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Meniscus arrest dominated imbibition front

roughening in porous media with elongated pores
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Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany

E-mail: h.rieger@physik.uni-saarland.de

Abstract. During spontaneous imbibition, a wetting liquid is drawn into a porous medium by
capillary forces. Recently, anomalous scaling properties of front broadening during spontaneous
imbibition of water in Vycor glass, a nanoporous medium, were reported. The mean height and
the width of the propagating front increase with time t both proportional to t1/2. We argue
that this anomalously large roughening exponent of β = 1/2 is due to long-lasting meniscus
arrests, when at pore junctions the meniscus propagation in one or more branches comes to
a halt when the Laplace pressure of the meniscus exceeds the hydrostatic pressure within the
junction. From this hypothesis we derive the scaling relations for the emerging arrest time
distribution in random pore networks and show that the average front width is proportional to
the height yielding a roughness exponent of exactly β = 1/2 as measured in the Vycor glass
imbibition experiments. Extensive simulations of a random pore network model confirm these
predictions. Finally, using a microfluidic setup as well as molecular dynamics simulations on
the nanoscale, the basic hypothesis of the scaling theory is confirmed by demonstrating the
existence of arrest events in Y-shaped junctions, analyzing them quantitatively and comparing
them with the theoretical predictions.

1. Introduction
Fluid flow through porous media has been a topic of considerable interest due to its scientific
importance and practical applications [1, 2, 3]. Imbibition, which is the displacement of one
fluid by another immiscible fluid in a porous matrix, is observable in many everyday processes,
for instance when dipping a sugar cube into coffee or dropping ink on a paper. It is important in
nature (e.g., for water to flow through soil or to reach all parts of plants) and plays a fundamental
role in various industrial areas, ranging from paper and textile treatment to oil recovery and
groundwater hydrology [1, 3, 4]. Various physical aspects are involved in the process which
makes it an interesting and complex phenomenon, e.g. capillarity, viscous drag, surface tension,
hydrostatic pressure, and the quenched disorder of the matrix resulting in random permeability
and random capillary pressure.

During imbibition the liquid-gas interface advances and broadens. The time evolution of the
invading front follows simple scaling laws, which are independent of the micro- structure and the
details of the fluid [5, 6, 7, 8, 9], reminiscent of the universality of critical phenomena. The often
complex topology of the porous matrix induces local fluctuations in capillary pressures at the
interface as well as hydraulic permeabilities in the bulk. Despite these complexities, the average
position of the front 〈h(t)〉 during a purely spontaneous imbibition evolves as 〈h(t)〉 ∝ t1/2,
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known as Lucas-Washburn law [11, 12]. This scaling behavior is valid down to nanoscopic pore
scales [13, 14, 15].

(a) (b)

Figure 1. Schematic shape of the imbibition front in a porous structure consisting of (a) small and (b) large
aspect ratio pores leading to a continuous liquid gas interface in (a) and isolated mensici in (b).

In most porous materials such as paper and sand, the propagating imbibition front forms a
single connected interface between the propagating and the displaced liquid [16], as sketched in
Fig. 1a. In these systems, pore space is laterally highly interconnected, resulting in a continuous
liquid-gas interface, whose advancement is spatially correlated due to an effective surface tension
[17]. Consequently, interface advancement beyond the average front position is slowed down
while parts of the interface lagging behind are drawn forward. Hence, the roughening of the
interface is reduced and gives rise to dynamical roughening behavior described by universal
scaling laws [5, 6, 7, 8, 9].

For pore networks, in which the porous space forms a three-dimensional random network of
interconnected pipes with a sufficiently large aspect ratio (ratio between pipe length and radius),
the interface between the propagating and the displaced liquid is disconnected and consists of
many isolated menisci [2, 18], see Fig.1b for a sketch. The characteristics of the imbibition
dynamics of the ensemble of menisci in such pore networks can be expected to be very different
from the propagation of continuous interfaces in random media.

Indeed, recent experiments on nanoporous Vycor glass (NVG) showed an anomalously fast
front broadening and the absence of a growing correlation length [20]. In this paper we review
the experimental situation and our current understanding of the dynamical process in these pore
networks with elongated pores. The paper is organized as follows: In section 2 we summarize
the experimental results on NVG, in section 3 we discuss the scaling theory for dynamical
front broadening based on meniscus arrests at asymmetric pore junctions, section 4 presents the
results of computer simulations of a microscopic pore network model involving the hypothesized
meniscus arrests, and section 5 discusses experimental evidence for the meniscus arrests at
asymmetric pore junctions.

2. Spontaneous imbibition in nano-porous Vycor glass NVG
In [20] the spontaneous imbibition of water into nanoporous Vycor glass (NVG), which is a
silica substrate with an interconnected network of nanometer-sized, elongated pores [18] as
sketched in Fig. 2a, was investigated. The narrow pores lead to capillary pressures of several
hundred times atmospheric pressure. This means that gravity would only halt capillary rise
after several kilometers and several billion years [21]. Hence, with this system, one is able to
observe pure spontaneous imbibition over large length (centimeter) and long time (hours) scales.
The observation of the advancing front is difficult since it is deeply buried inside the matrix, but
neutron radiography allowed to image the liquid inside the porous material.
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(a)
(b)

(c) (d)

Figure 2. Spontaneous imbibition in NVG – experimental results (from [20]): a) Schematic
representation of spontaneous imbibition of a fluid into a porous matrix like NVG. The arrows indicate the
average rise level H(t) and the invasion front width w(t). b) Laterally averaged filling degree f(z, t) as a function
of height z and time t. The Lucas-Washburn law z ∝ t1/2 is shown as solid line. c) Evolution of the front
width w(t) along with a fit of w ∝ tβ (solid line). The inset shows the same data in a log-log representation. d)
Height-height correlation function C(l, t) of the invasion front at three different times, the data are shifted for
clarity.

From neutron images [20] the spatial and temporal evolution of the local filling degree
0 ≤ f(x, z, t) ≤ 1 are determined. Due to the projection in the y-direction, this is the average
amount of filled pore space at lateral position x, height z and time t. Its lateral average,
that is the vertical concentration profile f̄(z, t) ≡ 〈f(x, z, t)〉x, is shown in Fig. 2b. The time-
dependence of the front height, quantified by the mean median rise level H(t) ≡ 〈z(f=0.5, x, t)〉x,
follows the Lucas-Washburn

√
t-law (Fig. 2b, solid lines). Fits of Gauss error functions to the

profiles yield the time-dependence of the width w(t) (Fig. 2c). The fit of w(t) ∝ tβ results
in a growth exponent of the width or roughness, β = 0.46 ± 0.01 (Fig. 2c, solid line). The
value β = 0.46 significantly exceeds previous theoretical predictions, in particular those from
phase-field models which are based on quenched, random fields. Such models predict slower
roughening dynamics with β ≈ 0.19 and a strong spatial correlation of the height fluctuations
within the moving interface [10]. Note that β cannot be larger than 1/2 in NVG in particular
and during spontaneous imbibition in general since otherwise the width would grow faster than
than the height, which follows the Lucas-Wasburn law with exponent 1/2.

To investigate height fluctuations within the front [20] calculated the height-height correlation
function:

C(`, t) = 〈(h(x, t)− h(x+`, t))2〉1/2x . (1)

The data shown in Fig. 2d exhibit neither scaling of C(`, t) with ` nor any indication of spatial
correlations in the experimentally accessible range 75 µm ≤ ` ≤ 4000 µm. Although the
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correlations are reduced due to the projection in y-direction, the absence of any detectable
correlation is in contrast to all previously reported experiments and theories on imbibition front
roughening.

3. Scaling theory
The existing theories for spontaneous imbibition [3] are unable to reconcile the large roughness
exponent and in particular the absence of lateral correlations. The latter could lead us to
the conclusion that the porous space of Vycor glass could be represented by an ensemble of
independent pores of random but constant radius as sketched in Fig. 3a. Such an ensemble of
capillaries exhibits a roughening exponent 1/2 during spontaneous imbibition since the meniscus
heights evolve independently from one another ( hi(t) = ai

√
t with random pre-factors ai).

However, this model is inappropriate for Vycor glass since pores have corrugated walls and
therefore the pore radii vary strongly along individual pores, as sketched in Fig. 3b. Spontaneous
imbibition in an ensemble of independent pores with radii which vary randomly along their length
is described by a random deposition model, for which the roughness scales as

√
〈h(t)〉, i.e with

a roughening exponent 1/4.

(a) (b)

Figure 3. Sketch of independent pore models: (a) An ensemble of independent pores, each pore has a
constant radius, radii of different pores vary randomly. During spontaneous imbibition the front width increases
with t1/2 (b) A pore with a corrugated wall, i.e. with a radius that varies along the pore axis. During spontaneous
imbibition the front width increases with t1/4.

For this reason independent pore models are inappropriate for NVG. Recently a lattice model
for spontaneous imbibition in a silica aerogel predicted a roughening exponent β ≈ 1/2. Silica
aerogels have an extremely large porosity of 87–95 % which gives rise to a continuous liquid-gas
interface. Consequently one expects here an effective surface tension to be present, inducing
height-height correlations in the advancing imbibition front. The model details are thus also not
appropriate for NVG, which must involve pore and network aspects.

With this background we proposed in [22] a scaling theory for spontaneous imbibition in
porous media consisting of a network of interconnected elongated pores (Fig. 4). It is based on
the observation that at pore junctions the meniscus propagation in the branch with the larger
radius can come to a halt when the Laplace pressure of the meniscus exceeds the hydrostatic
pressure within the junction. This leads to the emergence of voids behind the invasion front and
concomitantly to anomalously fast front broadening as observed experimentally in NVG [20].

We consider a network of elongated pores with a length-to-width ratio of the order of 10, i.e.
elongated, cylinder-like pores with random radii interconnected at pore junctions as sketched
in Fig. 4. The bottom pores are connected to a liquid reservoir with pressure P = 0. We
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(a) (b)

Figure 4. Sketch of a pore network with elongated pores (a) and an individual junction (b): ri
and PL,i denote the radius and Laplace pressure, respectively, in pore i, and p0 denotes the hydrostatic pressure
in the junction. In (b) 〈h(t)〉 and 〈PL〉 denote the average height at time t and the average Laplace pressure.

assume that in each pore a liquid-gas interface forms, denoted as meniscus, that gives rise to a
Laplace-pressure PL=−2σ/r, where σ is the surface tension of the liquid and r the pore radius.
If the pore radii vary between rmin and rmax, the average radius is denoted by 〈r〉. Then, on
large scales, the average height is expected to vary as d/dt 〈h(t)〉 = −〈PL〉/〈h(t)〉, which implies
the Lucas-Washburn law 〈h(t)〉 ∝ t1/2.

Consider now a junction at height h0, where a pore branches into two (see Fig.4a). One
branch has radius r1, the other r2 > r1, yielding the Laplace pressures PL,i= −2σ/ri. Let P0

be the hydrostatic pressure within the junction. As long as PL,2 > P0 the meniscus in branch
2 is arrested. In the following we will answer the question how long the meniscus in branch 2
will be arrested and we will implicitly assume that it does not get annihilated by the filling of
the pore from its other end. This means that we assume the radius r2 also to be larger than the
radius of the other branch of the junction of the other end. This reduces only the probability of
this event by a r2-dependent factor.
P0 = P0(t) is a function of time and depends on how far the front has propagated and can be

estimated as follows: Let the average front height be 〈h(t)〉. On average one expects the bulk
pressure to decrease linearly from bottom to top:

P (〈h(t)〉)/P0 = 〈h(t)〉/h0 (2)

Therefore, with P (〈h(t)〉) = 〈PL〉 = −2σ〈1/r〉 the average Laplace pressure, one obtains
P0 = −2σ〈1/r〉 · h0/〈h(t)〉 and the condition P0 = PL,2 for the arrested meniscus to resume
propagation (at time tresume) reads

〈h(tresume)〉 = h0r2〈1/r〉 . (3)

This equation has far reaching consequences:
1) The larger r2 the longer the meniscus is arrested, and the average height that the front has
to reach before the meniscus resumes propagation is proportional to the height where it stopped
with a proportionality constant larger than one.
2) The time τ for which the meniscus is arrested is proportional to the time tstop, when it stopped

τ ∝ tstop . (4)

To see this we note that with (3) one has 〈h(tstop +τ)〉 = h(tstop)r2〈1/r〉. With Lucas-Washburn

〈h(tstop + τ)〉 ∝ (tstop + τ)1/2 and assuming that h(tstop) ∝ t
1/2
stop, too, for the relation between

the height and the time when the considered meniscus stopped, one obtains (4).
3) Consequently from (4)

τ ∝ h2(tstop) = h20; , (5)
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which implies that the probability distribution of arrest times for menisci arrested at height h
will scale as

ph(τ) = h−2 p̃(τ/h2) . (6)

4) The height difference w0(tresume) = 〈h(tresume)〉 − h0 is a measure for the local width of the
propagation front (at the lateral coordinates of the position of the arrested meniscus) at time

tresume. The ratio of this local width and the average height is w0(tresume)
〈h(tresume)〉 = 1−(r2〈1/r〉)−1, which

is independent of the time tresume. Thus all arrested menisci will contribute a time independent
amount to the ratio of the average width w(t) and average height. Since the width cannot grow
faster than h(t) this implies

w(t)/〈h(t)〉 = const. , (7)

implying w(t) ∝ t1/2, i.e. a roughening exponent β = 1/2. Note that the invasion front
dynamics is now expected to be be completely determined by the meniscus arrests, which in
turn depend exclusively on the pore radii distribution and the height dependent hydrostatic
pressure. Consequently one expects no lateral correlations in the meniscus heights to emerge,
as observed in [20].

4. Microscopic model - computer simulations
The scaling theory presented in the last section neglects all geometric and topological details of
a pore network. To test its predictions, we analyzed in [20, 22] the following microscopic model
for spontaneous imbibition in a pore network with elongated pores [24, 23]: A two-dimensional
square lattice of cylindrical capillaries inclined at 45◦ is considered, which consists of Nx and Nz

nodes in horizontal and vertical directions, respectively. Capillaries, interconnected at nodes,
have the same length L and random radii uniformly distributed over [rav − δ, rav + δ]. The
average aspect ratio 2rav/L is set to 5. The pressure at the bottom nodes attached to the liquid
reservoir is set to zero, the pressure at a moving meniscus is the Laplace pressure. Here we
neglect gravity, which is justified as long as capillary forces are much larger than gravitational
forces 2σ/r � ρNzL, where ρ the specific weight of the liquid. This is the case for instance in
experiments with NVG [21].

The dynamical evolution of the meniscus positions is driven by the hydrostatic pressures at
the network nodes, which themselves depend on the meniscus positions. The node pressures
Pi are determined by the boundary conditions plus the conservation of volume flux at each
node:

∑
j Qij = 0, with Qij the volume flux from node i into the capillary j attached to it.

According to Hagen-Poiseuille’s Law Qij = −cij ∆Pij/hij , with cij=πr
4
ij/8η and ∆Pij=Pi−PL,ij .

Here, rij , hij and PL,ij are the radius, the length and the Laplace pressure of the meniscus in
capillary j attached to node i, respectively, and η is the viscosity of the liquid. The numerically
calculated values for Pi and Qij are then inserted into the equation of motion for the heights
given by Qij=πr

2
ij dhij/dt, which is then numerically integrated with an implicit Euler scheme

with variable time step.
When a meniscus reaches the end of a capillary it immediately moves an infinitesimal distance

δ'0.01L into the adjacent capillaries, creating new menisci, as shown in Fig. 5a. When two
menisci meet, they vanish, thus the capillary is entirely filled. If, due to a negative pressure
difference, a meniscus retracts, it proceeds backward as long as its distance from the back node
is larger than δ [see Fig. 5b]. When it reaches δ, the meniscus is stuck there until the driving
pressure difference is again positive.

Fig. 5c shows a series of snapshots of the dynamical evolution of the meniscus positions and
the filled pore area obtained from for a specific realization of random pore radii. The average
front height h(t) = 〈hi(t)〉 and average front width w(t) = 〈(hi(t) − h(t))2〉1/2 are obtained by
averaging over all meniscus heights hi at time t and over different disorder (radii) realizations
(N = 100). The result is shown in Fig.5d-f: We find that the average front height obeys the
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Figure 5. Micsocopic pore network model: a) After reaching an empty node, the liquid immediately
fills the connected capillaries for a distance δ. b) After retracting up to δ toward a filled node, the meniscus is
arrested until the pressure difference driving the liquid is again positive. c) Snapshots of meniscus configurations
in a system with radius disorder strength δr/〈r〉 = 0.3 and lattice size 16 × 1000 at three different times (as
indicated in units of nanoseconds). d) Evolution of the average front height H(t) in a log-log plot for different
radius disorder strengths δr/〈r〉. The broken line indicates the Lucas-Wasburn law H(t) ∝ t1/2. e) w(t) for
different radius disorder strengths δr/〈r〉 for a pore network with Nx = 16 in a log-log plot. The broken line
indicates the time dependence w(t) ∝ t1/2 predicted by the scaling theory described in section 3. f) Evolution
of the front width w(t) for different lateral system sizes Nx with δr/〈r〉 = 0.1 in a log-log plot. g) Height-height
correlation function C(l, t) as a function of the distance l at different times t (as indicated) for a sample with
δr/〈r〉 = 0.1 and lattice size 128× 32. h) Snapshots of the arrested (empty circles) and advancing (filled circles)
menisci in the invasion front at three different times in a pore-network. Broken (full) lines represent empty (full)
pores, 〈h〉 is the average height at the corresponding time. The filled circles represent moving menisci, the open
circles indicate arrested menisci. i) Scaling plot of the meniscus arrest time distribution Ph(τ) according to Eq.
6. δr/〈r〉 = 0.1 and Nx = 8. j) Average meniscus arrest time 〈τ〉 at a given height h for δr/〈r〉 = 0.1 and Nx = 8
in a log-log plot. The dashed line is proportional to h2.

Lucas-Washburn
√
t-behavior (Fig. 5d) and that the width increases rapidly as w(t) ∝ tβ with

β close to 1/2 (Fig. 5e), consistent with the scaling prediction eq.(7).
Remarkably the time evolution of the average width does not display any dependence on the

lateral system size, as seen in Fig. 5f. The absence of finite size effects is an indicator of a small
or vanishing correlation length scale for height-height fluctuations. Within the framework of the
scaling theory of roughening [25, 26], the interface width in a finite system of lateral size Nx is
expected to grow algebraically w(t) ∼ tβ as long as the system size is larger than the correlation
length, ξ(t)/L� Nx, and only saturates to a constant w(t) ≈ const. as soon as the correlation
length exceeds the system ξ(t)/L � Nx. Since the data in Fig. 5f display an algebraic growth
even for the smallest system size Nx = 4 the correlation length must be smaller than 4L. This
is confirmed by the height-height correlation function C(`, t) (eq. 1, Fig. 5g), which saturates
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quickly (around ` ≈ L). Scaling theory [25, 26] predicts saturation of C(`, t) for ` � ξ(t),
which implies ξ(t)/L = O(1) independent of time t. This finding is also in agreement with the
experimental result for C(`, t) in NVG (Fig. 2d).

Our scaling theory presented in the last section explains the origin of the large roughness
exponent β = 1/2 and the absence of lateral height-height correlations, namely long lasting
meniscus arrests with arrest times that are of the same order as the the time when the arrest
started. Fig. 5h shows snapshots of arrested and moving menisci in our model and one sees that
with progressing time most menisci are actually arrested and only a few move. We analyzed the
probability distribution of the arrest times P (τ) in our model [22] and found that indeed the
intermediate and large time regime of the distribution, including the cut-off, scale nicely with h2

as predicted by Eq.(6), as is shown in Fig. 5i. Consequently the average arrest time 〈τ〉 grows
with time as h2(t) as shown in Fig.5j.

The invasion front thus involves a finite fraction of the occupied volume and comprises
connected clusters of empty pores whose size distribution gets broader with increasing time.
Based on the conditions for meniscus arrests presented above one can derive a scaling form for
the distribution of (void) cluster sizes [22].

5. Meniscus arrest in asymmetric pore junctions
The basic assumption of the scaling theory for spontaneous imbibition in porous media with
elongated pores described in section 3 as well as the microscopic pore model presented in section
4 are long-lasting meniscus arrests in asymmetric pore junctions. Since such meniscus arrests
have not been studied quantitatively before, we investigated in [27] the capillary rise of a fluid
in a Y-shaped junction of channels with different radii experimentally and theoretically. We
consider here a channel junction geometry as sketched in Fig. 6a, with cylindrical channels of
radius rf for the feeding channel that is connected to the liquid reservoir, and radius rn and rw
for the narrow and wide branch, respectively. A simplified model for the capillary rise in this
asymmetric Y-junction predicts that once the meniscus reaches the junction and splits into two
menisci, the meniscus in the wide branch proceeds to propagate whereas the meniscus in the
narrow channel is arrested until the meniscus in the wide channel reaches the distance lresume

from the junction, which is proportional to l0, the length of the feeding channel and given by
[27]:

lresume = l0 · α with α =
cn
cf

(
PL,n
PL,w

− 1

)
. (8)

Here PL,i = 2σ cos θ/ri is the Laplace pressure (the index i ∈ {f, n, w} refers to the feeding,
narrow and wide channel, respectively) and σ the surface tension, ci = πr4i /8η with η the
viscosity of the liquid. For channels with rectangular cross section the expressions for Pr,i and
ci have to be replaced by expressions involving the widths and the heights of the channels.

The arrest time is the time that the meniscus in the wide channel needs to reach the distance
lresume from the junction and is is proportional to l20 and given by [27]:

τ = K · l20, with K=
A

|PL,n|
cn
c2f
·

{(PL,n
PL,w

− 1
)

+
1

2

(PL,n
PL,w

−1
)2
−
cf
cn
−
c2f
2c2n

}
. (9)

Here A is the cross sectional area of the channel A = πr2.
The equation (8) is equivalent to the eq.(3) occurring in the scaling theory presented in

section 3. In [27] we used an experimental, microfluidic setup to demonstrate the validity of
eq.(8), and concomitantly a basic ingredient of the scaling theory, eq.(3). Experimental results
for capillary rise in an asymmteric Y-junction are shown in Fig. 6b, which shows a series of
snapshots of the rising liquid and arrested meniscus in the microfluidic device, and Fig. 6c,
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Figure 6. Capillary rise in asymmetric pore junctions – microfluidic experiments: (a) Schematic
shape of a Y-junction. (b) Time series of fluorinated oil FC-70 invading a microfluidic Y-junction with a long
feeding channel demonstrating the arrest of the meniscus in the wide channel during the initial propagation
of the meniscus in the narrow channel. The dimensions of the device are wn ∼ 45µm, ww ∼ 131µm and
l0 = 8800± 120µm. (c) Experimental result for lresume, as a function of the rescaled length of the feeding channel
l0, for different junction geometries (from [27]). The values of wn and ww of each device are indicated in µm.
The line displays the theoretical prediction. Error bars in x- and y-direction are omitted if there are smaller than
the symbol size.

which shows the experimentally measured arrest time τ as a function of the scaled variable

lresume = l0 ·
(
δ+wn
δ+ww

· wwwn − 1
)
· w

3
n

w3
f

. Indeed the data points from different experiments (different

feeding channel lengths, different channel widths) lie on a straight line as predicted by eq.(3).
Thus we have experimental evidence for the meniscus arrests and its duration in asymmetric

pore junction as they occur in random pore networks, which supports the basis of the scaling
theory of section 3. The simplified model for capillary rise as sketched above is based on
macroscopic laws (Laplace pressure, Hagen-Poisseuille), which are indeed expected to hold
for the experimental microfluidic device used to validate the model predictions. The question
remains, whether meniscus arrests together with the scaling relations for arrest time etc. can also
be observed on the nanometer scale, which is the appropriate length scale for the experiments
on NVG described in section 2.

Experimentally it is not yet feasible to explore meniscus arrest on the nano-scale, but
molecular dynamics simulations are very well suited for studying physical processes on this
length scale. Therefore we considered a capillary junction formed by silica walls attached to a
reservoir of argon molecules and performed molecular dynamics simulations of the capillary rise
[28]. Snapshots of the particle configurations at different times are shown in Fig. 7. As it can
be seen, the meniscus in the wide channel is indeed arrested for a time that is of the same order
of magnitude as the time the meniscus in the feeding channel needed to reach the junction. A
quantitative analysis necessitates many of these runs to obtain good statistics and is under way.

6. Discussion
We have shown that the dynamics of spontaneous imbibition in nanoporous media with elongated
pores (low porosity), like NVG, is dominated by long-lasting mensicus arrests in the wide
channels at pore junctions of channels with different radii. This establishes a new universality
class for imbibition front roughening, which is actually predicted to be independent of the
dimensionality of the pore network and mainly dependent on the pore radius distribution. The
independence of dimensionality and topology of the pore network is expected due to a lack of
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20 nm
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Figure 7. Capillary rise in asymmetric pore junctions – molecular dynamics simulation: Six
snapshots from the molecular dynamics simulations of the spontaneous imbibition of liquid argon in silica nano-
pores are taken at consecutive timesteps. The nano-pore consists of 98,540 silica atoms in three channels. The
feeding channel has a diameter of 4.0 nm, the upper channel 4.8 nm and the right channel 3.2 nm. The interactions
between the 191,012 argon atoms are given by a Lennard-Jones potential with the parameters ε = 0.2384 kcal

mole

and σ = 3.4Å. The potential is cut off at a distance of 10.0Å. Temperature is kept at a constant value of 94 K
with the help of the DPD-thermostat. The parameters of the Lennard-Jones interactions between the wall and
the argon atoms are ε = 0.1521 kcal

mole
and σ = 3.85Å. After filling the feeding channel the liquid penetrates the

narrow channel and the rise of the meniscus is stopped for about 4.46 ns in the wide channel.

spatial correlation between the individual meniscus arrests. This meniscus arrest universality
class should also be valid for forced imbibition in pore networks with elongated pores as long
as the reservoir pressure is much smaller than the modulus of the Laplace pressures in the
network. For applications it is interesting to note that the dependence of the imbibition front
broadening on the pore radius distribution might be utilized to infer from the meniscus arrest
time distribution or characteristics of the front broadening process dependent upon it back onto
the radius distribution.

For decreasing aspect ratio (ratio of pore radius over pore length) one expects at some point a
continuous liquid-gas interface to form and thus a crossover from the meniscus arrest universality
class to a different universality class, where the liquid-gas-interface surface tension becomes
relevant. In [29] we studied a model which was devised to capture some of the physics relevant
for this crossover. It predicts that for non-vanishing effective surface tension the propagation of
the imbibition front comes to a halt at some point.

Nanoporous materials become more and more important in fundamental research and
nanotechnology [30]. Recently [31] it was shown that for aqueous electrolyte imbibition in
nanoporous gold the fluid flow can be reversibly switched on and off through electric potential
control of the solidliquid interfacial tension, which implies that one could accelerate the
imbibition front, stop it, and have it proceed at will. In this respect it would be rewarding
to generalize our scaling theory for the arrest time distribution and front broadening to field or
time dependent Laplace pressures and to have a closer look with our microscopic pore network
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model into the imbibition dynamics in this new class of nanoporous materials.
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