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1 Introduction

One of the hallmarks of cancer is angiogenesis, the formation of new blood vessels

via sprouting, which fuels tumor growth with additional nutrients [62]. Angiogene-

sis, vessel cooption (the integration of existing blood vessels into the tumor vascula-

ture), dilatation, and vessel regression remodel the healthy vascular network of the

host into a tumor specific vasculature that is different from the arterio-venous blood

vessel network of the host tissue [75] (s. Fig. 1). Consequently blood flow, oxy-

gen and nutrient supply, and interstitial fluid flow have tumor specific abnormalities

[161] that have dramatic consequences for anti-cancer treatment: a) tumor vascula-

ture is is chaotic, lacking a hierarchical organization, and spatially inhomogeneous

comprising regions with low microvascular density (like a necrotic core). As a re-

sult, severe hypoxia (deprivation from oxygen) [71] can impede the effectiveness

of radiation and chemo therapies [58], and promote invasive growth (migration of

tumor cells and penetration of tissue barriers). b) Tumor vessel walls are leaky, i.e.

have a high permeability for blood plasma, and a functioning lymphatic drainage

is absent in most malignant tumors, leading to bulk flow of free water in the inter-

stitial space, denoted as interstitial fluid flow (IFF), and a concomitantly elevated

interstitial fluid pressure (IFP) [75]. The resulting excessive extravasation of liquid

may release most drug prematurely, leading to a retarded delivery into the tumor

center, especially in large tumor [74, 81, 76]. Indeed high IFP is regarded as an ob-

stacle in cancer therapy [64, 102]. Therapeutic concepts like vessel normalization
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via anti-angiogenic therapy have been developed [77] that actually decrease IFP and

improve drug penetration in tumors [157].

Fig. 1 Depth-coded microscopy images of vascular networks: (A) A normal capillary network
with some supplying and draining arterioles and venules, respectively. Capillaries appear as thin
straight segments, which is typical, for instance, for muscle tissue (Scale bar = 100 µm). (B)
Blood vessel network in a mammary carcinoma bearing mouse (tumor location indicated by dashed
circle). Vascular remodeling is apparent in proximity of the tumor. Numerous dilated, tortuous
vessels proceed from a few parent vessels toward the tumor (a). The tumor rim is densely and
chaotically vascularized due to excessive branching. The vascular density drops dramatically into
the tumor, leaving large regions void of vessels (c, b; scale bar = 1 mm). (Reprinted from [10] with
permission. Copyright 2011 James W. Baish et al.)

However, a mechanistic understanding of vascular network formation and var-

ious treatment strategies is still lacking and calls for a quantitative analysis of the

underlying physics. Drug delivery as well as oxygen supply are determined by blood

and interstitial fluid flow, for which reason such an analysis must focus on the re-

lation between the intra- and extra-vascular transport characteristics and the tumor

vasculature morphology. Moreover, the analysis must account of the fact that tu-

mor blood vessel networks emerge from, and are connected to the normal, arterio-

venous, vasculature of the host.

In this chapter we review the current state of mathematical modeling and sim-

ulation of vascularized tumor growth and discuss predictions made by our models

for vascular morphology, drug delivery and oxygenation. It is organized as follows:

The first section provides an overview of the physiological basics of vascularized

tumor growth. It follows a section on obstacles to treatment of cancer. In the subse-

quent model part we review our work and the related literature, comprising models

of vascular network formation, tumor growth, interstitial fluid flow, drug delivery

and oxygenation. Then we discuss the various predictions made, limitations of our
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models, and finally provide an outlook to future work. For further reading on our

work, see [11, 90, 165, 166, 168, 169, 167]

1.1 Physiological Basics

Normal vasculatures are organized in capillaries, small vessels by which most of the

solute exchange of nutrients and wastes with blood takes place, and in arterial and

venous trees, respectively. Capillaries are organized as homogeneously distributed

dense network, the capillary plexus. The walls of capillaries consist mostly of en-

dothelial cells (ECs). This network is supplied by arterial and drained by adjacent

arioles and venules, respectively. Arterioles and venules join into larger arteries and

veins which eventually join at the heart. Their walls recruit additional cells such as

pericytes and smooth muscle cells for reinforcement and control over their diam-

eter. This vascular organization thus minimizes the power required to drive blood

and to simultaneously maintain the volume of circulated blood [105]. Normally,

maintenance of the vasculature depends on a balance of pro-and antiangiogenic fac-

tors such as blood flow and metabolic demand, mediated by a complex biochemical

signaling network not yet fully understood. This system adapts the microvascular

density (MVD) to the nutrient demand of tissue and regulates development of blood

vessels into vascular trees. Components of this system have been studied (see below,

in the context of tumors), however the big picture is still elusive.

A solid tumor typically starts off as an avascular multicellular spheroid. It is ini-

tially formed, when cells undergo mutations disabling their regulatory circuits for

proliferation and apoptosis (programmed cell death) allowing them to divide an in-

finite number of times. After an initial phase of exponential growth, the radius of a

spheroid in nutrient solution continues to grow linearly [20, 39] since proliferation

of tumor cells (TCs) is restricted to a few cell layers behind the tumor-tissue inter-

face. Vascularized tumors also show a linear growth regime [38, 66]. TCs beyond

an annular outer shell enter a quiescent state due to nutrient and space restrictions

or die off (necrosis). Thus a necrotic core develops, and an equilibrium between

proliferation and death is established, limiting the size of the spheroid to approx-

imately 1 mm3. We consider only oxygen as representative of nutrients, which is

a common simplification in mathematical models, although tumor metabolism de-

pends on other nutrients and waste products as well. Notably, TCs can switch to

a glucose-based metabolism, allowing them to survive hypoxic conditions. Not all

tumors start as avascular spheres though. Some types, e.g. glioma brain tumors and

breast tumors, incorporate (coopt) the blood vessel network of the host at the begin-

ning of growth [67, 122]. In this process, TCs preferably proliferate around blood

vessels, apparently while displacing or destroying cells of normal tissue [37]. The

ability to metastasize may develop at a later point in time.

Oxygen in tissue has a high diffusion coefficient of ca. 2mm2/s, but it is also

bound and consumed which leads to an approximately exponential decrease of the

concentration around blood vessels. The range up to which the concentration de-



4 Michael Welter and Heiko Rieger

creases to zero is typically 100 µm in tumors [25]. In normal tissues it lies between

50 µm (brain) and 150 µm (breast). This diffusion range is thus a major determin-

ing factor of the mean intercapillary distance required for adequate oxygen supply.

Neither normal cells nor TCs remain viable beyond it. Normal cells as well as tumor

cells can respond to hypoxia by releasing chemical compounds known as growth-

factors (GFs) which are essential mediator molecules of angiogenic signals. VEGF

is a well-known major player [25, 101, 26, 94] but there are many more with various

function. They diffuse through tissue where they bind to receptors at blood vessels

and collectively they loosen the cell layers of vascular walls, and stimulate ECs

to proliferate and to migrate away from their parent vessel. ECs follow GF gradi-

ents to the source of GF (chemotaxis) trailed by more ECs that form a new sprout

[108, 49, 143]. This process is known as angiogenesis. If the tip encounters another

vessel it will fuse with it and mature into a perfused capillary. Otherwise the sprout

retracts after some time.

Fig. 2 Histological sections of rat glioma brain tumors: (A-C) depict the progression of a
tumor (viable tumor cells stained red; endothelial cells stained black; scale bar = 1 mm). Small
1-week tumors exhibit normal appearing blood vessels. After two weeks, decreased density and
vaso-dilation are visible. In 4-week tumors, vessels are mostly isolated and have cuffs of viable
tumor cells around them. Distal regions are necrotic. The tumor rim is densely vascularized. (D-G)
depicts regression of a blood vessel with detachment of pericytes and smooth muscle cells (black)
from the vessel wall (brown). (Scale bar = 50 µm; Reprinted from [67] with permission. Copyright
2005 American Association for the Advancement of Science)
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Hence, a hypoxic tumor spheroid might develop a phenotype that enables pro-

angiogenic signaling by GFs in an effort to improve its oxygen supply. Like diffu-

sion of oxygen, the angiogenic signal has a finite range. The area where neovascular-

ization is visible in glioma [66] and melanoma [38] is restricted to a 200 µm annular

shell around the invasive edge. However, in microscopy images of mammary carci-

noma in mice, increased branching and dilation is observed up to ca. 1 mm from the

edge [10, Fig.1]. Neovasculature as well as preexisting vessels are coopted when the

tumor grows past them. For unknown reasons, tumor vascular network formation is

not properly controlled. As a result, dense chaotic vascular excrescence develops

(s. Fig. 1B), that is very unlike a well ordered normal capillary bed (s. Fig. 1A).

The additional vessel may provide nutrients required for growth. However, they are

often dysfunctional, in some cases even hindering growth [130].

A few 100 µm into the tumor interior, angiogenesis stops and endothelial cells

a switch to circumferential growth leading to vaso-dilation. Tumor vessels of

Melanoma and Glioma tend to dilate to a maximum radius of ca. 25 µm but no

further. Moreover, many vessels undergo a process of regression, until eventual col-

lapse of the lumen and pinch off of blood flow [38, 67] (s. Fig. 2). GFs produced in

the tumor interior are partially responsible for the concomitant detachment of sup-

porting cells from the vascular tube, but they also promote ECs survival. Another

crucial factor for survival is blood flow, where Angiopoietins (Ang-1/2) among oth-

ers act as regulatory molecules [53, 21]. They are expressed by ECs in reaction to

the shear stress which is exerted by the blood flow on the vessel wall [7]. Ang-2,

a negative regulator of angiogenesis, promoting regression, is frequently overex-

pressed in tumors [67]. ECs apparently switch from angiogenesis to circumferential

growth depending on the sensed direction of the GF concentration gradient [143],

which is by the ephB4 guidance molecule [43].

Only few dilated vessels survive this thinning process, leading to a very sparse

network of isolated vessels. Viable TCs remain as cuffs around these vessels. Be-

yond the diffusion range of oxygen, TCs die of hypoxia, whereupon large necrotic

regions emerge in the tumor interior. Thus, a normal blood vessel network is pro-

gressively transformed into a tumor specific vasculature by the angiogenic activity

that is mostly confined to an area around the tumor edge. The result is a compart-

mentalization into a ca. 200 µm wide band around the periphery where the MVD

is elevated to ca. 1.5 times the baseline normal tissue MVD. The MVD decreases

sharply into the tumor interior to approximately half of the MVD of normal tissue

[66, 38] (s. Fig. 3).

Normally, only a small amount of blood plasma leaks from blood vessels through

nanometer sized gaps between ECs whereupon it becomes part of the interstitial

fluid (IF). IF is absorbed into lymphatic channels which eventually feed the liq-

uid back into the blood stream. Leakiness of tumor vessels is caused by huge gaps

present in their walls due to missing ECs [25] leaving holes of the size of microme-

ters. The permeability of the vessel walls therefore increased by two orders of mag-

nitude [83]. Moreover, tumors often lack functional lymphatic vessels, although they

can induce lymphangiogenesis similar to regular angiogenesis and can metastasize

through lymphatics in the tumor periphery [153]. The lack of lymphatics as well
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Fig. 3 Experimental morphological data of human melanoma in mouse models: The vessel
network development was followed during tumor growth from an intradermal inoculation of 104

tumor cells until the tumor reached 4− 5 mm in diameter. At day 10, tumor growth transitions
to a linear regime, consistent the confinement of proliferative activity to an annular shell behind
the invasive edge (a). (b-d) display data for different regions: Tumor center; the tumor periphery
- a 100 µm wide band of tumor immediately adjacent to the invasive edge; peritumoral tissue
- a 200 µm wide band of host connective tissue immediately adjacent to the tumor periphery.
After 15 days, MVD (b) and Vessel perimeters (c) assume plateau values. Vessels are generally
abnormally dilated, and the MVD is high near the invasive edge whereas it stays low in the tumor
center. The tumor coopts the dense peripheral vasculature and subsequently dilutes it. Thus the
activity of vascular remodeling moves with the invasive edge. EC labeling index (d) is essentially
the percentage of proliferating endothelial cells (ECs), i.e. the plot indicates angiogenic activity all
across the tumor and beyond. (Reprinted from [38] with permission. Copyright 2002 John Wiley
& Sons, Ltd)

as vascular hyper-permeability lead to the phenomenon of elevated interstitial fluid

pressure (IFP), an elevation of the hydrostatic pressure of the IF which approaches

the level of blood pressure [152]. The IFP in the tumor interior is relatively homo-

geneous at levels between 10−40 mmHg. Across the tumor boundary it drops down

to the level of normal tissue where the IFP is zero in good approximation. The in-

terstitial fluid flows through tissue like water or oil flows through a porous medium,

e.g. through rock. In tissues, cells and ECM assume the role of the medium. Conse-

quently, IF flows predominantly in radial direction out of the tumor spheroid. Peak

velocities between 0.1 to 0.2 µm/s were measured near the boundary of a 1 cm

sized tumor [73]. Elsewhere, velocities are much lower due to shallower IFP gradi-

ents. This may drive TCs into the surrounding lymphatics and wash out drug from

the tumor.



Computer Simulations of the Tumor Vasculature 7

1.2 Obstacles to cancer treatment

This section reviews biophysically relevant obstacles to treatment most of which are

founded in the peculiarities of tumor blood vessel networks. Current cancer-killing

drugs have poor selectivity, i.e. they are toxic to normal cells, too. Therefore, it

is not possible to simply increase the dose to compensate for inadequacies of the

vasculature [102].

Since tumor vasculatures are heterogeneous, one can find areas in tumors, so

called hot-spots, where the MVD is locally increased. The MVD at hot-spots is

used as indicator for malignancy and tumor progression with varying success [38].

Therefore a solid understanding of the interactions between vascular network for-

mation and growth dynamics of the tumor spheroid is required.

The reasons for poor drug delivery are manifold. In addition to premature release

and washout due to excessive extravasation, the vasculature is sparse in large areas

of the tumor and therefore the efficacy of drugs depends on the ability to penetrate

tissue well. However penetration is often poor, instead, strong drug concentration

gradients emerge around blood vessels, and persist over long periods of time [121].

Vascular normalization strategies can help [80], but other approaches should be con-

sidered, too, such as alteration of tissue permeability.

The discovery of tumor induced angiogenesis [45], and VEGF, sparked the de-

velopment of a new type of treatment in which the vasculature is targeted with an-

giogenesis suppressing agents to deprive the tumor of nutrients. This is a so-called

anti-angiogenic therapy, today often used concomitantly to other measures, such as

chemotherapy. Vascular normalization is a more recent concept, where a balance

between excessive pruning and a reduction of angiogenic activity is to be effectu-

ated in order to reduce leakiness and thus improve blood flow [78]. However the

underlying mechanisms are still poorly understood. What works for one kind of tu-

mor can have an adverse effect in another type of tumor [102]. Relief of mechanical

stress on blood vessels is now also seen as therapeutic opportunity [79] to improve

blood flow.

Moreover, the success of ordinary chemo and radiation therapy is tied to the oxy-

genation status of the tumor. For instance, some chemotherapeutics work poorly

in oxygen deprived environments due the chemical reactions involved. Other drugs

can only kill cycling (proliferating) cells and are therefore unefficative against tumor

cells (TCs) which are quiescent. Hypoxic TCs are also resistant to radiation therapy

since oxygen is required so that ionizing radiation can produce DNA damaging com-

pounds [85]. Hypoxia also promotes invasive growth, i.e. the tendency and ability

of TCs to migrate increases [113]. Hence, hypoxia is generally associated with poor

prognosis [19, 63].

It is possible to obtain important tumor characteristic data such as perfusion,

blood volume and hypoxia status from patients using positron emission tomography

(PET) and other imaging methods. However the interpretation of raw sensor data

requires theoretical models. Moreover the resolution of current methods is limited

to a voxel size of ca. 1 mm3. On the other hand, microscopic information are hardly

accessible experimentally. Direct measurements by invasive probes are limited to
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small sample sizes and may be afflicted with systematic errors [159]. Interstitial

fluid flow velocities are measured by invasive microscopy [76], not applicable to

humans. Concentration distributions of drugs were measured by microscopy of dis-

sected tumorous tissue [121], exploiting auto-fluorescence. In this regard theoretical

models and computer simulation can provide insight into the tumor micro environ-

ment in order to foster the understanding of macroscopic phenomena and therapy

failures.

2 Theoretical Models

This section reviews basic theory and modeling approaches of mathematical models

of tumor growth and its microenvironment. See also the Refs. [158, 95, 134, 124]

for reviews of recent work.

2.1 The bulk of tissue

There are two approaches to describe tissues. In continuum mechanics conserva-

tion equations are formulated for mass, momentum and sometimes energy, and on

the other hand, in particle methods, particles represent either cells or macroscopic

sections of tissue and move according to Newtons equations of motion. Fluids and

deformable bodies are described in this way, too. But for living tissues, addition

and removal of mass and momentum due to growth and death needs to be taken

into account. The simplest form of mass conservation to satisfy this is the partial

differential equation (PDE)

dρ

dt
=−ρ∇u+α , (1)

where ρ = ρ(x, t) is the density depending on space and time, dρ/dt is total deriva-

tive in time which can be expanded into dρ/dt = ∂ρ/∂ t + u∇ρ , ∇ is the Nabla

operator, u is the local velocity, and α embodies local sources and drains. The gen-

eral form of momentum equations is

d(ρu)

dt
= ∇ ·σ + f , (2)

where σ is the Cauchy stress tensor and f is the total body force, accounting for

gravity for instance. In reality, biological tissues are highly complex materials [162,

see the review]. On short time scales, they show elastic behavior which is usually

neglected in models of tumor growth. On long time scales, i.e. days, residual stresses

are relaxed by rearrangement of ECM fibers and cell adhesion molecules, leading to

viscous behavior. Moreover, cells show active responses to stimuli, e.g. migratory
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behavior. In practice, growing tumors are therefore often modeled like (viscous) liq-

uids, including an isotropic (solid) pressure, friction, and adhesion forces. Inertial

forces can be neglected since tissue growth and cell migration happens at very low

Reynolds numbers (Re ≪ 1). Conservation of energy is mostly not considered, as-

suming a homogeneous constant temperature. The growth of multicellular spheroids

[4, 8, 3, 32, 163] and tumors in general [178, 151, 117] was described using contin-

uum models of a single homogeneous material.

Current state of the art are multi-phase or mixture models where mass, momen-

tum and stress are given as summations over contributions from cells of different

types, ECM and water. These phases coexist in space, so that each phase occupies

a fraction of the unit volume, given as volume fraction φi of phase i. The motion

of the cell population is often modeled analogous to fluid flow through a porous

medium, where the ECM takes the role of the medium. The “flow” thus represents

migratory motion in response to solid pressure. Depending on the choice of compo-

nents and their stress tensors, mixture models describe various growth phenomena,

and found numerous applications to study avascular [22, 96, 5, 171, 32, 135] and

vascular tumor growth [18, 29, 148, 97, 70]. Cell-cell adhesion may be modeled

by an effective surface tension forces, following [17], allowing the study of growth

induced morphological instabilities of the interface between cell populations.

In [169] we introduced a continuum model of the tumor spheroid, closely fol-

lowing [117] and the refs. therein. In principle, a common volume fraction φ and

a common migration velocity vφ is defined for TCs and normal tissue cells. The

interface between TCs and normal cells is defined via an auxiliary function, using

the Level Set method [139]. Thus the interface is defined as 0-level of the auxiliary

function providing the closest distance from the interface within some proximity of

the interface. In real tissues, cell-cell adhesion causes a certain degree of smooth-

ness of the tissue interfaces. This has been neglected, but still our model predicts

approximately spherical growth under the assumption of equal motilities of TCs and

normal cells. The basic mechanism of tumor expansion of this model is based on an

increased tolerance to solid pressure of tumor cells, leading to proliferation whereas

proliferation of nearby normal cells is inhibited, eventually leading to apoptosis.

In particle based models, matter is described from the frame of reference that

is anchored to a point on a material. In actual computations, a material such as a

fluid, is divided into thousands to millions of pieces, represented by particles that

move and interact with each other. In biological applications, the particle count is

not conserved in general. Instead particles are allowed to replicate or vanish to re-

flect growth and regression of real tissues. In microscopic systems, particles can be

conveniently identified with individual cells. Their time dynamics can be described

simply by Newtons equation of motion for each particle as in molecular dynamics

simulations, i.e.

∂mivi

∂ t
= Fi(x0, . . . ,xN , . . .),

where mi, vi, xi denote the mass, velocity and position of the i-th particle, and Fi

denotes the force on the particle depending on the current state of the system. These
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equations must be solved numerically in a discrete time-stepping scheme. In be-

tween time steps, an extra step can be added to account for proliferation and death

of particles. Continuous space particle models were used to study the growth dy-

namics of multicellular spheroids [125, 39] and of tissues that are in competition

with each other [12]. The dynamics can also be described by stochastic processes

and be simulated by Monte-Carlo methods (see below).

In cellular automata models, particles are confined to sites on a lattice. Particles

may be able to hop or proliferate to neighboring sites. Due to its simplicity this

is a popular approach to study tumor growth [2, 11, 16, 90, 164, 111, 42, 41] and

angiogenesis [6, 112, 164, 115]. In the latter case, particles represent pipe segments

of a network. It is however more adequate to think of the network as a dynamically

changing graph as in mathematical graph theory. The space-time dynamics can be

determined by deterministic rules which are applied once per discrete time step, or

by stochastic processes, or a mix of both. A stochastic process is formally described

by the Master Equation for the rate of change of the probability Pk to find the system

in state k = 1..n

dPk

dt
= ∑

l

AklPl .

The matrix Akl contains the transition rates according to which the system transitions

from state l to k with probability Akldt.

Bartha and Rieger proposed a simple particle model of individual TCs [11].

Therein, lattice sites are identified with the potential location of one and only one

TC, assuming that TCs cannot move but proliferate to neighboring sites. Given a

small initial tumor nucleus, proliferation is consequently confined to the tumor rim,

yielding linear growth dynamics of tumor spheroids. Moreover, TCs can be flagged

as dead in case that the oxygen concentration becomes too low. Dead TC occupy

lattice sites, prohibiting proliferation thereto, but are otherwise inert. Thus the size

and spatial distribution of necrotic regions can be analyzed. This model is simple

but in conjunction with a model of tumor vascular remodeling it is sufficient to

predict realistic morphologies of tumor vasculatures [90, 165, 166]. However, the

representation of individual cells in three dimensions at macroscopic system sizes

is computationally costly. Therefore coarser grained models are better suited there.

2.2 Solutes in the bulk of tissue

The simplest general partial differential equation to describe the transport of the

concentration c(x, t) of one species is the diffusion-advection-reaction equation

∂c

∂ t
+∇ · (cu) = ∇ · (D∇c)+R, (3)
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where the substance diffuses with diffusion constant D and is carried with the flow

of the solute with velocity u. The reaction term R can comprise sources and drains,

e.g. vessels are sources of oxygen whereas binding and consumption may be rep-

resented by a homogeneous drain distribution. In multi-components system, each

component i is associated with the concentration ci each of which is governed by

an equation of type (3) [117]. Then R (or rather Ri) also comprise transition rates

between compartments. This way, drug binding to different intracellular compart-

ments was described in simulations of drug concentrations in tumors [141]. The

advection term in calculations of oxygen distributions is usually neglected since

oxygen transport is dominated by diffusion due to its low molecular weight. More-

over, it is sufficient to consider quasi stationary distributions where ∂c/∂ t = 0 since

equilibration times are much shorter than growth processes in tissues [11]. Thus we

obtain

0 = D∇2c+R, (4)

assuming equal concentration c in all compartments and a constant oxygen diffusion

coefficient D.

Balance equations like (2, 2, 3) can only be solved analytically in special cases.

Often solutions are calculated numerically with the help of finite difference (FD)

[93] or finite element methods (FEM) or some variation thereof. FEM have the

advantage that they can be applied straight forwardly to unstructured meshes and

therefore work well for arbitrary domain shapes. However, FD methods are easier

to implement for regular grids, making them well suited for problems where the

expansion of a tumor within a rectangular domain is considered. The application of

difference operators leads to systems of linear or non-linear equations in the solu-

tion values at grid points. The obtained system matrices are usually sparse, for which

many specialized tools are available including direct factorization, fast Fourier trans-

formation, multi-grid, and iterative preconditioned Krylov subspace methods.

2.3 Normal blood vessel networks

A model for tumor vascularization must start with the blood vessel network of the

healthy tissue surrounding the tumor, since, during growth, the tumor coopts the ex-

isting tissue vasculature and generates new vessels via angiogenesis. In early mod-

els of angiogenesis, the initial network consisted only of a single parent vessel [6].

These models adequately describe angiogenesis in the rabbit eye model [51]. Essen-

tially, a small tumor on the cornea of the rabbit eye stimulates vascular sprouting in

a few large parent vessels from up to 1 mm away. These sprouts branch excessively

and form a dense capillary mesh between the tumor and the parent vessels. Sim-

ilar configurations were considered in later theoretical work [146, 145, 173, 172].

However, in reality, the bulk of tissue is interspersed with vessels which may be

coopted by the tumor. Therefore, recent works consider a capillary plexus, often
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represented by a network of segments which are arranged in a regular pattern,

e.g. as square or hexagonal grid, omitting supplying arteries and draining veins

[2, 23, 111, 164, 16, 11, 90, 174, 173]. Blood flow is computed assuming a fixed

blood pressure at boundaries of the simulation box. In [165] a honeycomb pattern is

used in place of a square pattern [11] allowing for more realistic branching angles.

Other authors use random arrangements of lines [50] or voronoi cells as basis for

vascular networks [128].

Only a few attempts have been made to incorporate physiologically relevant

arterio-venous vessel networks. First works focused on algorithmic construction of

arterial trees branch by branch [132, 133]. At each step, the existing tree is first

geometrically scaled to increase in dimension. This increases the distance between

vessels, implying that tissue oxygenation would worsen each step. However a new

segment is added according to some optimality criterion in order to supply the voxel

in space that is most in need of oxygen. Thus, oxygenation stays approximately con-

stant. This process is repeated until the desired size is reached.

Later, Gödde and Kurz [52] developed a relatively simple lattice based growth

model comprising the entire vasculature including arteries, capillaries and veins.

Therefore, such an arterio-venous vasculature construction model was implemented

for the study of tumor growth [166]. In the following we sketch the construction

principle (s. Fig. 4): first arterial and venous trees are simultaneously grown by suc-

cessive attachment of bifurcations at randomly selected tree tips. A bifurcation is

simply a Y-shaped arrangement of three segments as depicted in Fig. 4h. Lattice

sites and bonds can only be occupied once, thus growth terminates eventually when

no further free sites are available. Thus the space is divided into areas with only arte-

rial and only venous vessels, respectively (s. Fig. 4b). Proper interdigitating trees are

obtained by the second stage of the algorithm where vascular trees are remodeled,

allowing well perfused branches to expand and weakly perfused branches to regress

(s. Fig. 4c–e). To this end, each remodeling sweep is preceded with determination

of vascular radii, addition of temporary connecting segments (capillaries), and com-

putation of blood flow rates and shear stress f . Capillaries are removed again before

the vascular trees are altered, however, they are added again for the final output. An

overview of our implementation is given below.
As input, the locations of tree roots and their type, i.e. arterial or venous, are given

and mark the starting sites for growth (s. Fig. 4,a). In previous work their selection
was arbitrary, i.e. we considered a wide range of configurations using single pairs of
nodes, two pairs [166], or occupation of entire side faces of the cuboid simulation
domain [169]. In pseudo code, the first stage of random growth reads as follows

nodes = rootNodes // a list

while nodes not empty:

nd = RemoveRandomItem(nodes) // return removed item

newNodes = TryAppendBifurcation(nd)

// return list of nodes; may be empty

nodes += newNodes // append

TryAppendBifurcation probes orientations along the axes of the lattice, taking
already occupied sites into account, and picks an admissible configuration randomly
if there are any, adding it to the network. The loop terminates when no more space is
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Fig. 4 Arterio-venous blood vessel network synthesis: (a) The configuration after two steps of
the first growth stage. The initial state comprised only two nodes (*). On each side, arterial (red)
and venous (blue), three tripods, as the one depicted in (h), were added, creating four tip nodes,
respectively. Vessel segments occupy lattice bonds as shown in (f) as red and blue bars and a lattice
in the background. (b) Both trees were expanded by successive addition of tripods to tip nodes.
Eventually, exclusion of occupied sites prevents further additions. This situation is also depicted in
small in (f). (c) At each iteration of the second stage, capillary interconnections (green) are inserted
where arterial and venous side are separated by only one lattice bond. Then radii are determined
and blood flow is computed, arriving at a configuration as depicted in (c). Uncirculated branches
(dark grey) emerge where no connections are made. (d) The state after 40 iterations, where weakly,
or uncirculated branches cleared space for growth of other branches. (e) The result after 1000
iterations. (g) Stacking order of FCC lattices for the extension to three dimensions. The layers A,
B, and C consist of triangular lattices as depicted in (f) which are shifted against each other. Vessel
radii in panels (a–e) are magnified by a factor of four. In panels (c–e) vessels are color coded by
blood pressure (except capillaries).

available, i.e. the list sites is empty. Such as state is depicted in Fig. 4b. The second
stage is more involved due to the dependence on blood flow. Hence, we define

function CapillariesRadiiAndBloodflow():

ComputeRadii()

AddCapillaries()

ComputeFlow()

The function ComputeRadii traverses each vascular tree in a simple depth first
traversal and determines the radius of each segment starting from tree tips up to root
nodes. Murray’s law is utilized to determine the radius of a parent branch rp when
the radii of child branches rc,1,rc,2 are known, which states that rα

p = rα
c,1+rα

c,2, with
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an exponent α between 2.7 and 3 depending on the tissue. The radii of the arterial
and venous tree tips are all equal, respectively. Each of the two is an input parameter.
The function AddCapillaries loops over all nodes of the network, and attempts find
neighbors of opposing type (arterial or venous), to which, if admissible, a capillary
segment is added. This is carried out again under the exclusion of overlap with other
segments. Moreover, i) in general, at any point, at most three segments are allowed
to join at a node. Potential additions of capillaries violating this rule are rejected. ii)
We found it useful for promotion of growth to allow capillaries between vessels of
a radius up to a limit of 5 to 20 µm, rather than creating only tip-to-tip connections
as done in Ref. [52]. ComputeFlow computes blood pressure, flow rates, and shear
stress f associated with nodes and vessels as discussed in Sec. 2.5 (see below). The
main loop of the second stage of the algorithm is as follows

for iter = 0 to maxIter:

CapillariesRadiiAndBloodflow()

RemoveCapillaries()

event = dictionary() // map nodes to events

for each Node nd in network:

event[nd] = DetermineRemodelingEvent() // does the work

for each Node nd in network: // in random order

if events[nd] == REGRESSION:

Remove(nd)

else if events[nd] == GROWTH:

added = TryAppendBifurcation(nd)

if not added: // space is occupied

TryAppendSingleSegment(nd)

// prepare final output

CapillariesRadiiAndBloodflow()

Segments marked as capillaries have to be removed again, which is carried out by

RemoveCapillaries. The function DetermineRemodelingEvent determines whether

a node is marked for REGRESSION, GROWTH, or for another event denoted NONE,

indicating no change. Remove(nd) also removes adjacent vessel segments. However,

since only tree tips are allowed to regress there is only one such segment. Moreover,

we found the attempt to insert a single segment to help with grow into crowded

spaces. Hence TryAppendSingleSegment acts analogous to TryAppendBifurcation

but adds just a single segment.

The following definition of DetermineRemodelingEvent is to some degree arbi-

trary. However the essential mechanism is growth of perfused branches while others

regress. First, let pG, pR, and pN be probabilities for growth, regression and no

change. We define them differently for nodes that are perfused (q > 0 in at least one

adjacent segment) on the one hand, and nodes that are unperfused on the other hand

(q = 0 for all adjacent segments). For unperfused nodes we simply define

pG = pG,x (5)

pR = 1− pG,x (6)

pN = 0, (7)

where pG,x determines the rate of regression and is chosen less then 1/2 to obtain

pG < pR. Fig. 4e was obtained with pG,x = 0.4. Thus unperfused nodes may clear
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space for growing branches. To define probabilities for circulated branches, let fmax

be the maximal shear stress taken over all segments, and f be the shear stress av-

erage of segments at the considered node. Hence we define the growth “signal”

fsig = f/( f +ε1 fmax), where ε1 ≪ 1 is small number. Taking ε1 = 10−2 one obtains

a rapidly increasing function in f which approaches nearly one (0.99 for ε1 = 10−2)

for f = fmax (see below). The probabilities are defined using fsig as follows

pG = f
β
sig (8)

pR = (1− fsig)
β (9)

pN = 1− pG − pR, (10)

where β is an exponent larger or equal to one. As a result the growth probability pG

never assumes the value one, which is useful in two-dimensional cases where very

well perfused vessels would otherwise form bottlenecks. Moreover taking β > 1

stabilizes moderately perfused vessels, for which then pN > 0 is obtained. One of the

corresponding events is preliminarily picked using tower sampling. However certain

conditions need to be fulfilled to be admissible. To grow, a node has to have less than

three adjacent segment. To regress, the node has to be a tip node, having only one

attached segment. If any of these conditions is not fulfilled, NONE is assigned to the

node.

Finally we want to add some remarks. First, by setting appropriate values for the

lattice constant and capillary radii, the MVD and vascular volume rBV of generated

networks can be adjusted. Secondly, in two dimensions large areas may be left void,

depending on selection of root nodes. Such cases were rejected in Ref. [166].

Moreover we found it helpful to vary pG,x ≤ 1/2 in proportion to the local con-

centration of growth factors. A corresponding distribution may be incorporated into

the model for instance adopting the simplified model in Ref. [11]. This model vari-

ant has the advantage that it does not require manual tuning of pG,x. Biologically it

is justified since vascular sprouts grown by angiogenic signaling via growth factors

are also initially not perfused. In the model, unperfused vessels that remain from

the first stage of the algorithm, can guide growing branches into a proper tree-like

morphology when contact is made with perfused branches.

The extension to FCC lattices seems over complicated, but FCC lattices can be

represented by layers of two-dimensional triangular lattices which are offset from

each other according to the well known-stacking order ABCABC. . . (s. Fig. 4g). We

actually organize sites as sites of a three-dimensional cubic lattice that is spatially

distorted to coincide with the conceptual FCC lattice. Neighbors of a given site

must correspond to the FCC lattice. Therefore, exploiting translational symmetry,

we store precomputed neighbor lists, for a total of six of exemplary sites. Gener-

ation of arterio-venous initial networks was carried out again using Y-junctions as

structural elements of growth, following the original proposal [52]. Additional ro-

tational degrees of freedom simply add to the number of probed configurations of

which one admissible is picked for addition to the network.
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2.4 Tumor vascular remodeling

Bartha and Rieger [11] originally considered a model of tumor vascularization in-

cluding the processes angiogenesis, cooption, vessel dilatation, regression and col-

lapse (s. Fig. 5a). Its basic ingredients are as follows: Vessel segments representing

a vascular network, mathematically described as a graph, occupy bonds on a lattice.

Junctions (nodes) coincide with sites of the lattice. Various properties are associ-

ated with vessels and nodes, such as blood pressure p, radius r, blood flow rates q,

and shear stress exerted by the blood flow on vessel walls f . Furthermore, there is

a concentration distribution of VEGF representative of all GFs, as well as a tissue

oxygen concentration distribution. The system state at t = 0 comprises an initial net-

work as described above, and small tumor spheroid in the center of the system. The

growth of the spheroid depends on the local oxygen concentration, allowing cell

proliferation if the concentration is sufficiently high. If the oxygen concentration

drops to hypoxic levels then GFs are locally produced and diffuse into tissue. Dif-

fusion through tissue can be modeled by reaction-diffusion equations (4), however

simplified models were used [11].

The spatio-temporal evolution of the network is determined by stochastic and

continuous processes, reflecting sprouting angiogenesis, vessel dilation, collapse,

and regression, respectively (s. Fig. 5b–f). In practice, time is advanced in discrete

steps of length ∆ t = 1 h, and these processes are defined approximately as simple

local updating rules:

Angiogenesis: A new segment is added with non-zero probability, connecting the

current site x and a distant site x′ under the following conditions: Both sites are

occupied by circulated vessels, the GF concentration at x is sufficiently high, the

distance of x to other branching points is at least d(br,min), the distance |x− x′|
is small enough, and no site on the path is occupied by TCs. These conditions

reflect lateral inhibition of sprouting (for a modeling approach see [15]), finite

growth length of sprouts [108], and the switch to circumferential growth within

tumors [43].

Dilation: There is a non-zero probability that the radius r of of a vessel segment

is increased by the amount corresponding to the addition of 10 µm (diameter

of an EC) to its circumference, under the following conditions: the local GF

concentration is sufficiently high, the segment is located within the tumor, and r is

smaller than the upper limit r(max). The latter condition accounts for observations

in real tumors [38, 66], however the mechanism that limits dilation is unknown.

It should be emphasized that this process is particular important for blood flow

characteristics within the tumor since the blood flow varies with the fourth power

of the radius and only modest vessel radius increase by a factor of 2 or 3 has leads

to an extreme increase in blood flow.

Collapse: A vessel segment surrounded by TCs has a non-zero probability to be

removed if the wall shear stress f is less than the threshold fcrit . This process

reflects the dependence of vessel survival and maturation on blood flow [67].
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Fig. 5 Model of tumor vascular network remodeling: Following [11, 166], tumor and vascular
network interact via concentration distributions of growthfactors (GF) and oxygen (O2), where
tumor cells are sources of GF and the vascular network is the source of O2 (a). Blood flow is
computed after alterations of the vascular network to reflect the changes in blood pressure, flow
rates and shear stresses. Tumor cells can proliferate in response to a sufficient O2 supply, and
will die to O2 deprivation. The dynamical processes of network remodeling are illustrated in (b-
f), showing the state of vessel segments (red bars) before (left) and after (right) the respective
transition. Preconditions are indicated above the center arrows, and transition probabilities are
denoted below, respectively. Panel (b) depicts the start of a new sprout (shaded). A preexisting
segment is split at the branching point. The path length on the network to the next branching point
dbr must be larger than the lower limit d(br,min). Moreover, a sufficient GF concentration cg must be
present and sprouting is not allowed within the tumor mass (yellow). The new segment is initialized
with an associated life-time of τ = 1. Panel (c) depicts the further extension of the sprout from (b).
Additional segments inherit τ from the parent segment. Moreover τ is incremented, globally, for all
sprouts once per time step. Panel (d) depicts the degradation of vessel walls (black). The variable w

represents the strength of the vessel wall, depicted as varying thickness. It decreases continuously
according to the rate ∆w, resulting in a value of w′ at the next time step. In (e) an unstable vessel
(*) is removed, representing occlusion of blood flow and complete disintegration. Such event is
assumed to happen only to vessels with maximally degenerate walls, w = 0 and low wall shear-
stresses f , where f < f (coll). The emerging dead ends (shaded bars) trivially have f < f (coll), and
therefore collapse rapidly, resulting in a long ranged effect. (f) depicts the dilation of tumor vessels.
Their radii increases at a rate that is given by the area added to the lumen surface assuming division

of endothelial cells of the wall every t
(prol)
EC hours.
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Regression: An uncirculated vessel segment has a non-zero probability to be re-

moved if the oxygen concentration is less than a threshold, reflecting complete

disintegration of unperfused sections of the vasculature.

One time step comprises the application of these rules at all sites occupied by the

network and subsequent recomputation of blood flow, oxygen distribution, and time

propagation of other model components such as the tumor spheroid. The probabil-

ities are given as fractions ∆ t/τproc of the time step ∆ t and process specific time

constants τproc, requiring ∆ t < τproc.

In [11] the network was represented by sequences of 10 µm wide pieces, repre-

senting endothelial cells that occupy lattice sites. However, it is much more com-

putationally efficient to associate vessel segments with a series of lattice bonds and

allow for segments longer than a single bond. However we still use a basic lattice

constant h(tum) of 10 µm, to allow for a sufficiently high resolution of the tumor

neovascular plexus. To conserve memory we store pointers to segments in a hash

table [156] using a pair of sites indices as key. The lattice constant h(gen) of the ini-

tial network synthesis model corresponds is normally larger than h(tum). This is well

defined since for proper choice of h(gen), e.g. 100 µm, the location of initial vessels

coincides with bonds and sites of the finer h(tum) = 10 µm lattice.

In subsequent work [165] we considered a minor extension to the angiogenesis

process where sprouts grow over a period of time. Instead of creating a “bridge”

instantly, a sprout segment is added and extended with additional segments in sub-

sequent time steps until a timer tsp associated with the sprout runs out. This allows

for emulation of tip splitting by sprouting off of a growing sprout and fusion of

sprouting branches [165].

To make the model applicable to arterio-venous initial networks, we incorporated

a stability variable w associated with segments [166], reflecting the wall strength of

vessels, allowing for thick vessels to be more resistant to collapse. The wall strength,

w, is continuously decreased at rate ∆w until zero, and only then a segment is al-

lowed to collapse (be deleted). Fig. 6 shows snapshots of the time evolution of the

remodeling process of the tumor vasculature as predicted by the model described

here.

2.5 Computation of blood flow and hematocrit

Circulated vessel, i.e. vessels which are perfused at rates q > 0, can be determined

with the help of the biconnected component graph algorithm [68]. To robustly han-

dle general cases, including arterio-venous networks, we first make an ad hoc aug-

mentation to the network: all boundary (root) nodes are connected temporarily to

an extra node which is added. Then the set of perfused vessel is the biconnected

component that comprises all edges for which a loop, without repetition of nodes

or edges (simple cycle), exists which they are part of and which also runs through

the extra node (see also [156] chpt. 22). For partially remodeled square or other reg-
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Fig. 6 Simulated tumor growth and vascular remodeling: The image sequence shows the
temporal evolution of the vascular network and of the viable tumor mass (yellow). It is a three-
dimensional system, computed for [169], of which a 400 µm thick slice through the system origin
is shown. The tumor mass is cut in a slice only half as thick to show the vascular network in its
interior. Blood vessel are represented by cylinders, color coded by blood pressure (red: approxi-
mately 10 kPa, or 75 mmHg, blue: 0 mmHg). (a) At t = 0 h the simulation is initialized with a small
tumor nucleus in the center and a pre-generated vasculature of the host. The oxygen consumption
of tumor cells is elevated compared to normal tissue, leading to a drop of the tissue oxygen con-
centration, secretion of diffusing GF and stimulation of angiogenesis. (b) As a result, at t = 200,
the vascular density (MVD) has increased near the tumor rim. Unperfused segments (dark gray),
i.e. dead ends, are visible. Some of them are newly extending angiogenic sprouts. Others pertain to
vessel segment chains where one segment has been removed according to the vascular regression
and collapse process, pinching off blood flow. Angiogenesis, dilation and regression act mostly
near the expanding tumor-tissue interface, transforming the host vasculature into a typical com-
partmentalized tumor network. (c) A necrotic core emerges as a result of hypoxia and drastically
decreased vascular density. Since only viable areas are shown, the necrotic core appears as hollow
interior. (d) Isolated vessels emerge that have cuffs of viable tumor cells (TCs) around them. (Scale
bar: 1 mm)
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ular networks, the augmentation can be omitted, using any of the boundary nodes

instead.

Depending on the application, blood flow can be considered on various scales,

from computation of the velocity field on micrometer scale to bulk perfusion mea-

sured in ml blood ml tissue−1min−1 as obtained for instance by positron emission

tomography (PET). For pipe networks of tumors models, blood flow is approxi-

mated as ideal laminar flow, where the flow rates q define the blood volume through-

put per time through each pipe. Blood pressure, p, is associated with nodes. Thus, q

is determined by Poiseuille’s law

q =
πr4

8η

∆ p

l
, (11)

where r is the vessel radius, η the viscosity, l the length, and ∆ p denotes the blood

pressure difference between the ends of the segment. Conservation of mass requires

that the flow into a node equals the flow out of the node, analogous to Kirchoff’s

laws of electricity, i.e.

∑
i

qi = 0, (12)

where i indexes vessels adjacent to a given node under consideration. Together with

boundary conditions, a system of equations is obtained which is sparse and can be

solved with direct factorization or preconditioned conjugate gradient.

Blood contains red blood cell (RBC) causing non-Newtonian behavior, i.e. its

viscosity η(r,H) depends on the vessel radius r and on blood hematocrit H, where

hematocrit is the blood volume fraction of RBCs. The viscosity is commonly ex-

pressed by the decomposition into the product of the blood plasma viscosity ηplasma,

which is constant, and a correction factor, the relative viscosity ηrel(r,H). Pries

et. al[120] derived a well-known phenomenological formula for ηrel(r,H) which is

easy to incorporate. The distribution of hematocrit is sensitive to blood flow rates,

i.e., at bifurcations, RBCs tend to flow into the faster perfused vascular branch which

is the well-known phase separation effect. Pries and Secomb [118], developed a

phenomenological formula that describes this effect in dependence on flow rates

of the vessels at the bifurcation. This allows the computation of the hematocrit in

downstream branches. Under assumption of given flow rates, the hematocrit dis-

tribution can thus be propagated downstream through the network. By iteration, a

self-consistent solution for the hematocrit distribution and blood flow rates can be

computed [118], which is utilized in several works [2, 16, 111, 115, 165, 167].

However, as a first approximation, it may be sufficient to consider a constant

prescribed hematocrit as in [11, 168, 169]. This is justified because in spite of

a wide value range of the relative viscosity (ηrel(r = 25 µm,H = 0.15) ≈ 1.5,

ηrel(r = 5 µm,H = 0.6) = 8), the dependence of the flow resistance on on r4 plays

a much greater role.
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2.6 Time dependent intravascular tracer concentration

Rather than computing stationary concentration distributions, we are interested in

following an injected bolus of some substances during the transit through the vas-

cular network. For this purpose, Mc Dougall and Anderson [146] already adopted

a method from petrol engineering, originally developed to predict solute transport

through porous rock. It allows for computation of time dependent concentrations of

a tracer c associated with segments of a vascular networks. Essentially tracer flows

into nodes where it accumulates, amounting to mass m. From there it is distributed

downstream in proportion to the flow rates q of downstream vessels. This proce-

dure, akin to the upwind-differencing scheme for advection equations, is applied

repeatedly in time steps of length ∆ t. The amounts of substance from upstream ves-

sels, added into downstream nodes, is accordingly ∆m = cq∆ t. Thus, given a time

dependent inlet concentration cin(t), the method yields concentrations c(t) of each

vessel. Transvascular loss was not considered although the method would be straight

forward to extend to take this into account.

We applied the method to networks created by our tumor growth simulation for

regular [165, 168] and arterio-venous initial networks [166]. However, in our net-

work model, the assumption that network edges are of constant length, and short

compared to their radius is violated, leading to an amplified propagation velocity.

Therefore we track the position of the interface that separates clean blood from

tracer “contaminated” blood and moves with the velocity of blood flow. Similar

models were developed for the simulation of capillary rise in network models of

porous materials [1] and are widely used there, e.g. in [123].

2.7 Interstitial fluid pressure

Interstitial fluid flow (IFF) is modeled as liquid flowing through a porous medium

[81, 83, 173, 24, 174, 176, 137, 138], where tissue cells and the fibers of the ex-

tracellular matrix assume the role of the medium. Fluid and medium are described

in general within the framework of mixture theory with the help of distributions of

their local volume fraction and their velocity distributions. However, the medium is

often assumed rigid. The volume fraction of the liquid is identified with the porosity

ε which describes the amount of space available per unit volume within the medium.

This space is filled by definition with the liquid. Assuming rigidity and (quasi) sta-

tionary flow, the system is characterized by the spatial velocity field of the liquid,

v(x), where x is the space coordinate. The velocity v is determined by the gradient

of the IFP pi according to the well-known Darcy’s Law

v =−K∇pi, (13)

where the permeability constant K is the product of an intrinsic permeability con-

stant of the medium, the porosity and the inverse fluid viscosity. Usually, K is ob-
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tained directly from experimental data for a specific tissue type. Assuming incom-

pressibility and constant permeability, the mass conservation equation obtained is a

Poisson equation in pi:

∇ · v =−K∇2 pi = Q, (14)

where Q= Jv+Jl was added to represent sources and drains with contributions from

vessels, Jv, and lymphatics, Jl . We adopted this simple approach to determine IFP

and IFF in vascular networks of simulated tumors [169]. Some authors consider IFF

within a fully coupled mixture model, where v is the relative velocity between the

IF and a moving cell population [171]. Other authors incorporate IFF into models

of tumor growth and allow compression of blood vessels due to elevated IFP [174].

Penta and Ambrosi used data of a simulated microscopic volume [114] to predict

IFF in macroscopic systems. Zhao et. al[176] used imaging data of real tumors as

basis for simulations using a continuum model.

2.8 Transvascular fluid exchange

The net transvascular liquid flux Jv is driven predominantly by the difference of

blood to interstitial fluid pressure. This is expressed by Starling equation

Jv = LpS [pv − pi +σT (πv −πi)] , (15)

where Lp is the hydraulic permeability of vessel walls, S is the vascular surface area

within a given control volume, pv is the blood pressure, pi is the interstitial pressure,

σT is the average osmotic reflection coefficient and πv and πi are the osmotic pres-

sures of plasma and IF, respectively [81]. The osmotic term σT (πv −πi) represents

forces generated by dissolved substances and can be considered as a constant off-

set from pv at an experimentally determined value. This model of liquid exchange

is straight forward to apply if the vascular network is considered as homogeneous

phase [81].

Otherwise (14) may be taken as definition of a local source strength of a spatially

varying IFP distribution. This is facilitated by letting the vessel network occupy the

same lattice used for discretization of (14) as done in Refs. [173, 24, 174]. Then

each node of the vessel network j corresponds to a discretization site of (14), so

that the flux between them is directly proportional to (15) with suitable choice of S

corresponding to the surface area of vessels adjacent to node j. Using the standard

finite difference stencil for the Laplace operator in (14) one obtains a combined

system of equations, equivalent to Kirchhoff’s laws. The same strategy can be used

to simulate drug delivery [141, 138] and oxygenation [33, 86, 103, 142, 44]. We add

that drainage due to lymphatics Jl is in all of the literature known to us modeled as

continuous sink density analogous to (15).

More generally, vessels can be considered as line-like sources akin to the Dirac

δ distribution [69, 14], a concept which has been formulated mathematically rig-
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orously for the solution of elliptic equations with Dirac terms by finite element

methods [34] and applied to IFF [28]. We can thus replace (15) by the distribution

J(y) =
∫

Γ
Lp2πr(p̃v − pi)δ (x− y)dx (16)

where x, y are spatial coordinates on the network and in the bulk of tissue respec-

tively. Γ is the set of one-dimensional curves (or line segments) that describes the

vascular network, p̃v is the effective blood pressure including the osmosis terms,

and r is the vessel radius. The permeability Lp, blood pressure p̃v and radius r can

vary depending on the position on the network x.

The latter approach was taken by us to simulate IFF in simulated tumors grown

within synthetic arterio-venous vasculatures [169]. We took inspiration from im-

mersed boundary methods [116] and replaced the Dirac δ distribution with a

smoothed kernel δε of width ε > 0 to allow for resolution of the source distribution

J on a grid of finite cell size. Thus the source distribution of vessels is “smeared”

over nearby grid cells, very similar to the method used by [14].

2.9 Interstitial drug transport

Spatio-temporal distributions of macro-molecules were studied theoretically with

the help of homogeneous compartment models in spherical symmetry, incorporating

diffusion and interstitial fluid flow [13, 81]. In a similar way [176] albumin concen-

trations were simulated in a continuous but non-symmetrical tumorous tissue. In a

theoretical study of drug transport in tumors, [141] the discrete nature of blood ves-

sels was accounted for on the basis of a tumor grown in an square-patterned initial

network (t = 0).
We followed [141] in the development of a simple model of drug transport guided

by data for Doxorubicin, a common chemotherapy drug [169]. In this model, the

local drug concentration is divided among an extracellular compartment with con-

centration s1(x) [169, Eqn. 20] and an intracellular compartment with concentration

s2(x) [169, Eqn. 21] where drug is bound immobile. The extracellular concentra-

tion s1 is subject to diffusion and advection with the liquid velocity vl according to

(3). Vessels are sources and drains of drug (s. Sec. 2.8, and 2.10) comprising diffu-

sive and advective transvascular flux densities [169, Eqn. 23]. Lymphatics can sink

drug by advection, assuming that the drug concentration within lymphatics is ap-

proximately equal to the concentration in tissue. Consequently, drug diffusion into

lymphatics is neglected. Both compartments 1 and 2 exchange drug via rates k12

and k21 depending on assumed trans-membrane diffusion coefficient and cell sur-

face area. For simplicity, degradation of drug molecules is neglected. In future this

should be straight forward to add, provided experimental data. The initial condition

is a system clean of drug. Drug is inserted via the vasculature where the intravascular

concentration sv(t) is homogeneous in space and follows a exponentially decaying

pulse in time, imitating an injection.
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We applied the model to study drug transport in tissues supplied by tumor vas-

cular networks embedded within synthetic initial arterio-venous networks [169]. A

cohort of tumors was considered. We first simulated tumor growth and then consid-

ered drug transport for stationary final (t = 800 h) configurations. Interstitial fluid

velocity distributions vl(x) were determined prior to computation of drug concen-

trations.

2.10 Oxygen transport

Oxygen diffuses across the blood tissue interface with a net flux that depends on

the difference of oxygen partial pressure (PO2) at the vessel wall and within blood

[65]. As oxygen diffuses into tissue, its concentration in blood is reduced, leading

to a gradient across the micro-vasculature of ca. 100 mmHg at the arterial side and

40 mmHg at the venous side. The coupling of transvascular oxygen flux with the

tissue PO2 therefore poses a difficult problem for the computation of intravascular

and tissue oxygen distributions.

This problem has been solved for simple configurations where single, straight

artificial capillaries are considered. Based on original ideas of Krogh [87], current

sophisticated theoretical models achieve very good agreement with experimental

data [106, 107, 65, 104].

For many applications it may be sufficient to simply consider a constant blood

PO2. Then the tissue PO2 distributions Pt can by computed by solution of the reac-

tion diffusion equation (4). This is very common approach in the literature on mod-

els of tumor growth. In other works the tissue oxygen distribution is analyzed in

detail based on stationary configurations of disjoint collections of lines or points (in

two-dimensions) representing sources of oxygen [35, 142, 86, 103, 33, 44, 89, 88].

The limitation of such models is however that the PO2 in each source must be given

as input.

In tumor however, low flow rates may lead to depletion of intravascular oxygen

over short distances, making it necessary to model intravascular PO2 variations.

However due to the complexity of tumor blood vessel networks, intravascular oxy-

gen distributions are hard to predict without actually simulating them. Some authors

attacked this problem [69, 57, 136, 55, 56, 160, 127, 46, 126, 167] and computed

self-consistent solutions of the equations for intravascular advection of oxygen and

diffusion of oxygen in tissue for systems comprising realistic blood vessel networks.

For numerical methods, see [136, 57, 167].

To cope with the computation of intravascular PO2 distributions in complex net-

works compromises must be made (see [54] for a review). Most importantly, vessels

are treated as one-dimensional line segments and intravascular PO2 variations in the

radial direction are neglected. Instead, the average over the cross-sectional area is

considered, P(x), depending only on the position on the center line x. This is justi-

fied because radial variations of intravascular oxygen concentrations are relatively

small as revealed by theoretical calculations [104].
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In the modeling of intravascular oxygenation it is crucial to take into account that

oxygen is, for the most part, bound to hemoglobin in red blood cells (RBCs). The

steady state of the binding and unbinding processes is described in good approxi-

mation by the Hill-curve [54]

S(P) =
Pn

Pn +Pn
50

, (17)

where P is the partial pressure of oxygen, S(P) is the fraction of oxygen bound

relative to the maximal capacity, c0 is the concentration of oxygen in RBCs at full

saturation, n is the Hill exponent and P50 denotes the partial pressure of oxygen

where S(P50) = 1/2. Hence, the total concentration of oxygen c is given by

c = αP+Hc0S(P), (18)

where H is the hematocrit and α = αp +Hαrbc is the effective solubility in blood

and αp, αrbc the solubility in plasma and RBCs, respectively.

In large scale network models it is infeasible to compute all microscopic details

of spatio-temporal intravascular PO2 distributions and outward diffusion. Instead,

the net transvascular flux per blood-tissue interface surface area jtv is determined

by the effective, network dependent, mass transfer coefficient (MTC) γ , similar to

Lp of Eq.(15)

jtv = γ(P−Pt), (19)

where Pt is the PO2at the inner wall of the vessel lumen, and P is the average par-

tial pressure in blood. Note that γ represents an effective radial diffusion coefficient

of oxygen in blood. Lp of the Starling equation, on the other hand, represents the

permeability of the wall. In small vessels, blood tends to form an RBC-rich core

and a RBC-free boundary layer. For larger vessels (r > 100 µm), the discrete na-

ture of RBCs plays a lesser role. Therefore the MTC is function of the vessel radius

r, hematocrit H, and blood oxygen saturation S [65]. The functional dependency

γ(r,H,S) can be obtained from single capillary simulations and experiments. More-

over, since vessels are much longer than their diameter it is reasonable to assume

that the tissue PO2 is homogeneous over the vessel circumference [136]. Thus, in-

tegration yields a transvascular oxygen flux per length amounting to 2πr jtv, The

change of the oxygen flux along the vessel axis is therefore simply given by the

q
dc

dx
=−2πr jtv, (20)

where q is the blood flow rate, and x denotes the longitudinal space coordinate on

the vessel axis. In order to determine the oxygen distribution across an entire net-

work, assumptions must be made on the distribution at vessel junctions, e.g. in-

stant equilibration of the partial pressure of oxygen flowing into a junction. With

the help of mass balance equations, the concentration of outflowing oxygen can be

computed. Thus the solution for the oxygen concentration can be propagated down-
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stream assuming a known tissue PO2 distribution and a given PO2 at the inlets (see

[136, 167]).

Locally, at the blood-tissue interface, jtv is also subject to Fick’s law jtv =
−α∇P, in addition to (19). This relation can be utilized to obtain boundary con-

ditions for a diffusion equation that determines the tissue PO2 [57]. However in this

chapter we want to consider the network as volumetric sources of oxygen Jtv(x).
This is well-defined since the oxygen flux into tissue is already known from (19).

Therefore, Jtv may be formulated with the help of the Dirac δ distribution in analogy

to (16) [136, 167].

The tissue oxygen concentration ct =αtPt is determined by the diffusion equation

for the partial pressure Pt

0 = αtD∇2Pt −M(Pt)+ Jtv, (21)

where D is the diffusion coefficient of oxygen in tissue, M(P) is the partial pressure

dependent consumption rate. A good approximation of M(P) is the well-known

Michaelis-Menten relation

M(P) = M0
P

P+P′
50

, (22)

which tends to zero for small P, assumes the value M0/2 for P = P′
50 and goes

asymptotically to the maximal consumption rate M0. For some problems like tu-

mor oxygenation it is usually assumed that the oxygen concentration is rather low,

i.e. Pt < P′
50. Then it is sufficient to use a linear approximation M(P) ≈ −λP for

some rate coefficient λ . In physiological conditions, where P > P′
50, M(P) is often

approximated by zero order kinetics M(P)≈ M0.

Discretization of the model equations yields a complex system of non-linear

equations. Following [136, 14] we developed a new numerical scheme based on fi-

nite differences which is sufficiently efficient, allowing us to study three-dimensional

networks in a simulation box of ca. 0.5 cm3 at reasonable accuracy [167]. Our

method was applied to study the relation of vascular morphology to clinical data of

tissue blood oxygen saturation in human breast cancers. Hsu and Secomb [69, 136]

formulated a solution to the system of equations with the help of a Green’s function

method. Their method was applied to study oxygenation by various small network

sections obtain from animal models as well as synthetic human brain vasculatures

[126].

Methods developed for the study of oxygen distributions are also applicable to

distributions of other substances like drugs which may be simpler since oxygen

adds the complication of hemoglobin binding which leads to nonlinear systems of

equations.
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3 Discussion of Model Predictions

Current state of the art models of vascularized solid tumor growth and capillary net-

work remodeling predict the morphological compartmentalization of tumor blood

vessel networks in good agreement with experimental data of melanoma and glioma

[38, 67, 66]. From the obtained configurations, of which one is shown in Figs. 6 and

7 conclusions can be drawn on the mechanisms of vascularization. Further conclu-

sions, using model extensions, can be drawn for interstitial fluid flow and solute

transport, as discussed in the following.

3.1 Vascular morphology and compartmentalization

Typical vascular compartmentalization is characterized by dense chaotic vascular

sprouting within an annular shell of a width amounting to ca. 200 µm around the

invasive edge, and a sharp decrease of vascular density into tumor spheroid. The

normal vasculature is progressively transformed while the invasive edge moves for-

ward, leaving predominantly isolated vessels behind. The ingredients, to obtain such

characteristics from theoretical models comprise an expanding tumor spheroid, an

initial capillary network, blood flow, a growthfactor concentration distribution, an

oxygen concentration distribution, and processes reflecting co-option, angiogenesis,

vaso-dilation, regression and collapse [11, 90]. The basic mechanism of this remod-

eling was identified as shear stress correlated collapse. Dilatation causes a decrease

in flow rates and shear stress since the blood volume that the tumor vasculature

conducts per time is limited by the flow resistance of the surrounding vasculature.

This leads to removal of segments according to the collapse rule, redirecting blood

flow to other vessels. As a result, blood flow and shear stress is stabilized above

the critical collapse threshold in surviving vessels. Remaining dead ends are rapidly

removed by the regression process.

In synthetic capillary-only initial networks (CNs), vessels of identical diameter

are laid out in regular square or hexagonal patterns. However, it is hardly possible

to select realistic blood flow boundary conditions for such networks of macroscopic

size beyond a few hundred micrometers. For instance, imposing a homogeneous

blood pressure gradient yields tumor vascular networks where tumor vessels sur-

vive preferably in the direction parallel to the imposed gradient [11, 165]. The ex-

planation is simply that vessel segments of linear chains that run, on average, per-

pendicular to the gradient, lie on approximately equal blood pressure potentials and

therefore no significant blood flow can occur, resulting in collapse of these vessels.

In reality, the capillary plexus is however supplied and drained by adjacent arte-

rioles and venules which exhibit irregular spatial configurations. Therefore, there is

no global flow direction, which is why arterio-venous initial networks (AVNs) abol-

ish this artifact in model predictions [166]. In AVNs blood flow depends on only a

few boundary conditions at in-and outlets for which experimental reference values

for pressure or blood flow can be used. Models based on synthetic arterio-venous
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Fig. 7 Final simulated tumor and tumor blood vessel network: Depicted is a visualization of
the final state of the simulation shown in Fig. 6 at t = 700 h, where the simulation is stopped. The
full simulation cube of 8 mm lateral length is shown, where a quadrant is cut out, so that the tumor
spheroid and its interior can be seen. The tumor vasculature exhibits the typical compartmental-
ization found in melanoma and glioma [66, 37]. It is connected to the bulk of the surrounding
vascular network which appears solid, but actually fills only ca. 10% of the available volume. It is
spatially homogeneously distributed and consists of arterial and venous trees and interconnecting
capillaries. Configurations such as this are the basis of further studies of interstitial fluid pressure
and drug transport [169] and tumor oxygenation [167].

networks predict vascular morphologies which obey realistic compartmentalization

of MVD and radii. However, in addition to dilated capillaries, the tumor center also

exhibits higher-caliber vessels co-opted from the initial network. Such vessels ex-

hibit a radius r larger than the maximal dilation threshold rmax and are therefore not

subject to dilation. As a result, predictions of flow rate q are a factor of 10 larger

than predicted for CNs.

Fig. 7 shows a typical tumor vasculature as it evolves from a synthetic arterio-

venous vessel network within the model framework described thus far. Model pre-

dictions of average quantities such as radial distributions of MVD, blood flow, oxy-

genation and tumor density are robust against model alterations, as studied in Refs

[165, 166]. This is true in particular for the rather drastic alteration of the intro-

duction of arterio-venous blood vessel networks (AVNs) [166]. Other model vari-

ations, such as calculation of blood flow in conjunction with varying hematocrit,
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or use of spatially varying collapse probabilities, do not change predictions qual-

itatively [165]. The parameters vessel collapse probability p(col), wall degradation

rate ∆w, critical collapse shear stress f (col) and contact inhibition length of angio-

genesis d(br,min) correlate with the MVD obtained for the tumor center. The MVD at

the invasive edge is determined by the MVD of the original network and the contact

inhibition length d(br,min). A certain invariance against model details is expected and

even required, because it would be implausible if the results were dependent on a

specific abstraction of the biological reality (within reasonable accuracy).

Our model predicts that MVD of the tumor interior, MVD at the tumor periphery,

and tumor expansion speed are uncorrelated if the peripheral blood vessel network

can support the metabolic demand of tumor cells required for growth [11]. Growth

within AVNs additionally leads to clustering of vessels in clusters of differing size

and density depending on the initial network configuration [166]. The density of

such hot-spots is used as a diagnostic tool [38]. However these results suggest that

it rather unreliable. A recent meta-study [110] of clinical data comes to the same

conclusion. Correlations between MVD and the outcome of the disease is likely due

to metastases which was not considered.

We add that we considered the line density LD, the summed lengths of vessel

segments within a given region per volume of this region, as a measure for MVD. It

is however not the same as the histological MVD because vessels in parallel to the

cutting-plane which contribute to LD cause LD to overestimate the MVD by a factor

of approximately two.

3.2 Fractal Properties of Tumor Vasculatures

Following [11], fractal dimension numbers were computed for vascular networks.

Fractal dimension d f is an extension of the conventional dimension to self-similar

(fractal) objects. For instance a line has d f = 1, but a fractal curve within the two-

dimensional plane can have d f between 1 and 2 depending on how densely it per-

meates space. d f = 2 corresponds to a solid object like a disc. For real objects of

finite size several approximative metrics exists, e.g. the number obtained by box-

counting [98]. Useful model systems are percolation clusters: In conventional per-

colation, sites of a lattice are randomly occupied with probability p. At some critical

probability pc, a percolating cluster forms that spans across the lateral size of the

considered domain. The dimension of this cluster is exactly known d
perc
f = 1.891

[149]. Similarly, a system-spanning cluster can be created from an invasive growth

process into a heterogeneous matrix, the dimension of which is known and amounts

to d
inv−perc
f = 1.81 in two dimensions [47].

Gazit [48] measured the dimension of photographs of tumor vascular networks

and obtained d
exp
f = 1.89± 0.04, in good agreement with d

inv−perc
f and therefore

hypothesized that fractal properties of tumor vascular networks emerge from angio-

genic sprouting into a heterogeneous extracellular matrix. Bartha and Rieger [11]

obtained d f = 1.85 by box-counting from the entire vasculature that was changed by
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tumor vascular remodeling. Since no ECM heterogeneities were modeled, it was hy-

pothesized that the mechanism leading to the fractal properties is a random dilution

process similar to conventional percolation. Later simulations predicted d f between

1.6 and 1.9, correlated with the tumor MVD, where the parameters critical collapse

shear-stress f (col) and collapse probability p(col) were varied, with similar results re-

spectively [165]. Fractal dimensions of tumor vascular networks obtained from sim-

ulations based on three-dimensional AVNs [168] yielded d f = 2.51±0.03, in good

agreement with percolation theory and [90] where tumors in three-dimensional CNs

are considered. However, accurate measurement of fractal dimensions of real and

simulated tumor vascular networks is hardly possible due to their limited size [11].

Moreover different methods were used: theoretical values were determined by two-

or three-dimensional box-counting, whereas Gazit [48] considered two-dimensional

projections of real vasculatures. We conclude that fractal dimension is mostly a

function of MVD and that it is not a reliable means to determine mechanism of

vascularization in tumors.

Morphological analysis was approached from another angle in [166], where fre-

quency distributions of (i) local MVD, (ii) area of clusters of necrotic tissue, and (iii)

area of hot-spots of high MVD were computed for tumors grown in two-dimensional

AVNs. Predicted distributions show good agreement with a power law, and exhibit

all the same exponent of −1.4. Such an algebraic decrease, in contrast to an expo-

nential decrease, is known for systems at a critical threshold where systems undergo

a phase transition. In the case of percolation, the critical threshold at p = pc marks

the transition from isolated clusters to a single connected region. Bartha and Rieger

[11] suggested that the tumor vasculature is driven automatically into a state akin to

the critical percolation cluster by the mechanism of shear-stress correlated vascular

collapse. As a result vessels permeate through the entire tumor, robust against mod-

erate variations in f (col) and p(col). These predictions are experimentally testable

and, if confirmed, would support that real vascular networks of the interior of tu-

mors are the result of a dilution process rather than the result of sprouting growth

into a heterogeneous environment.

3.3 Interrelation of Initial and Emergent Tumor Vasculature

High-caliber arterioles and venules (> 50 µm radius) protruding into the tumor

form a backbone of stable vessels in-between which thinner vessels form short and

straightforward paths [166]. The flow resistance decreases in proportion to 1/r4

with radius r and is therefore, in comparison to capillaries, extremely low in such

high-caliber vessels. Therefore, in analogy to electrical networks, the blood pressure

(voltage) drop across them is also low. In zero-th order approximation the blood

pressure is constant, i.e. high-caliber vessels act like a pressure boundary condi-

tion for adjacent capillaries. Short, directed paths, have a survival advantage as dis-

cussed above in the context of CNs. The distribution of tumor vessels thus becomes
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dependent on initial (t = 0) vascular networks and is generally heterogeneous and

anisotropic.

Assuming an arteriole runs near a venule then a large spatial blood pressure gra-

dient is present. When a tumor grows near this area, a connection (short cut) is

formed by angiogenesis, imposing the spatial gradient onto blood flow through this

newly formed vessel which is the more stable the steeper the gradient. We attempted

to quantify this dependence by correlation of tumor MVD (t > 0) versus the mag-

nitude of blood pressure differences in-between vessels of initial (t = 0) AVNs. For

this purpose, an auxiliary “pressure” field p(x) was computed as function of space

x at t = 0 that interpolates approximately the blood pressure pv in spaces between

vessels [166] and is determined by ∇2 p+a · (pv − p) = 0, where a is zero in empty

space and a ≫ 1 at sites coincident with vessels. We plotted the magnitude of the

gradient ||∇p|| as local averages taken over small boxes versus the local MVD at

t = 1200 h Predicted correlation coefficients ranged from 0.2 to 0.5 per simulation.

A correlation coefficient of 0.9 was obtained for averages over entire tumors of a

cohort of simulations [166]. This finding may eventually be useful for model val-

idation by experiments, should it become possible to scan real three-dimensional

vasculatures of host tissues prior inoculation with TCs.

Somewhat different vascular configurations are indeed observed in real tumors

of the same tissue, e.g. breast tumors [40]. Predictions outlined above suggest that

heterogeneity of the initial vascular network has a strong impact on the emerging

tumor vasculature rather than heterogeneity of the ECM through which vascular

sprouts grow as originally proposed by Gazit [48].

3.4 Blood flow and blood borne drug transport

McDougall et. al[146, 145] first considered conduction of a tracer substance through

tumor vascular networks using a simulation model of a time-dependent intravascular

concentration distribution that was previously used in geo-engineering. Following

them, intravascular tracer conduction was studied in stationary tumor vascular net-

works based on CNs [165] and AVNs [166, 168]. Simply, a pulse, or a constant

infusion, is applied at inlet vessels, which is from there propagated down-stream

through the vascular network. The unspectacular model predictions show tracer

flowing through networks within a duration of seconds (AVNs) and ca. one minute

(CNs).

McDougall et. al, on the other hand, consider a model system based on angiogen-

esis experiments on the cornea of a rabbit eye [51] (rabbit-eye model). There, the

tumor is not connected to an extensive vascular network, but instead, a single parent

vessel spawns a few sprouts (angiogenesis) which travel a long distance of ca. 1 mm

and branch into a dense network permeating a tumor spheroid and adjacent tissue. It

was concluded that the tumor vasculature conducts drug poorly and that most drug

bypasses the tumor. The cause of this contradiction appears to be dilution of the

tracer concentration within the dense network near the tumor and much lower flow
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rates leading to transit times of the order of 10−30 min. Moreover a vascular adap-

tation model was considered, leading to formation of shunts that bypass the tumor

network [145].

A good perfusion is consistent with several clinical studies of human tumors

based on PET measurements [170, 99, 92, 72] where elevated perfusion rBF by

factors of 4.7 to 5.2 were observed [167, Tbl. 4]. Blood flow velocities in tumors

predicted by our model are of the order of 1 mm/s, similar to blood flow in normal

human micro vessels [100]. Our model predicts arterio-venous short-cuts within the

tumor, i.e. vaso-dilation gives rise to mostly very well perfused vascular threads

connecting arterioles with venoules [165, Fig. 8]. Such shunts were suggested in

the experimental literature where “flow hotspots” are frequently found in tumors

of patients [129]. However, it is well-known that blood flow in animal models is

can be severely reduced to only 0.1 to 1 mm/s. The exact causes for discrepancy are

presumably vessel compression and excessive blood plasma extravasation [175, 82],

both of which were not considered here.

3.5 Interstitial fluid flow

Interstitial fluid flow (IFF) in tumorous tissue has been considered theoretically for

some time, for instance within the framework of continuum models [76, 83, 176].

More recent models incorporate a discrete tumor vasculatures, e.g. based on the

rabbit-eye model [173, 172], and remodeling of capillary networks (CNs) [174].

Welter and Rieger [169] considered IFF and extravascular drug transport in tu-

mors grown within synthetic arterio-venous networks. Predicted interstitial fluid

pressure (IFP) distributions exhibit an average radial profile that increases sharply

from the tumor edge into the tumor center (s. Fig. 8). There, the IFP approaches a

plateau value asymptotically, close to the level of blood pressure, amounting to ca.

6.5 kPa (49 mmHg) [169, Fig. 4 and 5]. This is expected due to the high vascular

permeability, implying a small pressure drop across the vessel wall. The plateau

value lies above experimentally observed mean values taken over various human

tumors, but it is still lower than the absolute maximal observed IFP [83, Tbl. 1].

Since the IFP is generally assumed to rise very close to the level of blood pressure,

this is rather indicative of overestimated blood pressure. IFF distributions, i.e. the

scaled negative gradient of the IFP, follow trivially and exhibit the expected sharp

rise at the tumor rim amounting to a maximal value of 0.2 µm/s in good agreement

with the literature. As a novel prediction due to the discrete AVN model used, the

IFP and IFF distributions exhibit heterogeneity, i.e. they vary spatially in-between

vessels of different blood pressure values. Thus vessels are predicted to drain the

interstitial fluid in some instances [169, Fig. 4C].

It was often suggested that an elevated IFP poses a barrier to drug delivery

[102, 64, 76, 174]. However, the reason for this cannot simply be a decreased

transvascular hydrostatic pressure gradient that drives extravasation according to

the Starling equation (15). To the contrary, in standard modeling approaches (s.
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Fig. 8 Interstitial fluid flow: (a) Sketch of the transport of interstitial fluid from blood vessels
(BV) through tumor tissue into lymph vessels (LV) outside the tumor. Interstitial fluid (IF) escapes
through gaps in-between endothelial cells (b;top), which line the lumen of blood vessels, into ex-
tracellular space. These spaces also contain adhesion molecules and a network of fibers composed
of various proteins such as collagen. Pores and fibers pose a resistance to the flow of the IF akin to
the flow of water or oil through a porous rock. IF is absorbed into lymphatic channels from where
it is brought back into the blood stream. In normal tissue, a large resistance to transvascular flow
leads to a large drop of the hydrostatic pressure across the vessel wall, so that the interstitial fluid
pressure (IFP) approximately assumes the reference value of zero purported by the lymphatic sys-
tem. In tumors, the IFP is elevated to approximately the level of blood pressure due to extremely
large gaps in vascular walls (b;bottom) and lack of functional lymphatics [64]. The IFP measured
in human tumors ranges from 0 to 94 mmHg, depending on the type of tumor [83]. Cuts through
three dimensional simulation data sets are shown in the following panels: (c) Fractional volume
of blood vessels per voxel volume. The interface to the distribution of viable tumor cells (TCs) is
shown as contour. (d) Interstitial fluid pressure. (e) IF source and drain density in units of liquid
volume per tissue volume and time. (f) X-component of the IF velocity v. Varying blood pressures
and the presence of necrotic regions, of which we assumed a 10× increased permeability for IF,
lead to a dissymmetrical IFP distribution. The IFF distribution is discontinuous as a result of the
change in permeability.
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Fig. 9 Radial distributions of IFF and IFP as result of parameter variations. Left column
shows the IFP and the center column shows the IFF. The curves are obtained from averages over
annular shells and over a cohort of 15 simulated tumors. The curve marked with an asterisk shows
the average blood pressure. Our model of IFF is analogous to an electrical network, where the
IFP is the electrical potential. The right column shows this in simplified schematics. In each of
them vessels are on the top (BV; red), the middle represents interstitial space (shaded and yellow),
and lymphatics (LV; green). Outlined boxes represent various resistances, or permeabilities, in the
system. Solid black boxes indicate the varied parameter. The relative deviation from the original
base case parameter values is given in the figure legends, except in (D). The considered cases are as
indicated in the sub-figure heading: (a) Variation of the upper vessel wall permeability bound λl,T

(case iv in [169]). (b) Variation of the interstitial permeability coefficient Kl (case v in [169]). (c)

Variation of the amount of tumor lymphatics S
(L)
T /S

(L)
N , where the legend shows S

(L)
T /S

(L)
N directly

(case vii in [169]).
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Sec. 2.7), interstitial fluid flow is analogous to an electrical current flowing through

a chain of resistors, of which one resistor, namely leaky tumor vessel walls, is par-

ticularly small (s. Fig. 9). Thus, an increase in leakiness, i.e. an elevation of IFP,

would actually increase the liquid flux throughout the tumor, as predicted by our

model. However, the analysis was restricted to good perfusion, where only a negli-

gible liquid fraction escapes in spite of leakiness. Otherwise the way through tumor-

ous tissue into lymphatics could presumably present an alternative well conducting

pathway, draining downstream vessels of blood plasma, resulting in reported low

flow velocities [82].

The recent theoretical work [174], using CNs and a sophisticated model of tumor

growth that incorporates vessel compression due to IFP, comes to similar conclu-

sions about the role of various permeabilities However, it was concluded that IFP is

a barrier with little supporting numerical evidence, i.e. no simulation of actual drug

transport was performed.

3.6 Interstitial drug transport

Experimentally, penetration experiments are performed for homogeneous cells lay-

ers and genetic causes for drug resistance are examined. However direct observation

of drug distribution in tumors is difficult due to a lack of suitable markers. As a result

there is only little experimental where spatial distributions of drug were measured

[102, 177, 121] and quantitative data is scarce.

In oder to shed light on barriers to drug delivery, transport through tissue by

advection and diffusion after extravasation must be taken into account. For this

purpose, we analyzed a simple model, according to which, we computed time-

dependent concentration distributions of drug in simulated tissues containing a vas-

cularized tumor, grown in three-dimensional AVNs [169]. The considered tumors

were static, and obtained by simulations guided by melanoma and glioma. In ad-

dition to concentration distributions, we also computed maps of time-independent

metrics of doses delivered to the intracellular compartment: the local maximal con-

centration s2 taken over time (ICMAX) and the time integral of s2, respectively

(ICAUC). The computation was stopped after a simulated time of 96 h.

Anti-cancer drugs come in a variety of kinds, from light molecules e.g. Cisplatin

or Doxorubicin (≈ 543 g/mol) to heavy nano particles and viruses as carrier sys-

tems. We considered a base case guided by Doxorubicin since it is experimentally

relatively well studied and widely used [121, 177].

Our model predicts that, in general, the dose delivered is subject to a compart-

mentalization similar to the vascular density (MVD), where metrics ICAUC and

ICMAX likewise reflect the distribution of the MVD [169, Fig. 9]. Hence the av-

erage dose within the center of the tumor spheroid is significantly lower than in

normal tissue, unless stated otherwise, and doses are highest at the tumor edge.

This result provides an additional explanation of the incompletely understood suc-

cess of combination therapies of anti-angiogenic agents and chemotherapy, whereas
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Fig. 10 Snapshots of the spatio-temporal distribution of a macro-molecular tracer concen-

tration. The tissue and network configuration was obtained from simulated tumor growth and
vascular remodeling of a synthetic arterio-venous vasculature [169]. Each panel shows a horizon-
tal cut through the origin of the simulation box, showing the entire extent of 8 mm width. The
distribution was calculated as solution of an advection equation for extra-vascular tissue. Vessels
were sources of tracer which extravasates with the IF, assuming a spatially constant intravascular
concentration sv(t). In time an exponential decrease of sv(t) was assumed, modeling a short injec-
tion and the subsequent clearance period. Moreover, the tracer was assumed inert, i.e. there were
no sinks except by back flow into vessels. Since macro-molecules are hardly diffusing, the injected
tracer is transported with the flow of the IF. The flow varies locally in direction and magnitude due
to the coupling of the IFP to varying levels of blood pressure. As a result the tracer distributions
is very heterogeneous. Frequently, as in this example, areas are predicted at the tumor rim that
receive no significant dose.
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a single drug fails to improve survival [78]. TCs behind the tumor edge might be

killed by high doses of chemotherapeutics, effective against cycling cells, whereas

the TC population of the tumor center is reduced by necrosis caused by hypoxia. A

monotherapy might leave the one or the other part of the TC population unaffected.

The mechanism by which combination therapies are known to act is suppression of

the activity caused by vascular growth factors, leading to a decreased vascular per-

meability. This allows overall better delivery of chemotherapeutics due to improved

perfusion [78]. We also considered the case of a prolonged infusion which yielded

similar results but with higher magnitudes of concentrations and doses.

Variation of the various permeabilities showed that average doses delivered with

the permeability. Doses showed the highest sensitivity with respect to interstitial hy-

draulic and diffusive permeabilities which were varied simultaneously. See Fig. 9b,

where a 10× increase in permeability leads to a similarly drastic increase in extrava-

sation and IFF, not as obtained by other cases. As a result, more drug is delivered

into tissue as well. However, the mechanism only works under the assumption that

blood flow is sufficently high that it is not disturbed much by extravasation. As

suggested before [174], this could be exploited for therapy. However an increased

IFF could aggravate tumor invasion and metastatic dissemination [140]. Moreover,

angiogenic normalization therapy, i.e. a reduction of permeability and pruning of

vessels [78], might be ineffective or even detrimental for tumors where blood flow

is negligibly impaired.

Doxorubicin and lighter molecules have the advantage that diffusion helps to

distribute a substantial dose homogeneously around blood vessels regardless of IFF.

This was demonstrated in recent simulations of another group [141] where very

smooth and homogeneous concentration distributions of the more diffusive drug

Cisplatin (300 g/mol) arising from extravasation from a CN were predicted.

Since the diffusion coefficient decreases with the molar mass of the solute, trans-

port of drugs like nano-particles is strongly advection dominated. Simulation of

the flow of such particles predicted interstitial drug concentrations that follow the

stream of interstitial fluid in significant concentrations through the largest parts of

the tumor spheroid, starting from the initial insertion through the vasculature (s.

Fig. 10). As a result small isolated islands were predicted to exist right behind the

invasive edge of the tumor where no significant dose had been delivered within the

time frame of the simulation of 96 h. Presumably, this discrepancy to earlier work

[76] is caused by the discrete nature of the blood vessel network considered allow-

ing for flow in-between vessel of different blood pressure levels. Thus radial flow

component vanishes by chance at some places as dictated by the random configura-

tion of the vascular network. This suggests that a mono-therapy with agents of high

molar mass would be prone to recurring cancer.
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3.7 Oxygen distribution

Extremely good perfusion of tumor vessels cannot be assumed for tumors in gen-

eral. This necessitates consideration of spatially varying substance concentrations

because a substantial fraction may be lost during the transit through the tumor.

Maps of tissue and intravascular oxygen partial pressure (PO2) distributions were

calculated previously for small system volumes of the order of 0.1 mm3 [136, 54].

Our recently developed computational method allows for computation of PO2 dis-

tributions in macroscopic simulation boxes of ca. 0.5 cm3 on standard hardware

(i7-2600K, 3.4 GHz, 4GB Ram) within hours to a fair degree of accuracy [167]. It

is still computationally expensive, however, few simplifying assumptions need to be

made for the vascular network. Computed distributions of PO2 and blood oxygen

saturation are shown in Fig. 11a,b.

Critical to performance and accuracy is the regularization of the singular source

term (16), containing Dirac δ distributions, in conjunction with an efficient numer-

ical scheme for the solution of the diffusion equation. In general the method should

yield a sparse system matrix to enable numerical solutions in O(n logn) time in the

number of unknowns n. In future, adaptive tesselation of the tissue domain may be

used to increase accuracy [34].

The computation of intravascular PO2 distributions [167] was applied to the

case of breast tumors for which several groups measured hemoglobin concentra-

tions cHb and average blood oxygen saturations Y in large cohorts of patients

[60, 144, 155, 154]. They determined average concentrations of total hemoglobin

cHb, oxyhemoglobin cHbO, deoxyhemoglobin cHbD, and tissue blood oxygen satu-

rations Y = cHbO/cHb within normal and tumorous tissue sections. Obtained tumor

hemoglobin concentrations cHb(tumor) were always larger than hemoglobin con-

centrations in normal tissue cHb(normal). This is already explained by an increase

in regional blood volume rBV due to vaso-dilation. However, the blood oxygen

saturation in tumors Y (tumor) was sometimes larger or smaller than the blood oxy-

gen saturation in normal tissue Y (normal), divided approximately to equal numbers

among patients. Moreover, high hemoglobin concentrations were correlated with

high saturations, but tumors with low hemoglobin concentration exhibited a wider

range of blood oxygen saturations.

We considered tumor vascular networks (t = 800 h) obtained from simulation

of tumor growth and vascular remodeling. A large cohort of 90 different networks

was simulated emulating a cohort of patients. Regional blood volume rBV , perfu-

sion rBF, hemoglobin concentrations cHb, oxy-hemoglobin concentrations, deoxy-

hemoglobin concentrations, oxygen saturation Y , as well as tissue and vascular oxy-

gen partial pressure distributions P, and Pt were calculated for initial networks and

final tumor networks (t = 800 h). Transient behavior such as transient hypoxia due to

temporary occlusion of blood vessels was not considered. In our base case (BASE),

different initial (t = 0) vascular configurations lead to a spread in tumor oxygen

saturations, but it did not predict the clinically observed dependency of Y (tumor)
versus Y (normal) since predicted Y (tumor) were always larger than Y (normal).
Therefore we considered a phenomenological ad-hoc extension of the model by
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Fig. 11 Blood oxygen saturation and oxygen partial pressure: (a) Shows simulated intra-and
extravascular distributions of partial pressure of oxygen (PO2) P, and Pt , respectively. (b) shows
the corresponding blood oxygen saturation (SO2). (c) shows the hematocrit distribution within the
same network. (d) shows the oxygen partial pressure obtained from a simplified model where the
intra-vascular oxygen partial pressure was held constant. Data shown was computed for networks
obtained by simulation of tumor growth and vascular remodeling [167]. A spherical region of
approximately 2 mm radius was changed by the tumor. Each panel shows a horizontal cut through
the simulation box. The entire extent of 8 mm width is shown. The vessel network is visualized as
collection of cylinders, color coded by respective intravascular distributions. Only a slab, truncated
100 µm above and below the central plane, is shown (cross sectional areas: light grey). (a) and (d)
show in addition extravascular tissue PO2 distributions.
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Fig. 12 Tissue oxygen saturation: clinical versus simulation data. (a) Total hemoglobin con-
centration cHb versus tissue blood oxygen saturation Y of tumors (solid circles) and healthy breast
tissue (open squares) for 87 patients, obtained by optical mammography. (b) Tissue blood oxygen
saturation Y of tumors versus those of corresponding healthy breast tissue for the same group of
patients. (Reprinted by permission of IOP Publishing from [60] Figs. 3b, 5a. All rights reserved.)
(c, d) Analogous data obtained from simulated tumor vascular remodeling, guided by data for
breast cancer, and computation of intra and extravascular oxygen concentration distributions [167]
of which examples are shown in Fig. 11a,b. Markers in (c) correspond to initial tissue (grey) and
the tumorous areas at t = 600 h (black). A cohort of 90 tumors was simulated, each using a dif-
ferent initial (t = 0) vascular network. Each initial network was grown from one of nine root node
configurations denoted RC1–RC9. Depending on the number of root nodes, which is equivalent to
the number of arterial and venous trees in the network, varying vascular volumes rBV and blood
flow rates rBF are obtained, introducing significant data scatter. The data shown was predicted
assuming vaso-compression of high-caliber vessels that penetrate into the tumor (case CMPR of
Ref [167]).
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vaso-compression. On average, taken over the cohort of tumors, the proposed alter-

ation results in a reduction of the radii of arterioles and venules that are thicker than

the maximal dilation radius r(max), whereas the radii of smaller vessels are not much

affected on average. This modified model predicts saturations Y in good agreement

with mammography data (see Fig. 12). The reasons for this better agreement are a

reduction of blood flow, thus draining a greater fraction of the supplied O2 in or-

der to meet metabolic demand. Moreover, Y is the volume weighted average of the

local blood saturation S(P). Therefore compression reduces the weight of dilated

arterio-venous shunts which generally exhibit a high saturation S. Cases for which

drastically increased metabolic oxygen consumption rates M0, decreased maximal

dilatation radii r(max), and stochastic variations thereof were considered, failed to

predict the clinically observed distributions. Therefore our results suggest that a de-

creased tissue blood oxygen saturation relative to baseline normal tissue of the same

patient is indicative of vessel compression which could be exploited in therapy. The

clinical data might imply that tumor vascular networks that exhibit higher satura-

tions than normal are vastly different in their vascular architecture than networks

that exhibit low saturations. However, our simulations suggest that these networks

nevertheless share the traits of typical tumor vascular networks as outlined in the

introduction.

For models of tumor growth, it is a very convenient approximation to con-

sider a model of oxygenation where the intravascular PO2 distribution is constant.

Then only the tissue PO2 distribution needs to be calculated. There are however

qualitative difference in its predictions that one should be aware of (s. Fig. 11d).

The constant-PO2 approximation fails to predict local oxygen depletion in vessels

threading the tumor center. More importantly it over-estimates the PO2 in the neo-

vascular plexus around the tumor periphery. The depletion of oxygen predicted by

the full model is a consequence of a redirection of most hematocrit into the tumor

center due to the phase separation effect (s. Fig. 11c). Therefore the densely vascu-

larized capillary plexus around the invasive edge is deprived of red blood cells and

thus the oxygen capacity of blood therein drastically reduced.

4 Limitations and outlook

Although current models produce predictions that are in many respect in good agree-

ment with experiments, there are some severe limitations. For one, many predictions

were obtained by first simulating tumor growth by a simplified model. Then ad-

ditional quantities relevant for tumor growth were computed, e.g. interstitial fluid

flow or intravascular oxygen distributions [169, 167]. Other works have other lim-

itations, e.g. oversimplified vascular networks of host tissue [95, 174, 141, 131]. It

may be worth to develop an integrated model combining all aspects into time depen-

dent simulation of tumor growth. This may be particularly important for the study

of pharmacokinetics where IFF, drug transport, oxygenation and tumor growth are

tightly coupled.



42 Michael Welter and Heiko Rieger

Furthermore, To obtain a more faithful cohort of initial blood vessel networks,

a systematic analysis of initial networks could be carried out. Experimental data

of blood volume, rBV , perfusion rBF, and so on, could be used to select a cohort

of networks that satisfies experimentally observed statistical distributions. Current

networks are unrealistic in some aspects, e.g. they contain no anastomosis, i.e. cross-

links between vascular trees [100].

Fig. 13 Reconstruction of blood vessel networks from imaging data: (a) A coronary vascular
network of a rat based on micro-CT images. Various subnetworks are distinguished by random col-
ors (Reprinted with Permission from [91] Fig. 12e. Copyright 2007 Elsevier Science) (b) A section
of a cortical blood vessel network after reconstruction based on micro-CT images. Vessels are color
coded according to their diameter d. (Reprinted with permission from [61] Fig. 1c. Copyright 2010
Nature Publishing Group) (c) Tissue slice of the human cerebral cortex. The left hand side shows
a side view on a large vein with adjacent branches. The reconstruction is based on depth-coded
confocal microscopy images. (Reprinted with permission from [27] Fig. 3. Copyright 2006 Taylor
& Francis LLC) At the present day, vascular networks of host tissue, in which tumor growth is
simulated, are algorithmically synthesized which involves uncertainties and likely model artifacts.
The incorporation of such scanned networks, possibly on larger scales than the ones shown, would
allow for more accurate model validation and results to be obtained.

Therefore it would be ideal to use real scanned and digitized blood vessel net-

works (s. Fig. 13 for examples). In principle it is possible to automatically recon-

struct networks from voxel data. However, current state of the art microscopy meth-

ods can only see through a tissue slab up to a maximal depth of ca. 250 µm [27].

Recently, data obtained from micro computed tomography (µ-CT) was used by Sta-

matelos et. al[147] to reconstruct large parts of the vascular system of an animal-

model breast tumor. However, it is questionable if all capillaries were captured since

the resolution of the scanner was only 8 µm, and many dead ends were in the recon-

structed network. Similar results were obtained for other cranial [61] and coronary

[91] blood vessel networks. A data base of many large scale networks of normal

tissues and corresponding tumor networks at different growth stages could be built.

Not only would this eliminate the need to construct artificial initial networks, but

it would also allow for a detailed comparison between model predictions and real

tumor networks.
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A major limitation of our model is the restricted applicability to only well per-

fused tumors. However in animal models blood flow velocities are generally lower

amounting to 0.1− 1 mm/s [109, 9]. The prediction of good perfusion is inherent

to our basic model of vascular remodeling since tumor vessels can only dilate, not

shrink, leading to well conducting arterio-venous shunts. The prediction of high

flow rates allows for neglect of blood plasma loss due to extravasation, which we

justify by a simple worst case estimation of lost plasma amounting to ca. 0.1%.

Therefore, extravasation of plasma cannot be the only cause for low blood flow, but

rather it likely aggravates the situation if vessels are constricted by solid pressure

for instance.

Consequently, it would be worthwhile to explore extensions to vascular dilation

and regression processes rather than limiting blood flow by ad-hoc shrinkage of

arterial radii, as done in [167]. One such possible extension already exists in the

vascular adaptation model [119]. Essentially, a shrinking-tendency is balanced by a

wall shear-stress dependent growth signal. Moreover, compression of blood vessels

is insufficiently understood. Forces involved were studied quantitatively, separately

(see Refs. below). However, their interplay is not understood or studied much. Ob-

viously, the deformation of vessel walls is governed by a balance of forces which

are tensile and compressive stress within the vessel wall, blood pressure, interstitial

fluid pressure, and solid pressure. Solid pressure compresses vessels [31, 150, 30]

and there is evidence that an elevated IFP aids in compression of vessels [59, 36].

There is, to our knowledge, no predictive model of the response of the vessel wall

that takes these factors into account. A physical consideration based on first prin-

ciples e.g. with the help of a elasto-plastic mechanical model of vascular walls in

combination with a mechanical model of tissue could help elucidate the forces in-

volved and ultimately yield better predictions of blood flow.

With an ad-hoc extension to emulate compression, our model predicts regional

blood flow rBF that is about a factor of 5 to 10 above measured data from breast

tumors [167, Tbl. 4]. This apparent deficiency might be founded in the size of

the considered tumors (4 mm in diameter, simulated, versus centimeter sized real

tumors), since in tumor xenografts [84] blood flow rBF of experimental tumors

(2− 0.3 ml/g/min) correlates negatively with size (0.1− 10 cm3 tumor volume),

consistent with predictions of our model. The reasons for this size dependency are

currently unknown. However, it suggests that either normal vasculatures can only

provide a constant blood flow rate per surface area of the tumor spheroid into the

tumor, or that the abnormal organization of the tumor vasculature is only affecting

blood flow velocities in tumors much larger than theoretically studied.
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