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Nonreciprocal active matter systems typically feature an asymmetric role among interacting
agents, such as a pursuer-evader relationship. We propose a multi-species nonreciprocal active
matter model that is invariant under permutations of the particle species. The nonreciprocal, yet
symmetric, interactions emerge from a constant phase shift in the velocity alignment interactions,
rather than from an asymmetric coupling matrix. This system possessing permutation symmetry
displays rich collective behaviors, including a species-mixed chiral phase with quasi-long-range polar
order and a species separation phase characterized by vortex cells. The system also displays a coex-
istence phase of the chiral and the species separation phases, in which intriguing dynamic patterns
emerge. These rich collective behaviors are a consequence of the interplay between nonreciprocity
and permutation symmetry.

Introduction – Active motility opens up a new av-
enue in the statistical mechanics study of many-body
systems [1–6]. Active systems of self-propelled parti-
cles are abundant in nature, ranging from biological sys-
tems [1] to synthetic materials [3]. Active systems ex-
hibit unique collective phenomena that are rarely found
in systems consisting of immobile or passively driven
particles. These include the spontaneous breaking of
continuous symmetry in two dimensions [7], ratcheting
effects [8], motility-induced phase separation [9], and
motility-induced pinning [10], to name but a few.

Recently, active systems with nonreciprocal interac-
tions, which do not obey the action-reaction principle, are
attracting growing interest [11–25]. Nonreciprocal inter-
actions are exemplified by a leader-follower relationship
in a bird flock [26, 27] and a prey-predator relationship
in ecology [28]. Suppose there are two species, A and
B, of self-propelled particles interacting nonreciprocally:
A particles tend to align their velocity with B particles,
while B particles tend to anti-align with A particles. This
asymmetric nonreciprocal interaction can stabilize a chi-
ral phase in which the two species particles move along
circular orbits at a constant angular speed, either clock-
wise or counter-clockwise [11, 14, 25]. Asymmetric non-
reciprocal interaction can also lead to a run-and-chase
state [17, 23], traveling waves [20, 21], clustering [29],
and phase separation [19].

The nonreciprocal systems investigated so far as-
sume asymmetric interactions among constituent par-
ticles, which break symmetry under arbitrary permu-
tations of particles or particle species. Nonreciprocity,
however, can be compatible with permutation symme-
try. Consider, for example, a synchronization dynam-
ics of N limit-cycle oscillators coupled chemotactically.
A finite propagation speed of chemotactic signals can
bring about a phase shift in the equations of motion
ψ̇i(t) = −∑

j Jij sin(ψi − ψj − αij) for their phases
ψi (i = 1, · · · , N) [30] (see also Ref. [31]). The cou-

pling is reciprocal only when the coupling matrix is sym-
metric (Jij = Jji) and the phase shift is antisymmet-
ric (αij = −αji). The coupling becomes nonrecipro-
cal when either Jij ̸= Jji or αij ̸= −αji. The latter
occurs, for instance, in systems of self-propelled parti-
cles that tend to align their velocity with neighbors with
symmetric phase shifts (αij = αji). Here we focus on
such systems, in which nonreciprocity emerges even for
symmetric couplings Jij = Jji, and which are invariant
under any permutation of particle indices, meaning that
they are composed of equivalent particles and particle
species. Symmetry plays a crucial role in characteriz-
ing collective phenomena in many-body systems. This
symmetric nonreciprocal active system, which has not
been explored yet, raises an important question about
the role of the permutation symmetry in nonreciprocal
active matter systems.

Multi-species nonreciprocal Vicsek model – To ana-
lyze the consequences of nonreciprocity and permuta-
tion symmetry, we consider a Q-species ensemble of self-
propelled particles with self-propulsion speed v0 in two
dimensions. Each particle, indexed by n, is character-
ized by its position rn = (xn, yn), its direction of motion
ê(θn) = (cos θn, sin θn) with polar angle θn ∈ (−π, π],
and a species index (or ‘spin’) sn = 1, · · · , Q. We adopt
a discrete-time Vicsek-type dynamics with phase shifts
αnm:

θn(t+∆t) = Arg

[ ∑
m∈Nn

ei(θm(t)+αnm)

]
+ ζn(t),

rn(t+∆t) = rn(t) + v0ê(θn(t))∆t,

(1)

where Nn denotes the set of particles within a circle with
radius r0 around particle n, and ζn(t) is an independent
random variable drawn from a uniform distribution on
[−ηπ, ηπ] with noise strength parameter η.

Such a phase-shifted interaction arises naturally in syn-
chronization systems [32–36] and oscillator systems with
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FIG. 1. Sketch of the effect of symmetric phase shifts. The
black arrows indicate the polar angle θ of particles, while the
colored arrows indicate the apparent polar angle perceived by
particles of different species. Particles belonging to different
species are distinguished by color. The shaded sectors repre-
sent the phase shift α. (a) When particles are moving in par-
allel, they tend to bend their trajectories counter-clockwise
by α/2. (b) When particles are moving in anti-parallel, they
tend to bend their trajectories clockwise by (α− π)/2.

a chemotactic [30] or hydrodynamic coupling [31]. The
phase shift in our model may be justified by assuming
a time-delay in signal conversion/transformation among
self-propelled particles [37]. In this work, we focus on
the case in which these processes are slower between par-
ticles of different species than between particles of the
same species, but otherwise independent of the species
index, which implies

αnm = α(1− δsnsm) (2)

with 0 ≤ α ≤ π [38]. The model reduces to the original
Vicsek model at α = 0. When α = π, the dynamics favors
anti-alignment among particles of different species [39].
For 0 < α < π, it constitutes a minimal model for a
multi-species nonreciprocal flocking system with permu-
tation (SQ) symmetry or Potts symmetry [40]. In this
setting, particle n tends to align with the apparent polar
angle of neighboring particles, which is identical to the
true angle for the same species, but shifted by α for dif-
ferent species. We illustrate the role of the phase shift in
Fig. 1. The nonreciprocal inter-species coupling endows
particles with a chirality.

One can coarse-grain the discrete model to derive
a continuum field theory using the Boltzmann equa-
tion approach [41–43]. The Boltzmann equation de-
scribes the system with field variables fµk (r, t) :=〈
δsnµδ(r − rn(t))e

ikθn(t)
〉

(µ = 1, · · · , Q and k =

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α/π

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η

Disorder

Species-
Separation

(vortex cells)Chiral
(QRLO)

C
o
e
x
is

te
n

ce

FIG. 2. Numerical phase diagram in the α-η plane of the
three-species system with ρ0 = 2.0. Insets show the repre-
sentative snapshots of size 128× 128 at the locations marked
with symbols [44] Each particle is drawn with a dot whose
color represents its species.

0,±1,±2, · · · ) [41–43]. It can be further coarse-grained
to yield the hydrodynamic equation for the density
field (k = 0) and the polarization field (k = ±1). The
explicit form and its derivation of the continuum Boltz-
mann equation and the hydrodynamic equation will be
presented elsewhere [37].

Phase diagram – We present numerical simulation re-
sults based on the discrete-time dynamics model Eq. (1)
with ∆t = 1 , v0 = 0.5, and r0 = 1, on a L×L square in
two dimensions with periodic boundary conditions. Each
species has the same population of N0 = ρ0L

2 parti-
cles. The total population and the total density equal
N = QN0 and ρtot = ρ0Q. We present numerical re-
sults for the three species system (Q = 3). Numerical
results for other values of Q, which are qualitatively the
same as those of the three-species system, are presented
elsewhere [37].

The following order parameters characterize collective
behavior: The polarization m(t) = |N−1

∑
n ê(θn(t))|

quantifies the degree of phase coherence, the chiral-
ity γ(t) = (N∆t)−1

∑
n sin (θn(t+∆t)− θn(t)) quanti-

fies chiral order, and the Potts order parameter e(t) =
(2πr20ρtotN)−1

∑
|rn−rm|<r0

(Qδsnsm −1)/(Q−1) is rem-
iniscent of the energy density of the Q-state Potts
model [40] and quantifies species separation: it equals
zero if the particle species are perfectly mixed, and is
nonzero when Potts symmetry is broken and species sep-
aration occurs. The mean steady-state values ms =
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⟨m(t)⟩s, γs = ⟨γ(t)⟩s, and es = ⟨e(t)⟩s are used to define
the macroscopic state of the system, where ⟨. . . ⟩s denotes
a time average in the steady state. The phase diagram
in Fig. 2 summarizes our numerical results. Each phase
will be addressed below.

Chiral phase with quasi-long-range-order – When α and
η are small, the system is in the chiral phase. Par-
ticles of all species are mixed and perform a counter-
clockwise chiral motion along circular orbits (see Fig. 3(a)
and (b)). The hydrodynamic equation admits a solution
in which particles are distributed uniformly and move
synchronously with a common complex polarization field
w(t) = f11 (r, t) = · · · = fQ1 (r, t) [37]. It satisfies the
Stuart-Landau equation [45, 46]

ẇ = µ0w − ξ0|w|2w (3)

with complex parameters µ0 and ξ0 [37]. This system
undergoes a supercritical Hopf bifurcation from a disor-
dered state solution w(t) = 0 for ℜ[µ0] < 0 to a limit
cycle solution w(t) = AeiΩt with an α-dependent Ω for
ℜ[µ0] > 0 [37]. The latter corresponds to the chiral state
with perfect synchronization order.

Fluctuations play an important role: We find that
the polar angles display quasi-long-range order (QLRO)
rather than long-range synchronization order. A correla-
tion function

Cm(r) = ⟨m(r + r0, t) ·m(r0, t)⟩s /ρ2tot (4)

of the polarization density m(r, t) =
∑

n ê(θn(t))δ(r −
rn(t)), averaged over r0, decays algebraically (see
Fig. 4(a)) as

Cm(r) ∼ r−η̃ (5)

with a correlation exponent η̃ [47]. QLRO is confirmed by
the finite-size-scaling (FSS) behavior of the polarization.
In the chiral phase, ms(L) decreases with increasing sys-
tem size L according to the power-law ms(L) ∼ L−β̃ with
a FSS exponent β̃ varying continuously (see Figs. 3(c)
and (d)). This is in contrast to the long-range chiral or-
der reported in an asymmetrically-coupled nonreciprocal
system [11] and in a chiral active fluid with hydrodynamic
interactions [48].

The critical behavior is reminiscent of that associated
with the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition [49–53] of the equilibrium 2D XY model.
Given that our model consists of self-propelled particles,
it is an intriguing question whether the QLRO in the two
systems has the same origin. Consider a continuous-time
version of Eq. (1)

θ̇n = −J
∑

m∈Nn

sin(θn − θm − αnm) + ζn(t). (6)

When particles are distributed uniformly and homoge-
neously,the polar angle advances with a mean angular
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FIG. 3. Order parameters (a) es, (b) γs, and (c) ms, and
(d) effective FSS exponent β̃eff = − ln[ms(2L)/ms(L)]/ ln 2.
These are evaluated as functions of α with fixed η = 0.4 for
different system sizes L = 32, 64, 128, 256 for the three-species
system with ρ0 = 2. The dashed line in (d) is drawn at the
universal value, β̃BKT = 1/8, for the BKT transition.
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FIG. 4. Correlation functions for the three-species system
with ρ0 = 2 at representative (α, η) values corresponding to
markers in Fig. 2. (a) Power-law decay in the log-log scale
for r ≳ 10.0. The dashed straight line is a guide for the
eye. (b) Oscillatory behavior with rapidly decaying ampli-
tude. The first zeros (vertical dashed lines) converge to a
finite value as L increases.

frequency Ω0 = ⟨θ̇n⟩ ≈ πr20ρ0(Q − 1)J sinα. One can
show that the phase variables ϕn := θn − Ω0t in the co-
rotating frame are governed by

ϕ̇n ≈ −Jeff
∑

m∈Nn

sin(ϕn − ϕm) + ζn(t) (7)

with Jeff = J(cosα)(Q − 1)/Q neglecting higher order
O(|ϕn−ϕm|2) terms [37]. The resulting equation has the
form of a Langevin equation for XY spins.
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FIG. 5. (a-c) Successive snapshots of two flocks of species
1 (red) and 2 (blue), colliding at t = 0 [44] with a collision
front at x = 0 (dashed line). The horizontal arrows repre-
sent the polarization field far from the collision front, while
the vertical arrows represent the transverse component of the
polarization field as a function of x. (d) Trajectories of tracer
particles of each species, sitting at position (x, y) = (0, 0)
at time t = 0, obtained from 1000 simulations. The mean
positions at every 10th steps are shown with symbols. Pa-
rameters: L = 128, Q = 2, ρ0 = 2, η = 0.4, and α = 0.85π.

Particle motility introduces temporal fluctuations in
the mutual interaction network. Interestingly, chirality
renders the particles’ motion diffusive [37]. Since parti-
cles disperse slowly, temporal fluctuations of the mutual
interaction network are weaker than in the original Vicsek
model. Given that passively diffusing XY spins undergo
a BKT transition [53, 54], we conclude that our model
should exhibit the QLRO phase and the BKT transition.
The phase boundary of the QLRO chiral phase in Fig. 2
was obtained from the condition β̃ = 1/8, the universal
value at the BKT transition [51].

Species separation – The nonreciprocal interaction for
large α breaks the Potts symmetry and gives rise to
species separation (SS). The snapshot in Fig. 2 demon-
strates that species-separated particles self-organize into
an array of vortex cells (VCs). Each VC is occupied pre-
dominantly by particles of a single species, which flow
clockwise along the cell boundary with negative chirality
γs.

In the SS phase, the correlation function Cm(r) de-
cays and oscillates (see Fig. 4 (b)). It becomes negative
at |r| = ξ, which corresponds to a characteristic diameter
of VCs. The phase transition into the SS phase is accom-
panied with a discontinuous jump in es (see Fig. 3(a)).
We have drawn the phase boundary in Fig. 2 using the
locations of the discontinuous jump.

To understand the mechanism for SS, we consider a
collision of two flocks of distinct species µ = 1 and 2 (see
Fig. 5). They collide with each other at t = 0. Successive
snapshots in Fig. 5 demonstrate that the two species re-
pel each other and flow in either side of a collision front
at x = 0. During the collision, the polarization fields of
the two species are rotated by π/2 in the clockwise direc-
tion as in a fluid with odd viscosity [55]. Consequently,
particles from different species separate.

A perturbative approach to the continuum hydrody-

namic equation indicates the origin of the effective re-
pulsion. Since it involves lengthy algebra, we only briefly
review the analytic approach below. Detailed derivations
will be presented elsewhere [37].

Right after the collision, particles of the two species in-
teract in a narrow region around the collision front. Ne-
glecting spatial fluctuations within this region, the two
flocks can be described by a r-independent complex po-
larization fµ1 (r, t) ≃ wµ(t) (µ = 1, 2). When α = π,
the two flocks form an anti-parallel flocking state, char-
acterized by w1(t) = −w2(t) = wπ with a real positive
wπ [39]. For ϵα := π − α > 0, we can expand the hydro-
dynamic equation in δw1(t) := w1(t)−wπ and δw2(t) :=
w2(t) + wπ and perform a linear stability analysis. It
turns out that the symmetric part δwS := δw1+ δw2 has
a stable fixed point at δwS = 0, which implies that the
polarizations of the two species remain anti-parallel. But
the anti-symmetric part δwA := δw1−δw2 has an unsta-
ble normal mode growing as ∼ eiΘeΛt with a real positive
Lyapunov exponent Λ = O(ϵ2α) and an eigen-direction set
by Θ = −π/2 + O(ϵα). Thus, the counter-propagating
flocks should turn their polarizations clockwise by π/2
and are separated in either sides of the collision front.
This scenario is in perfect agreement with the numerical
result shown in Fig. 5. Therefore, we conclude that this
instability is responsible for the effective repulsion and
SS. We remark that the continuum Boltzmann equation
indeed reproduces the SS phase [37].

SS has been reported in a heterogeneous mixture of
contractile and extensile active particles [56, 57]. Our
study reveals that a homogeneous mixture of equivalent
particle species exhibits SS. VC patterns have been re-
ported in various experimental systems [58–60]. Active
particles with intrinsic chirality can self-organize into a
VC pattern [59–63]. Geometric confinement can also cre-
ate an array of VCs [64–66]. Our study shows that sym-
metric nonreciprocal couplings are sufficient to create VC
patterns in active matter.

Coexistence – The species-mixed chiral phase and the
SS phase can coexist for intermediate values of α (see
the snapshot in Fig. 2 and the corresponding movie
in [44]). The coexistence phase is characterized by dou-
ble peaks in the spatial distribution function of the local
order parameters [37] and features intriguing dynamic
patterns depending on the relative areal fraction of the
two phases. For instance, for large density, we observed
a bubble (cluster) state in which VCs (mixed chiral clus-
ters) are nucleated and annihilated in the chiral-phase-
rich (SS-phase-rich) background [44]. A quantitative and
theoretical understanding of the coexistence phase and
its emergent dynamical patterns is still missing and an
area of future work.

Summary – This work proposes a nonreciprocal Q-
species Vicsek model in which different species particles
align their velocity angles with a constant phase shift.
This system possesses the SQ symmetry of the Q-state
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Potts model implying that all species are equivalent. This
feature renders our model uniquely distinct from other
nonreciprocal active systems built with an asymmetric
coupling matrix. The nonreciprocal interactions due to
symmetric phase shifts gives rise to collective chiral mo-
tion. Depending on whether Potts symmetry is bro-
ken spontaneously or not, the system displays a species-
mixed chiral phase with QLRO, a species separated phase
with vortex cells, and a coexistence phase. Our setup de-
fines a minimal model for a multi-species nonreciprocal
chiral fluids. One may consider species-dependent phase
shifts to explore the effect of symmetries other than Potts
symmetry. In the SS phase, we observed that the chiral
fluid displays an odd viscosity. It will be interesting to
investigate its transport properties in the presence of an
external driving force. We have to leave these issues for
future work.

We acknowledge useful discussions with Masaki Sano
and Euijoon Kwon. This work was supported by the 2024
Research Fund of the University of Seoul.

Data availability– The data that support the findings
of this article are openly available [67].
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