 40, 46) and (47), we estimate it as FS = 4pN. If the force aims to
the plus end and it is bigger than the stall force, dynein steps to the plus end with probability:

p+ =
VB
dstep

. (23)

Backward stepping speed is force dependent (33) and the measured values also differ (40), (48). Our estimate is VB =
6.0nm· s−1 (33).
The probability of detachment is expressed as:

pdetach = exp(
|Fd|
FD

), (24)

where the detachment force (40, 48, 49) was estimated as FD = FS/2. When the attachment point of dynein motor is
not on a bead of MT, the force is acting on a point of a segment between two beads. In such a case, the force has to be
transmitted to the two closest beads. Since the mechanism of stepping and detachment of dynein is uncertain, we use the
model for kinesin stepping (50).

Dynein plays a role in two mechanisms. During the cortical sliding mechanism acting in the whole IS, the MT slides
on the membrane and its plus-end remains free. MT depolimerizes in the fixed position on the membrane of the cell
during capture-shrinkage mechanism acting in the center of the IS. Without the effects of dynein, MT detaches from fixed
position.

The densities of capture-shrinkage dyneins, ρIS , and cortical sliding dynein ρ̃IS vary through the range that could
be expected during the T-Cell activation, 0 < ρIS , ρ̃IS < ρMAX. The maximum density of dyneins were estimated
considering its structure and size. The dynein comprises a long stalk and a ring-like head containing six AAA+ modules
whose diameter is comparable with the length of the stalk (51, 52), and N- and C-terminal regions. The size of the dynein
motor can be also estimated from the distance dhm between the head domain of the dynein and the center of the attached
MT (53), dhm = 28nm, which substantially exceeds the length of the dynein stalk. For the case of simplicity, we compute
the area of plasma membrane covered by one dynein as ad = π ∗ L2

0, where L0 is the length of the stalk. The number of
dynein Ndynein in 1µm2 is calculated as

Ndynein =
1−12

ad
∼ 1000. (25)

Consequently, ρMAX = 1000µm−2.

1.5 Microtubule organizing center (MTOC)
The MTOC is modeled as a planar, polygonal structure, composed from so-called sprouting points(points of MT sprout-
ing). If MTOC has QMTOC sprouting points, then the equal number of constraints holds them in a specified distance from
MTOC center(black lines in Fig. 3). Therefore, the ith constraint is defined as:

CMTOC
i = |~rmtoc

i − ~rc| = RMTOC i = 1, ..., QMTOC, (26)

where ~rmtoc
i is the position of ith sprouting point and ~rc is the position of the center of the MTOC. Moreover, additional

QMTOC bonds keep the neighboring points in a constant distance dMTOC(blue lines in Fig. 3).

CMTOC
i = |~rmtoc

i − ~rmtoc
i+1 | = dMTOC i = QMTOC + 1, ..., 2 ·QMTOC, (27)

When MT is created, the so-called ”sprouting point” and ”rear point” on the MTOC are chosen 4. The second bead
of the MT is attached to the sprouting point and the first bead to the rear point. Consequently, the original MT orientation
is given by the direction from the rear point to the sprouting point. Every MTOC point is the sprouting point to the same
number of MTs. The rear point is chosen from the points at the approximately opposite side(relatively to sprouting point)
of the MTOC 4a, which gives a variety of the initial MT orientations. Elastic force 4a anchors the MT in the MTOC,
while bending force 4b forces the MT to be aligned with the line connecting sprouting and rear points. The combination
of two forces assures anchoring of the MT and limitation of changes in orientation, simulating the effect of PCM.
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Figure 3: Sketch of the MTOC with NMTOC = 20 MT sprouting points represented by red spheres. The black sphere in
the middle depicts the center of the MTOC. Black lines connecting the points with the center and blue lines connecting
the neighboring points are nondeformable.

(b) (c)

Figure 4: The sketch of the MTOC and forces connecting the MTOC with MTs. The black line denotes the first segment
of microtubule. (a) Dashed lines depict the elastic forces connecting two points of microtubule to two MTOC points. The
green point represents the sprouting point and yellow points depict possible rear points. (b) Bending force minimizes the
angle Θ between the first segment of microtubule ~t1 and the line ~s connecting sprouting(green) and rear(yellow) point.

1.5.1 Connecting microtubule and MTOC

The first segment of the MT is inside the MTOC 4a. The second and the first the MT beads are attached by elastic forces
to the sprouting point and the rear point, respectively 4a. Elastic forces acting on a MT bead can be written as:

~F elas
2 = k3|~d2| ·

~d2

|~d2|
, (28)

where k3 = 30· pNµm−1 is a spring constant and ~d2 = ~r MTOC
s − ~r micro

2 , where ~r MTOC
s and ~r micro

2 are MTOC sprouting
point and the second bead of MT, respectively. Analogically, we can define the forces between the first bead of the MT
and the MTOC rear point. Bending forces 4b are calculated via:

~F bend
MTOC =

κ

|~s|2

(
−
~t1

|~t1|
+

~s

|~s|

(
~t1·~s
|~s||~t1|

))
(29a)

~F bend
micro =

κ

|~t1|2

(
~s

|~s|
−

~t1

|~t1|

(
~t1·~s
|~s||~t1|

))
, (29b)

~F0 = −~F bend
micro − ~F bend

MTOC (29c)

where ~s is the segment between the two beads of the MTOC, ~t1 is the first segment of MT. The forces ~F bend
MTOC and ~F bend

micro

act on the sprouting point and the second bead of MT, respectively. The force ~F0 acts on the first bead of the MT and the
rear point.

2 Constrained Langevin dynamics

Using Langevin dynamics, the motion of an unconstrained particle with the position xi can be expressed:

γiẋi = fi + ηi, (30)
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where ηi is a random Langevin force, which is a stochastic, non-differentiable function of time that integrates random
interactions with the molecules of the solvent. The force fi is the sum of all other forces and it depends on the object and
γ is the drag coefficient. In a constrained case, N beads in 3D have to satisfy Q constraints (54):

Ca(x1, ..., x3∗N ) = ca a = 1, ...., Q (31)

The constraints have to remain constant in every instance. Therefore, the movement of the beads must satisfy:

0 = Ċa = nia· ẋi a = 1, ...., Q (32)

where
nia =

∂Ca
∂xi

. (33)

The motion of a constrained bead can be expressed:

γẋi = fi + ηi − niaλa, (34)

where λa is the constraint force conjugate to the constraint µ.

2.1 Mid-Step algorithm
Mid-Step algorithm was proposed by Fixman and further generalized by Hinch and Grassia (55–58) The algorithms was
elaborated for specific cases by Morse and Pasquali (54) and (59). Using the mobility tensor

Hikγ = Iik, (35)

the equation (34) can be rewritten as:
ẋi = Hij [F

u
j − njaλa], (36)

where Fuj = fi + ηi is unconstrained force. The values of λa for a = 1, ..., Q can be calculated from the conditions (32)
at every instant. It will result in the set of algebraic equations:

Gaνλν = niaHijF
u
j , (37)

where
Gaν = niaHijnjν . (38)

If the constraint forces are expressed by (37), we get the equation of motion from (34):

ẋi = PijHjkF
u
k , (39)

where
Pij = Iij −HiknkaG

−1
aν njν (40)

is a projection operator. In the case when the mobility tensor is expressed by (35), equation 40 can be rewritten as:

Pij = Iij − niaT−1
aν njν , (41)

where
Taν = nianiν . (42)

The dynamical projection operator is used to project forces to 3N − Q dimensional hypersurface. Therefore, they are
locally perpendicular to the constraints.

The mid-step algorithm proposed by Hinch is for the case of mobility tensor (35) composed by four following substeps:

1. Generate unprojected random forces ηi and unprojected forces fi at initial position x0
i ;

2. Construct projected random force ηPi = Pijηj and fPi = Pijfj ;

3. Calculate midstep position x1/2
i = x0

i + ẋ0
i∆t/2, where the mobility in the original configuration ẋ0

i is calculated
via (39) and ∆t is the time step;

4. Calculate updated bead positions x1
i = x0

i + ẋ
1/2
i ∆t, where ẋ1/2

i is evaluated with the deterministic and normal
vectors from mid position, but with the same projected random force from initial configuration.

Mid-step algorithm uses the projection operator (40) that alongside with the mid position calculation minimizes the
perturbations of constraints. Nevertheless, perturbations cannot be eliminated. Therefore, the MT has to be resized to
fulfill the constraints. In such operation, the angles between ~ti and ~ti+1, where i = 1, ..., N − 1 are conserved, the first
bead of MT remains constant and MT regrows from the MTOC. Consequently, the bending energy of the MT remains
unchanged.
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3 Additional results

3.1 Influence of random forces

Random forces acting on the MTs have small effects since the motion of the MTs is constrained. Fig. 5a suggests that
random forces perpendicular to the cell membrane(red) have no effect since microtubule curvature is given by the interplay
of bending forces and the force of the membrane. The green forces, acting parallel to the segments of the MTs have also no
impact, because the MT is attached to the MTOC, making it a part of a very massive structure. Consequently, just random
forces depicted in purple in 5b can result in movement, making the random noise effectively one-dimensional. However,
the MT is still rigid structure, random forces act in contradiction and filament is bound to MTOC, which seriously limits
the movement of upper beads. Therefore, the influence of random noise can be expected to be negligible. Moreover, the
capture-shrinkage mechanism fixates the MT on both sides, further minimizing the effect of the random force. In Figs. 6a
and 6b we can see that the repositioning curves are almost identical for the case of the capture-shrinkage mechanism. The
Figs. 6c and 6d demonstrate that the developments of the number of attached dyneins also do not differ. During cortical
sliding repositionings the effect of the random forces is also negligible 7.

(a) (b)

Figure 5: Sketch of random forces acting on the MT from two perspectives. The big circle represents MTOC and smaller
circles represent beads of microtubule. Blue arc depicts membrane of the cell. Red, green and purple lines representing
random forces acting on every bead are perpendicular.

3.2 Comparison of two cases with different number of microtubules

The cytoskeleton ofMmicro = 100 MTs (examined in previous section) is compared with the cytoskeleton ofMmicro = 40.
We define ndm(t) = N̄dm(t)

Mmicro
to examine the ratio of the attached dyneins and the number of the MTs in a cytoskeleton. Fig.

8a depicts repolarization curves of two cytoskeletons for the case of the capture-shrinkage mechanism. The polarization
exhibits a triphasic behavior for both cases 8b.

We define nmax = max(ndm(t)). In Figs 8c it can be seen that nmax is always bigger for the case of smaller cy-
toskeleton(caused by the small area of the center of IS and limited number of dynein). The Figs. 8c and 8d explain
the differences of speed in terms of the number of motors. When the area density is small, the smaller cytoskeleton is
pulled with relatively higher force. As the concentration increases, the maximum speed is achieved(ρIS ∼ 600µm−2).
Subsequent increase of pulling force has no effect.

Figs. 9a and 9b depicting the repositioning under the influence of the cortical sliding mechanism shows the three
regimes for both cytoskeletons. In both cases, nmax rises at the beginning, it reaches its maximum when ρ̃IS ∼ 200µm−2

and then it decreases swiftly and then steadily 9c. For smaller densities, the number of dyneins per MT are smaller for
the bigger cytoskeleton. The situation is opposite when considering high area densities. Since the attached MTs aim in
different directions, dyneins compete in the area of higher densities. As the number of the MT decreases, the pulling forces
acting on individual filaments increase, leading to faster detachment. The MTOC speed increases when ρ̃IS < 200µm−2

and then it decreases. We can see in 9d that the speed decreases for both cases even when nmax stays approximately the
same, which is the consequence of dynein acting predominantly at the periphery.
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(a) (b)

(c) (d)

Figure 6: Combination of the capture-shrinkage mechanism and random forces. Solid lines stand for the sole capture
shrinkage and dashed lines for the combination with random forces. Legends in (a), (b) apply for (c), (d), respectively.
(a)(b) Dependence of the average MTOC-IS distance d̄MIS on time, (c)(d) Dependence of the average number of dynein
N̄dm motors on MTOC-IS distance d̄MIS.

(a) (b)

Figure 7: Combination of the cortical sliding mechanism and random forces. Solid lines stand for the sole cortical sliding
and dashed lines for the combination with random forces. (a)(b) Dependence of the average MTOC-IS distance d̄MIS on
time.

3.3 Capture-shrinkage and cortical sliding combined

As can be seen in Fig. 10b, addition of the small area density of capture-shrinkage dyneins in the center of IS causes
substantial decrease of differences between times of polarization. Moreover, the three regimes of behavior based on the
area density of cortical sliding dyneins is not observed in the presence of the capture-shrinkage mechanism. Surely, the
third regime presents a disadvantage, since the pulling force of dynein is wasted in unproductive competitions. Therefore,
the synergy of two mechanisms proves once more to be highly effective, since it does not only removes the third regime,
but also greatly reduces the times of repositioning when the area density of cortical sliding ρ̃IS < 100µm−2. Fig. 10a
depicts times of repositioning for different sets of combined mechanisms since the capture-shrinkage area density varies
and cortical sliding density remains constant. We can see that the times of repositioning are in general shorter for the
case of combined mechanisms. Moreover, even when the area densities correspond to the second regime, the times of
repositioning are comparable. Combined cases, however, have just 15% of the number of dyneins. Additionally, we can
notice that the increase of area densities when ρ̃IS > 500µm−2 presents no advantage since it causes slowing down of
repositioning in the absence of capture-shrinkage and has no effect when the mechanisms are combined. Fig. 10c shows
that the attached dyneins are predominantly located on the periphery of IS even in the case when ρ̃IS > ρIS.
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(a) (b)

(c) (d)

Figure 8: Capture-shrinkage mechanism for two cytoskeletons with different numbers of microtubules: Mmicro =
100(solid lines) and Mmicro = 40(dashed lines). (a) Dependence of average MTOC-IS distance d̄MIS on time. (b) De-
pendence of average MTOC speed v̄MTOC on d̄MIS. (c) Dependence of the maximum number of attached dyneins per
microtubule nmax on area density ρIS. (d) Dependence of the maximum speed Smax on ρIS.

4 Commentary on modeling approaches

4.1 Cytosim
Cytosim is widely accepted as an efficient tool for the simulations of fibers (60). Although there are many similarities
between the models, we decided not to use Cytosim. The first reason is our goal to examine the role of Brownian motion.
The implicit integration used by Cytosim has a numerical error that could influence the precision of calculation in the
absence of thermal noise. The second reason is the simplified calculation of the bending forces used by Cytosim. The
advantage of such an approach, which enables to express the bending forces as a result of a matrix-vector multiplication,
is a great efficiency of calculation. Nevertheless, the procedure is valid only if the angles between subsequent segments
remain small. This presents a drawback, since the angles between the segment increase as the radius of the cell decrease.
More importantly, substantial curvature of the MTs can be expected during repositioning (61)(See 4.4). Moreover, the
”reshaping” of the objects due to the numerical impressions is done to keep the center of mass constant. Since the rigidity
of MTOC is an important part of our model, reshaping is done to keep the first the bead of the MT(therefore MTOC-MT
forces) constant.

4.2 Model using deterministic force
Kim and Maly (62) modeled the cortical sliding mechanism using the deterministic force. Although this model has various
merits, it leads to the contradiction with some experimental observable: for example MTs stalk going through the center
(62). This presents a drawback since various biological functions depend on the distribution of MTs.
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(a) (b)

(c) (d)

Figure 9: Cortical sliding mechanism for two cytoskeletons with different numbers of microtubules Mmicro = 100(solid
lines) and Mmicro = 40(dashed lines). (a)(b) Dependence of average MTOC-IS distance d̄MIS on time. (c) Dependence
of the number of attached dyneins per microtubule nmax on the area density ρ̃IS. (d) Dependence of the maximum speed
Smax on ρ̃IS.

(a) (b) (c)

Figure 10: Combination of the capture-shrinkage and the cortical sliding mechanisms. (a)(b) Times of repositioning for
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27. Leduc, C., O. Campàs, K. B. Zeldovich, A. Roux, P. Jolimaitre, L. Bourel-Bonnet, B. Goud, J.-F. Joanny, P. Bassereau,
and J. Prost, 2004. Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl. Acad. Sci. U.S.A.
101:17096–17101.

28. Kamiya, N., T. Mashimo, Y. Takano, T. Kon, G. Kurisu, and H. Nakamura, 2016. Elastic properties of dynein motor
domain obtained from all-atom molecular dynamics simulations. Protein Eng Des Sel 29:317–325.

29. Burgess, S. A., M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa, 2003. Dynein structure and power stroke.
Nature 421:715–718.

30. Lindemann, C. B., and A. J. Hunt, 2003. Does axonemal dynein push, pull, or oscillate? Cell Motil. Cytoskeleton
56:237–244.

31. Sakakibara, H., H. Kojima, Y. Sakai, E. Katayama, and K. Oiwa, 1999. Inner-arm dynein c of Chlamydomonas
flagella is a single-headed processive motor. Nature 400:586–590.

32. Sakakibara, H., and K. Oiwa, 2011. Molecular organization and force-generating mechanism of dynein. The FEBS
Journal 278:2964–2979.

33. Gennerich, A., A. P. Carter, S. L. Reck-Peterson, and R. D. Vale, 2007. Force-Induced Bidirectional Stepping of
Cytoplasmic Dynein. Cell 131:952–965.

34. Toba, S., T. M. Watanabe, L. Yamaguchi-Okimoto, Y. Y. Toyoshima, and H. Higuchi, 2006. Overlapping hand-over-
hand mechanism of single molecular motility of cytoplasmic dynein. PNAS 103:5741–5745.

35. Mallik, R., D. Petrov, S. A. Lex, S. J. King, and S. P. Gross, 2005. Building complexity: an in vitro study of
cytoplasmic dynein with in vivo implications. Curr. Biol. 15:2075–2085.

36. Mallik, R., B. C. Carter, S. A. Lex, S. J. King, and S. P. Gross, 2004. Cytoplasmic dynein functions as a gear in
response to load. Nature 427:649–652.

37. Reck-Peterson, S. L., A. Yildiz, A. P. Carter, A. Gennerich, N. Zhang, and R. D. Vale, 2006. Single-Molecule
Analysis of Dynein Processivity and Stepping Behavior. Cell 126:335–348.

11



38. Kural, C., H. Kim, S. Syed, G. Goshima, V. I. Gelfand, and P. R. Selvin, 2005. Kinesin and dynein move a peroxisome
in vivo: a tug-of-war or coordinated movement? Science 308:1469–1472.

39. Torisawa, T., M. Ichikawa, A. Furuta, K. Saito, K. Oiwa, H. Kojima, Y. Y. Toyoshima, and K. Furuta, 2014. Autoin-
hibition and cooperative activation mechanisms of cytoplasmic dynein. Nature Cell Biology 16:1118–1124.

40. Müller, M. J. I., S. Klumpp, and R. Lipowsky, 2008. Tug-of-war as a cooperative mechanism for bidirectional cargo
transport by molecular motors. Proc. Natl. Acad. Sci. U.S.A. 105:4609–4614.

41. King, S. J., and T. A. Schroer, 2000. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell
Biol 2:20–24.

42. Nishiura, M., T. Kon, K. Shiroguchi, R. Ohkura, T. Shima, Y. Y. Toyoshima, and K. Sutoh, 2004. A single-headed
recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J. Biol.
Chem. 279:22799–22802.

43. Kon, T., M. Nishiura, R. Ohkura, Y. Y. Toyoshima, and K. Sutoh, 2004. Distinct Functions of Nucleotide-
Binding/Hydrolysis Sites in the Four AAA Modules of Cytoplasmic Dynein. Biochemistry 43:11266–11274.

44. Cho, C., S. L. Reck-Peterson, and R. D. Vale, 2008. Regulatory ATPase sites of cytoplasmic dynein affect processivity
and force generation. J. Biol. Chem. 283:25839–25845.

45. Kikushima, K., T. Yagi, and R. Kamiya, 2004. Slow ADP-dependent acceleration of microtubule translocation
produced by an axonemal dynein. FEBS Letters 563:119–122.

46. Walter, W. J., B. Brenner, and W. Steffen, 2010. Cytoplasmic dynein is not a conventional processive motor. J. Struct.
Biol. 170:266–269.

47. Belyy, V., M. A. Schlager, H. Foster, A. E. Reimer, A. P. Carter, and A. Yildiz, 2016. The mammalian dynein-dynactin
complex is a strong opponent to kinesin in a tug-of-war competition. Nat. Cell Biol. 18:1018–1024.

48. Ikuta, J., N. K. Kamisetty, H. Shintaku, H. Kotera, T. Kon, and R. Yokokawa, 2014. Tug-of-war of microtubule
filaments at the boundary of a kinesin- and dynein-patterned surface. Scientific Reports 4:5281.

49. Kunwar, A., S. K. Tripathy, J. Xu, M. K. Mattson, P. Anand, R. Sigua, M. Vershinin, R. J. McKenney, C. C. Yu,
A. Mogilner, and S. P. Gross, 2011. Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-
droplet transport. Proc. Natl. Acad. Sci. U.S.A. 108:18960–18965.

50. Klein, S., C. Appert-Rolland, and L. Santen, 2015. Motility states in bidirectional cargo transport. EPL 111:68005.

51. Roberts, A. J., N. Numata, M. L. Walker, Y. S. Kato, B. Malkova, T. Kon, R. Ohkura, F. Arisaka, P. J. Knight, K. Sutoh,
and S. A. Burgess, 2009. AAA+ Ring and Linker Swing Mechanism in the Dynein Motor. Cell 136:485–495.

52. Imai, H., T. Shima, K. Sutoh, M. L. Walker, P. J. Knight, T. Kon, and S. A. Burgess, 2015. Direct observation
shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules. Nature
Communications 6:1–11.

53. Mizuno, N., A. Narita, T. Kon, K. Sutoh, and M. Kikkawa, 2007. Three-dimensional structure of cytoplasmic dynein
bound to microtubules. PNAS 104:20832–20837.

54. Montesi, A., D. C. Morse, and M. Pasquali, 2005. Brownian dynamics algorithm for bead-rod semiflexible chain
with anisotropic friction. J. Chem. Phys. 122:084903.

55. Fixman, M., 1978. Simulation of polymer dynamics. I. General theory. J. Chem. Phys. 69:1527–1537.

56. Hinch, E. J., 1994. Brownian motion with stiff bonds and rigid constraints. Journal of Fluid Mechanics 271:219–234.

57. Grassia, P. S., E. J. Hinch, and L. C. Nitsche, 1995. Computer simulations of Brownian motion of complex systems.
Journal of Fluid Mechanics 282:373–403.

58. Grassia, P., and E. J. Hinch, 1996. Computer simulations of polymer chain relaxation via Brownian motion. Journal
of Fluid Mechanics 308:255–288.

59. Pasquali, M., and D. C. Morse, 2002. An efficient algorithm for metric correction forces in simulations of linear
polymers with constrained bond lengths. The Journal of Chemical Physics 116:1834–1838.

60. Nedelec, F., and D. Foethke, 2007. Collective Langevin dynamics of flexible cytoskeletal fibers. New J. Phys.
9:427–427.

61. Kuhn, J. R., and M. Poenie, 2002. Dynamic Polarization of the Microtubule Cytoskeleton during CTL-Mediated
Killing. Immunity 16:111–121.

62. Kim, M. J., and I. V. Maly, 2009. Deterministic Mechanical Model of T-Killer Cell Polarization Reproduces the
Wandering of Aim between Simultaneously Engaged Targets. PLOS Computational Biology 5:e1000260.

12


