arXiv:2512.18756v1 [cond-mat.stat-mech] 21 Dec 2025

Collective behavior in the nonreciprocal multi-species Vicsek model
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We investigate collective behavior in a @Q-species Vicsek model with a nonreciprocal velocity
alignment interaction. This system is characterized by a constant phase shift « in the inter-species
velocity alignment rule. While the phase shift renders the interaction nonreciprocal, the system is
globally invariant under any permutations of particle species, possessing Potts symmetry. The com-
bination of Potts symmetry and nonreciprocity gives rise to a rich phase diagram. The nonreciprocal
phase shift generates either counter-clockwise or clockwise chirality. Potts symmetry can be broken
spontaneously. Consequently, the system exhibits four distinct phases: A species-mixed chiral phase
where particles perform counter-clockwise chiral motion with quasi-long-range order, a species sepa-
ration phase where Potts symmetry is broken and species-separated particles form vortex cells with
clockwise chirality, a coexistence phase, and a disordered phase. We derive a Boltzmann equation
and a hydrodynamic equation describing the system in the continuum limit, and present analytic
arguments for the emergence of chirality and species separation.

I. INTRODUCTION

Advances in active matter physics reveal that collec-
tive behavior of many-body systems is characterized not
only by the nature of interactions among constituent par-
ticles but also by their self-propulsion [IH6]. A compar-
ison between the equilibrium XY model in two dimen-
sions (2D) [7] and the Vicsek model [8] exemplifies the
relevance of active motility. Both models possess contin-
uous rotational symmetry. However, the XY model can-
not exhibit long-range order due to the Mermin-Wagner
theorem [9], while the Vicsek model can.

Recently, active systems with nonreciprocal interac-
tions have attracted growing interest. A nonreciprocal in-
teraction, violating the action-reaction principle, is ubiq-
uitous in active matter systems. A bird in a flock can
follow a leader but not vice versa [10, [II]. In an ecologi-
cal system, a predator tends to pursue a prey, but a prey
tends to evade a predator [12]. In these examples, asym-
metry in the leader-follower or prey-predator relationship
is the origin of nonreciprocity.

Fruchart et al. formulated a nonreciprocal active sys-
tem model consisting of two species, A and B, of self-
propelled particles with asymmetric roles [13]: A species
particles (pursuers) tend to align their velocity with B
species particles while B species particles (evaders) tend
to anti-align with A species particles. It turned out
that the system can resolve the dynamic frustration by
forming a chiral state: both species particles perform
chiral motion, counter-clockwise or clockwise, with a
relative phase difference. Nonreciprocal active systems
have been investigated further in the context of self-
propelled particles with pursuer-evader type asymmetric
interactions[I3HIY] and with random interactions [20} 21],
and in the context of continuous field theories [22H26]
involving an asymmetric coupling matrix. Experimen-
tal studies have also been performed with robotic sys-
tems [27, 28]. These studies have revealed interest-
ing nonreciprocity-induced phenomena such as run-and-

chase states [19, [26], traveling waves [23] [24], cluster-
ing [16], and phase separation [22].

More recently, we have proposed a multi-species Vicsek
model with a nonreciprocal alignment interaction [29].
In contrast to nonreciprocal systems built upon an
asymmetric relationship among constituent particles, the
model is fully symmetric under any permutations of
particle species. Such a nonreciprocal yet symmetric
model is established by introducing a phase shift into the
Vicsek-type alignment interaction as shown in Egs. @
and . The model with @) species possesses the permu-
tation (Sg) symmetry, or equivalently Potts symmetry
of the Q-state Potts model [30], as well as continuous ro-
tation symmetry. It was shown that nonreciprocity and
Potts symmetry result in intriguing collective behaviors.

In this paper, we present a detailed analysis of the
nonreciprocal @-species Vicsek model with Potts sym-
metry. In Sec. [l we introduce the model consisting
of @) species particles subject to a Vicsek-type velocity
alignment interaction. The model assumes a constant
phase shift in the inter-species velocity alignment inter-
action. We justify the phase shift by assuming a time
delay in signal transformation processes between parti-
cles of different species. In Sec. [[II} we derive the Boltz-
mann equation and the hydrodynamic equation describ-
ing the particle-based model in terms of continuum fields
for species-dependent particle density, polarization, and
so on. A mean-field treatment, assuming spatial homo-
geneity, predicts that the nonreciprocal phase shift gives
rise to chirality. In Sec. [[V] we present extensive nu-
merical simulation results for Q = 2,---,6. These nu-
merical studies reveal that the system displays a disor-
dered phase, a chiral phase with quasi-long-range-order,
a species-separation phase, and a coexistence phase. In
the chiral phase, particles of all species are mixed and
perform counter-clockwise chiral motion. Surprisingly,
a correlation function of the local polarization follows a
power-law decay indicating quasi-long-range order. We
present an argument that the quasi-long-range order in
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the chiral phase has the same origin as the equilibrium
XY model in 2D. In the species-separation phase, Potts
symmetry is broken spontaneously and particles of differ-
ent species unmix. We demonstrate numerically that an
effective repulsion between different species emerges from
the nonreciprocal phase shift. We also present theoretical
evidence for the repulsion from a perturbative analysis of
the hydrodynamic equation derived in Sec. [[ITC] Finally,
we conclude the paper in Sec. [V}

II. NONRECIPROCAL MULTI-SPECIES
VICSEK MODEL

To analyze the emergence and consequences of non-
reciprocity and Sg symmetry (or Potts symmetry) in
active systems, we formulate a generic model of self-
propelled particles with an internal phase degree of free-
dom. Particles tend to align with their neighbors based
on time-delayed information about the state of these in-
ternal phases. Similar systems of agents that couple their
motility with internal degrees of freedom have been con-
sidered in the past [3IH33].

Concretely, we consider a ()-species ensemble of self-
propelled particles in square boxes of size L? in two
dimensions. Each species has the same population of
No = poL? particles. The total number of particles
is denoted as Niot. = QNg with pyoy. = @Qpo. FEach
particle, indexed by n = 1,---, Niot., iS characterized
by its position r, = (z,,yn), its direction of motion
é(0,) = (cosb,,sinb,) with polar angle 0, € (—,],
a species index (or ‘spin’) s, = 1,---,@Q, and a phase
1, as an internal degree of freedom. This phase has an
intrinsic eigen-frequency ;. and is subject to an align-
ment interaction.

Particles are self-propelled to a direction set by their
polar angles: 7, (t) = vpé(6,(t)) in continuous-time dy-
namics or 7, (t + At) = 7, (t) + voAté(0,(t)) in discrete-
time dynamics with a self-propulsion speed vy. Our
model assumes that the internal phase relates to the po-
lar angle via

¢n(t) = Qine.t + Gn(t)- (1)

Adopting alignment rules of the continuous-time Vicsek
model, or the active Brownian particle (ABP) model |34,
39], the particles update their phases based on time-
delayed information about the phases of their neighbors
and an additional noise:

wn(t) = Qing. —J Z Sin[%(t) - wm(t - Tnm)] + fn(t)a

meN,
(2)

where N,, denotes the set of particles within a circle with
radius r¢ around particle n, and &,(t) is Gaussian delta-
correlated noise. This kind of dynamics is readily realiz-
able with programmable micro-robots, c.f. [I3]. Without
time delays (7., = 0) and without an intrinsic eigen-
frequency (Qin. = 0), this is identical to the ordinary
active Brownian particle dynamics.

The internal phase degree of freedom can be eliminated
to derive the equations of motion for the polar angle 6,,.
First, we note the Taylor expansion for ¥, (t — Tpm):

Ui (t = Tom) = Ym(t) — ¢m(t)7—nm + O(Tr%m) (3)

with ¢m(t) = Qine. + ém(t). For a large eigen-frequency,
[Qnt.| > 10, (t)] = O(J), we can approximate ¢, (t) ~
Qint. to obtain

wm(t — Tnm) ~ 'Q/Jm(t) — Qine. Tam- (4)

Plugging this into Eq. and using ¥, (t) — ¥, (t) =
0., (t) — 0., (t), we obtain

On(t) = =T > sinf(t) = Om(t) — nm] + &n(t)
meN,, (5)

7 (1) = voé (0, (t))
with phase shifts

apm = —Qint. Tnm  (mod 27). (6)
Reciprocity requires that sin(6,,—0,, —aym) = —sin(6,,—
0., — Qtmn ). This is achieved only if the phase shifts are
antisymmetric, i.e., Qmp = —Qum (mod 27). Other-
wise, the phase shift renders the alignment interaction
nonreciprocal.

The discrete-time version of this dynamics, which we
will consider throughout this paper for numerical works,
is given by a conventional Vicsek model dynamics with
phase shifts a,,:

0,,(t + At) = Arg Z oi(Om (D) +anm)

meN,
To(t + At) = vy (t) + voAté(0,(1)),

+Ca(t),

(7)

where (,(t) is an independent random variable drawn
from a uniform distribution on [—nm,n7] with noise
strength parameter n [36]. The interaction terms in
Egs. (5)) and enforce velocity alignment with a phase
misfit a,,.,,. We expect that the continuous- and discrete-
time models share the same qualitative characteristics,
which we confirmed numerically.

The origin of time-delays 7, could be manifold. Here
we assume that they are dominated by signal conver-
sion/transformation processes rather than transmission
speed (in which case the delays would become distance
dependent [31]). Moreover, here we focus on the case in
which these processes are slower between particles of dif-
ferent species than between particles of the same species,
but otherwise independent of the species index, which
implies

Qpm = (1l — s, 5, ). (8)
It suffices to consider the nonreciprocal phase shift in
the range 0 < a < 7 due to global rotational symme-
try in the polar angle and inversion symmetry under



(x,y) — (z,—y). It constitutes a minimal model for a
multi-species flocking system with nonreciprocal interac-
tion for 0 < o < 7. In this setting, the velocity align-
ment interaction among particles of different species is
subject to a constant phase misfit a: Particle n tends to
align with the apparent polar angle of neighboring par-
ticles, which is identical to the true angle for the same
species, but shifted by « for different species. This model
will be called a Q-species nonreciprocal Vicsek model (Q-
NRVM).

When a = 0, the model reduces to the original Vic-
sek model. When o = 7, the dynamics favors alignment
among particles of the same species and anti-alignment
among those of different species. The two-species model
with o = m was explored in Ref. [37]. The inter-species
anti-alignment stabilizes a parallel flocking state in which
the two species self-organize into an alternating band
structure flowing in the same direction, and an anti-
parallel flocking state in which the two species flow in
the opposite direction penetrating through each other.

The Q-NRVM possesses permutation (Sg) symmetry
or Potts symmetry of the Q-state Potts model [30] since
any permutation of the () particle species leaves the sys-
tem invariant, meaning all particle species are equiva-
lent. This permutation symmetry is broken explicitly in
other nonreciprocal systems based on prey-predator-type
or pursuer-evader-type interactions [I3] 14} 22, [38-4T].

Finally, we note that the continuous-time dynamics for
the polar angle, Eq.7 resembles the equation of mo-
tion of the Kuramoto model [42]. Flocking in the for-
mer corresponds to phase synchronization in the latter.
The Kuramoto model includes quenched random noise
instead of temporal noise, and the phase shift is absent.
Sakaguchi and Kuramoto [43] later introduced a constant
phase shift term to the Kuramoto model. The phase shift
term was shown to result in an asymmetric distribution of
the angular velocity. Abrams et al. [44] and Pikovsky and
Rosenblum [45] extended the Sakaguchi and Kuramoto
model by introducing multi-species subpopulations of os-
cillators and found chimera states in which synchronized
and desynchronized domains coexist [46]. In our model,
the angle variables are coupled locally to the spatial de-
grees of freedom. A global coupling has also been studied
recently [32], 33].

III. CONTINUUM FIELD THEORY

To explore potential collective states of our model,
we derive a Boltzmann equation and a hydrodynamic
equation. Before proceeding, it is useful to consider a
naive mean-field limit where the alignment interaction is
infinite-ranged. Let Q,, = N%) >, €96, = A,en be
the polarization of species . When Ay = --- = A, the
discrete-time dynamics Eq. yields an iterative map

for the phase:

Q
0, =Arg |(1 - €')ei®n 4 ¢l Z el (9)

v=1

This map allows an in-phase chiral solution, in which all
the phases are synchronized and advance by

Yin = Arg[l 4 (Q — 1)e™®] > 0. (10)

each time step. In this state, particles perform counter-
clockwise chiral motion with synchronized polar angles.

The discrete map @D also allows an out-of-phase chiral
solution with vanishing net polarization (3° e©» = 0),
in which the phase angles advance by

- 1
Yous = Arg(l — ') = —5(77 —a)<0 (11)
each time step. In this state, particles perform clockwise
chiral motion with species-dependent polar angles. These
mean-field considerations indicate that the nonreciprocal
phase shift can generate chirality.

A. Boltzmann equation

We proceed further to derive a field theory based on the
Boltzmann equation approach [47H49]. Let f#(r,6,t) :=
(D2, 0(rn(t) —7)0(0n(t) — 0)6,s,) be the one-particle
distribution function for species y = 1,---,Q. The
Boltzmann equation approach assumes (i) a continuous-
time dynamics incorporating single particle diffusion at a
rate A, (ii) an alignment interaction through binary col-
lisions, and (iii) a factorization of multi-particles distri-
bution function as a product of one-particle distribution
functions, known as the molecular chaos assumption.

The single-particle distribution function f*(r,6,t) is
governed by the coupled equations

Q
Ouf" = —voe(0) - V + L[]+ D Leall . ). (12)

v=1

The first term in the righthand side accounts for the self-
propulsion. The operators in the second and the third
terms, abbreviated to I} = I4[f*] and I')] = L.ai[f*, f¥],
describe single-particle diffusions and binary collisions,
respectively. They are given by

Ig = Af’u(’l'797t)

i [0 )P0 — a0 (13)

—T

I = — fH(r,0,t)

col T

e

K(0,0')f"(r,0',t)d0'

[ L, B0, 1) (02, 1) (61, 0)
XPH(Q — 91 — @My(el, 92))] d91d92 (14)



For simplicity, we adopt the Gaussian distribution

1 $ e@mzmmet) (15)

V2mn? S

of mean zero and variance n? folded into the interval
[—7 : 7] for both the polar angle diffusion and the noise
in the alignment interaction. The scattering cross section
K(61,62) and the scattering angle ©,,,(61,62) depend on
the relative angle 3 — 6;. Hence we will regard them as
functions of a single variable ¢ = 65 — ;. The scattering
K(¢) = 4roug ‘smg‘ [9]. The
scattering angle for a reciprocal intra-species collision is
given by O(¢) = ¢/2 [49]. In contrast, upon a nonrecip-
rocal inter-species collision, the scattering angle should
be modified due to the phase shift . The scattering an-

Pa(¢) =

cross section is given by

gle is written as 0, (¢) = 0,,0Or () + (1 — 0, )Onr (D)
with
On(9) =2, "
16
Onn(g) = (070 _(mod 1)

The Boltzmann equation can be casted into a di-
mensionless form by rescaling r — 7, t — %t, and
f* = pof*. In the dimensionless form, we can set
A = vy = pg = 1 and the scattering cross section is
replaced by

K(¢) =2rk

sin?‘ . (17)

with a dimensionless coupling constant

_ 2rovopo

- (18)

It is convenient to use the complex coordinates z =
x + iy and z* = x — iy instead of the Cartesian coordi-
nates z and y. In terms of the complex coordinates, the
directional derivative becomes

€(0) -V = (cos0)d, + (sin0)9, = ("9, +e"9,-) (19)
with 0, = (9, —i9,) and 8. = 3(9, +1i0,). We further
expand the one-particle distribution function in terms of
the Fourier or multipole modes

ka rot)e . (20)

keZ

fH(r,0,t)

These modes correspond to the local particle density
f8(r,t) = pt(r,t), the local complex polarization field
A t) = () = [dOe® fr(r,0,t), and so on. The
polarization field may be represented with a complex
field wh(r,t) = mk(r,t) + imi(r,t) or a vector field
mkt(r,t) = (mh(r,t),ml(r,t)) with mi(r,t) = (cos0) fu
and mf(r,t) = (sin6) ;.. Note that f_, = f.

4

Plugging Eq. into Eq. , one can derive the
coupled equations for ff. To handle the multi-species
system with ease, we introduce a Q-dimensional species
space and represent the multipole moments as a column
vector

Fo=(ft o )T (21)

in the species space. The interaction kernels between kth
and [th modes can be written in a compact form using a
Q x Q matrix J*¥ whose matrix elements are given by

(T = S JE 4 (1= 6,,) JE. (22)

Here, J{{l and JffIlR denote intra-species reciprocal and
inter-species nonreciprocal coupling constants, respec-
tively (see Sec. for their explicit expressions). We
also introduce the Hadamard product o which maps two
species space vectors @ and b to ¢ = a ob = b o a where
c* = a*b". The Boltzmann equation is then written in a
compact form

Ocfr = — Oz fro—1 — 02 frp1
—(L=POfi+ Y feo (M), (23)

1€Z

where P, = e ~k?n*/2 is the k-th Fourier coefficient of the
noise dlstrlbutlon in Eq. . In particular, for £ = 0,
Eq. (23) reduces to a continuity equation

Ofo+0.f1+0.F1=0, (24)
or Oyp* +V . -mt =0.

B. Linear stability analysis

The Boltzmann equation has a trivial steady state so-
lution f(r,t) = fu(r) = dkolg with 1o = (1,---,1)T.
This corresponds to a homogeneous disordered state. We
inspect linear stability of this disordered state against a
uniform temporal fluctuation fi(t) = fr + €x(t). Ex-
panding the Boltzmann equation with respect to €, we
obtain

ék = Z Mklel (25)

l

with the stability matrix
MM = 654 (P, — 14+ J" + D(J*15)).  (26)

Here, we introduce an operator D(-) mapping a species
space vector u = (u',---,u®)T to a diagonal matrix
D(u) = diag(u' uT) J50]. Since different Fourier
modes do not couple, it suffices to consider each mode
k separately with the stability matrix M®*) = MF*,
Noting that D(J*1g) = JE° + (Q — 1)J&%, we obtain
[M®),, = D®5,, + 0% (1 -4,,) with

D® =p, — 1+ JEF 1+ JEO 4+ (Q — 1) TR,

i _ (27)



0.25 7

0.6 T 1.0
N
P 5 N
020l 2 ! 05] "N k=01
’ i \ 0.5
i 0.4 R
0.15 ] 1 \ -
e ) | =0.31 \ y 00 <
0.101 ] \ ) y
i 0.2+ I‘ ’,' s
4 1 =0.3 -~ 1 —0.
0.05 F ’ 0.1 i i
1
______ I 1
0.00 . . . 0.0 . — -1.0
0 025 05 075 1 0 025 05 075 1
a/m a/m

FIG. 1. Mean-field phase diagram from the linear stability
analysis at @ = 3 in the o — x plane with fixed n = 0.3 in (a)
and in the oo — 7 plane with fixed x = 0.1 in (b). The chiral
angular frequency 2 in the in-phase and out-of-phase chiral
states are color-coded according to the bar chart.

The matrix M®) has a nondegenerate complex eigen-
value Ai(f) = D + (Q — 1)O™ with an eigenvector
Ain = 1¢ [in-phase mode] and a (@ — 1)-fold degenerate
complex eigenvalue A(()]fl)t = D" — O with eigenvec-
tors Aout L Ain [out-of-phase mode|. We focus on the
polarization field with & = 1.

The disordered state is destabilized by the in-phase
mode and the out-of-phase mode. The stability bound-

aries set by %[Ai(i?out] = 0 are given by

1—e /2
Rin = o 3
4e=/2[1 4 (Q — 1) cos® §] — 8Q/3
1 en/2
Rout =

de=*/2[1 + Y cos & —cos3 ¢ + Lsin §] - 4Q°
(28)

In the in-phase chiral mode (k > ki), all particles per-
form a counter-clockwise chiral motion with identical
phases (Ain = 1) with a positive angular frequency

O = SIAY] = 45(Q — 1)e "/ sin % cos? % > 0. (29)
On the other hand, in the out-of-phase mode (k > Kout),
all particles perform a clockwise chiral motion with a
negative angular frequency

Qout = —Iie_nz/Q(Qa + 2sin ) cos% <0. (30)
The linear stability analysis yields the mean-field phase

diagram as shown in Fig. [T} It suggests that chiral states
can emerge due to nonreciprocity.

C. Hydrodynamic equation

The Boltzmann equation is an infinite hierarchy of cou-
pled equations for the multipole moments. For the long-
time and large-distance behavior, it is useful to consider
a hydrodynamic equation for the lowest order multipole

moments: a density field (K = 0) and a polarization
field (k = £1). Following Ref. [47], we will neglect higher
order moments with |k| > 3 and take a quadrupole mo-
ment with & = +2 as a fast variable enslaved by the
density and polarization fields. The Boltzmann equation

in Eq. with k£ = 2 then yields
0o fr = — (1= Po) fo + fo o (J*fo)

31
+ fro (J? f1) + fo o (JP fa). 1)

Using a o b = D(a)b =
equation to obtain

D(b)a, we can solve the above

fo=—=X(fo) {0 f1 — fro (T f1)} (32)

with
X(fo) = {(1 = Py) = D(fo)J* = D(J*°f)} . (33)

Inserting fo into Eq. with k£ = 1, we finally obtain
the hydrodynamic equation

Oifi = — 0.« fo + Y (fo) fu

+ 0. (X(fo) (0. f1 — D(f1)J*' f1)) (34)
+ Z(f-1, fo) (0 f1 — D(f1)J* f1)
where
_ 1 10 11
Y =—(1-P")+ D" fo) +D(fo)J (35)

Z =~ [D(J"' 1) - D(f-1) %) X (fo).

Note that the @@ x @ matrices X and Y depend only on
fo while Z is linear in f_; = f;. The righthand side of
Eq. includes terms quadratic in fi;, which manifests
the broken time reversal symmetry. The hydrodynamic
equation is highly nonlinear, which makes it improbable
to obtain an analytic solution. Nevertheless, one can gain
useful physical insights considering limiting cases.

We consider the hydrodynamic equation restricted
within the species-symmetric subspace in which
fo(r,t) = p(r,t)1g and fi(r,t) = w(r,t)lg with a
constant vector 15 = (1,---,1)7. Taking an inner
product of Egs. and with élQ, one can obtain
the field equation

Orp = — O+w* — O,w (36)

Orw = = 0.-p + (u(p) — E(PwP) w+40.0(p)0se 0
+2¢(p)w* Dz w + 20.1(p)w?, (37)

where the coefficients are given by v(p) = 1(X)q,
wp) = (Vg Cp) = (Z)o/Cu"), nlp) =
(XJ?M) /2, and &(p) == (ZJ*)g/w* with (M)q :=
1,M14/Q [51].  These coefficients vary spatially
through the r dependence of the density field. We em-
phasize that they are complex numbers in the presence
of a nonreciprocal phase shift « # 0, 7. For instance, for



Q = 2, they are given by
1
1—-P)+ %l@p(lﬁl +5(1 + e ) Py)

; « 4
o) =~ Pyt (14 2002 §) Py - 3

V(p)=i(

C(p) = 4kv(p) <Pleia/2 cosa(l 4+ cosa) + 2P, — i)

n(p) = 8kw/(p) ((1 + )Py + §>

with Py, = e=F"n"/2,

If one further neglects spatial fluctuations such that
p(r,t) = 1 and w(r,t) = w(t), Eq. reduces to a
Stuart-Landau equation [52]

w(t) = pow(t) — Eolw(t)|*w(t) (38)

with complex parameters pg = p, +ip; and &g = & +1&;.
The Stuart-Landau equation undergoes a supercritical
Hopf bifurcation [52, (3] at . = 0. For p, > 0, it has a
limit cycle solution w(t) = Ae** with a constant ampli-

tude A = % and an angular velocity Q = p; — "g—gl

The limit cycle solution corresponds to the homogeneous
in-phase chiral phase found in the linear stability analysis
of the Boltzmann equation.

In summary, we have derived the Boltzmann equation
and the hydrodynamic equation for the Q-NRVM. The
naive mean-field theory and the more sophisticated con-
tinuum field theory demonstrate that the nonreciprocal
interaction leads to chiral states.

IV. PHASE DIAGRAM

The continuum theory, assuming spatial homogeneity,
predicted in-phase and out-of-phase chiral states. Here
we investigate whether the chiral order survives temporal
and spatial fluctuations.

In Monte Carlo simulations, we have measured a chi-
rality

1 .
~(t) = NAL ; sin(6,,(t + At) — 6,,(t)) (39)
and a polarization

m(t) =

w3 é(%(t))‘ . (40)

A positive (negative) chirality indicates a collective
counter-clockwise (clockwise) chiral motion. The po-
larization measure the degree of phase coherence. It is
nonzero in the presence of long-range flocking order. It
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FIG. 2. Color plot of the order parameters (a) ms, (b) es,
(¢) 7s, and (d) the bimodality coefficient 3, for the three-
species system of size L = 128 with pg = 2. Phase boundaries
of a chiral phase (o), a species separation phase (), and a
coexistence phase (¢) are drawn.

is also nonzero when particles exhibit chiral motion with
synchronized polar angles. We have also measured an
energy

_ 1 Qds, s, — 1
o= (2778 prot) N 2 < Q-1 ) Y

|70 —Tm|<T0

This quantity is analogous to the energy density of the
Q-state Potts model [30]. It equals zero if the parti-
cle species are perfectly mixed, and becomes positive
when Potts symmetry is broken and particles of different
species are spatially separated. The mean steady-state
values mgs = (m(t))s, 75 = (7(t))s, and es = (e(t))s are
used to characterize the macroscopic state of the system,
where (...)s denotes a time average in the steady state.

Figure [2] presents an overall behavior of those order
parameters in the o — 1 plane for the three-species case,
along with the phase boundaries obtained in Ref. [29].
Analyzing the order parameters quantitatively, we have
identified four distinct phases: a disordered phase, a chi-
ral phase with quasi-long-range order (QLRO), a species-
separation (SS) phase with vortex cells, and a coexistence
phase [29]. We will characterize each phase in the subse-
quent subsections. The overall behavior of the order pa-
rameters, presented in Fig. indicates that the phase
diagram has a similar structure for all values of Q. As Q
increases, the phase boundaries shift toward a higher «
region.



FIG. 3. Snapshots of a particle configuration in (a) and a
polarization field in (b) in the QLRO chiral phase. In (a),
each dot representing a particle is color-coded according to
particle species. In (b), the phase angle of a polarization field
is color-coded according to the chart in the inset. Parameters:
Q=3,L=128, po =2, a =0.37, and n = 0.4.

A. Chiral phase with quasi-long-range order

The chiral phase, occurring when a and 7 are small,
is characterized by species mixing (es ~ 0) and counter-
clockwise chirality (75 > 0). The polarization order pa-
rameter myg takes larger values than in the other regions.

Figure [3] presents representative snapshots of a par-
ticle configuration and a polarization field m(r,t) =
>, €(0n(t)0(r — ro(t)) obtained from a Monte Carlo
simulation. The polarization field displays a long wave-
length orientational fluctuation. It turned out that polar
order is not long-ranged but quasi-long-ranged [29]. The
steady-state correlation function G, (r) := (m(r+mrg,t)-
m(1rg,t))ry s/ Prot., averaged over ro and ¢ in the steady
state, decays algebraically as

Cwp(r) ~r™ 7 (42)

and the polarization order parameter decreases with in-
creasing system size L according to the power-law

mg(L) ~ L7P. (43)

The critical exponents 7 and 8 vary continuously inside
the chiral phase [29].

The mean-field analysis for the Boltzmann equation
predicted a homogeneous in-phase chiral state for small
a and 7. Figure [ presents typical snapshots of a density
field and a polarization field obtained by integrating nu-
merically the Boltzmann equation with a random initial
configuration. As these snapshots demonstrate, spatial
fluctuations persist in the in-phase chiral state. There-
fore, the homogeneous in-phase chiral phase in Fig. [I]
should be understood as the QLRO chiral phase.

The QLRO chiral phase of the @-NRVM reminds us of
the QLRO phase of the equilibrium 2D XY model |7, 57
[59]. This model describes ferromagnetic ordering of con-
tinuous planar spins s,, = (cosf,,siné,,) on a 2D lattice.

FIG. 4. Snapshots of a density field in (a) and a polariza-
tion field in (b) computed with the Boltzmann equation
for the three-species system [54]. The Boltzmann equation,
truncated within |k| < 4, is integrated numerically using
the pseudo-spectral method [55] [56]. For numerical conver-
gence, the Boltzmann equation is regularized with a diffusion
term [49]. The snapshots are taken when the system, starting
from a random initial configuration, reaches a steady state.
The density field in (a) is color-coded using local densities
(o, 0%, p3) of the three species as an RGB code. These snap-
shots reveal that the three species particles are mixed with

p' = p?> = p* and that spatial fluctuations persist. Parame-

ters: Ly = Ly, =64, n =0.3, a/m = 0.1 and x = 0.053.

The spins interact via the XY Hamiltonian

Hyy =-J Z Sp - Sm = —J Z cos(On — Om), (44)
(

(n,m) n,m)

where J > 0 and the sum is over nearest-neighbor
pairs. The Hamiltonian has continuous rotational sym-
metry. Consequently, according to the Mermin-Wagner
theorem [9], the equilibrium XY system in 2D cannot
maintain long-range order. Instead, below a Berezinskii-
Kosterlitz-Thouless (BKT) transition temperature Tk,
the system displays QLRO, which is characterized by
the power-law scaling of the correlation function as in
Eq. and the order parameter as in Eq. with
the exponents 7 and B related by a scaling relation
B = 7/2 [58]. The exponents vary continuously in the
QLRO phase and take the universal values Skt = 1 /8
and kT = 1/4 at the transition temperature Tgx [58].
The BKT transition is driven by topological excitations,
vortices and antivortices [7].

The original 2D Vicsek model has continuous rota-
tional symmetry but achieves long-range order because
the self-propulsion drives the system strongly out of equi-
librium [60]. Variants of the XY model were recently
studied, where XY spins diffuse independently while in-
teracting via a ferromagnetic coupling with local neigh-
bors [61L, [62]. These models are a passive version of the
Vicsek model. Although passive diffusion drives the sys-
tem out of equilibrium, the numerical study showed that
the system undergoes a BKT transition between a QLRO
phase and a disordered phase [6I]. The QLRO was also
observed in a Vicsek-type model in which self-propelled
particles reverse its velocity stochastically [63].



Given that the Q-NRVM consists of self-propelled par-
ticles, it is an intriguing question whether the QLRO in
our model has the same origin as that of the 2D equi-
librium XY model. The numerical finding makes this
scenario plausible, and we will elaborate on this possibil-
ity using an analytic argument. In essence, we will show
that, in the chiral phase, the angles behave like motile
XY spins, and the spatial fluctuations of the particles
around their circular orbits are diffusive. This result,
combined with the findings in Ref. [6I], implies QLRO.

We can simplify the continuous-time dynamics given
in Eq. in the QLRO chiral phase. The mean angular
velocity of particle n is approximately given by Q¢ =
(On) = T en, SN Qnm = T75po(Q — 1) sina. Then,
the equation of motion for a phase angle ¢,, := 0, — Qqt
in the co-rotating frame becomes

én ~—J Z V(bn — dm» tnm) + En(t) (45)

meN,
with
V (A, p) :=sin(A¢p — ) + sinp ~ cospsin Ag. (46)

To obtain the last expression, we neglected the higher-
order term (1 — cos Ag) = O(Ap?). Inserting Eq.
into Eq. , we obtain

Q.Sn ~ —Jeff Z Sin(ﬁbn - ¢m) + fn(t) (47)

meN,

with Jeg = (Q_l)% The resulting equation has the
form of a Langevin equation for XY spins.

The key difference from the XY model lies in the
particle motility. A particle displacement is given by
Az = ﬁ;-&-t dt' e (@0t +0() with complex coordinate
z =z + 4y. The mean square displacement is given by

tot
(182%) = vg // dt'dt’ "' =t") <ei(¢(t,)*¢(t”))>.
t
O (18)
It is reasonable to assume that <ei(¢(t')—¢(t”))> =

ae~ 1" =t"l/™ with a constant a > 0 and a persistent time
Tp. The integral can then be evaluated exactly.
When a = 0 (Vicsek model case), Qg = 0 and we get

242
(|A2[2) ~ {t ’

2av3Tpt,

(t< )

(t > 7). (49)
This shows a crossover from ballistic motion to diffusive
motion. This ballistic motion, occurring over the per-
sistence time scale, causes strong temporal fluctuations
in the interaction network, which we believe to be the
reason why the Vicsek model is not constrained by the
Mermin-Wagner theorem. In contrast, when o # 0 and
Tp20 > 1 (meaning particles can complete multiple rev-
olutions within a persistent time scale), the mean square

FIG. 5. Snapshots of a particle configuration in (a) and a
polarization field in (b) in the SS phase. The same color
scheme is used as in Fig. [3] Snapshots for different values of
Q are found in Fig. Parameters: Q =3, L = 128, po = 2,
a = 0.8, and n = 0.35.

displacement is given by

(azp) -yt B <)
(1003 /98) = | o= (t> 7).

Interestingly, chirality makes the particles’ motion diffu-
sive at all time scales. Since particles disperse slowly, the
temporal fluctuation of the mutual interaction network
is weaker than in the original Vicsek model. As passively
diffusing XY spins undergo a BKT transition to a QLRO
phase [61], we conclude that the Q-NRVM should exhibit
a QLRO phase and the BKT transition.

The BKT transition is associated with unbinding and
proliferation of vortex-antivortex pairs. In the Q-NRVM,
these topological excitations destroy the phase coher-
ence and also generate inhomogeneities in the density
field: we find that the density field develops an oscillat-
ing monopole moment at a vortex core while a rotating
quadrupole moment at an antivortex core (see App. .
Thus, the disordered phase is characterized by phase in-
coherence and density fluctuations.

In summary, we have shown in this subsection that the
@-NRVM is in a QLRO chiral phase when « and 7 are
small. In this phase, the polarization correlation function
decays algebraically and the polarization order parame-
ter obeys critical FSS behavior. We have presented an
analytic argument that the transition from the QLRO
chiral phase to a disordered phase is the BKT transition.

B. Species separation

For large o and small n, the Q-NRVM exhibits species
separation. If particles of different species were mixed
well, they would form an out-of-phase chiral state as pre-
dicted by the mean-field theory. We find that the nonre-
ciprocal phase shift generates repulsion between counter-
propagating flocks of different species, which destabilizes
a species-mixed out-of-phase chiral state. In this section,
we will characterize the SS phase, and present an analytic



FIG. 6. Snapshots of a density field in (a) and a polarization
field in (b) computed with the Boltzmann equation for
the three-species system [54]. We adopt the same color-coding
scheme as in Fig. @ Parameters: L, = L, = 64, n = 0.3,
a/m =0.9 and k = 0.212.

argument for its existence based on the hydrodynamic
equation.

Figure |p| presents representative snapshots of a parti-
cle configuration and a polarization field in the SS phase.
Particles are species-separated and self-organize into a
vortex cell (VC) structure. Each cell is occupied predom-
inantly by particles of a single species flowing clockwise
along a boundary. Accordingly, the SS phase is char-
acterized by a positive energy order parameter es and
a negative chirality 75 (see Figs. [2[ and . The phase
transition into the SS phase is signified by a discontinu-
ous jump in es.

The continuum Boltzmann equation also confirms
the SS phase solution (see Fig. E[) This assures that the
continuum field theory captures the physics of species
separation.

In the SS phase, particles of different species do not mix
with each other as if there were an inter-species repulsive
interaction. We demonstrate this effective repulsion us-
ing a setting in which particles of species p =1 (u = 2)
are distributed uniformly in the x < 0 (z > 0) region
and flow collectively to the positive (negative)-z direc-
tion. These counter-propagating flocks collide at time
t =0 at = 0. We have measured density and polar-
ization profiles p*(x) and (m#(z), m*(x)) at successive
time steps after the collision (see Fig.|7). The numerical
data clearly show that particles of different species can-
not penetrate into each other beyond a narrow collision
band. The inter-species nonreciprocal interaction within
the band causes the polarization field of each species to
turn clockwise from the initial longitudinal direction to
the perpendicular transverse direction [64]. This reorien-
tation prevents mixing and leads to SS.

We present an analytic theory for the scattering of
counter-propagating flocks using the hydrodynamic equa-
tion with @ = 2. Our theory relies on a perturbative
description for the hydrodynamic fields within the nar-
row collision band for small ¢, := 7 —«. Let w#(t) be the
complex polarization field of species p = 1,2 near = ~ 0.
A spatial variation of the polarization field is assumed to
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FIG. 7. Effective repulsion between counter-propagating
flocks of species p = 1,2. Each panel presents columnar pro-
files of (a) particle density, (b)  component of polarization,
and (c) y component of polarization at successive time steps
tn, =20 x n with n =0,---,5. Curves for species yu = 1 (2)
are drawn in red (blue) color getting darker as ¢,, increases.
Parameters: L, = L, =128, Q@ =2, n = 0.4, and o = 0.857.

be negligible at x ~ 0.

When a = m, the counter-propagating flocks form
an anti-parallel flocking (APF) state [37], in which they
counter-propagate through each other with opposite po-
larizations w!(t) = —w?(t) = w(t). The hydrodynamic
equation at o = 7 for the APF state becomes

Dro(t) = (s — Exlul?) w, (51)

where
pr = (1+2(7+2)k)P1 — (1 + 8k) (52)
Er = 3257 Po(15F: = 2) (53)

15+ 112k — 15P;

with P, = e=k°n’/2 The steady-state polarizations in

the APF state are given by w! = —w? = w, with

Wy = \/’Z’: (54)

When a < m, the counter-propagating flocks deviate
from the APF state. We investigate the deviation us-
ing the hydrodynamic equation linearized with respect
to dwq (t) := w'(t) — wy and Swa(t) := w3(t) + w,. After
lengthy but straightforward algebra, we have derived the
linearized equations of motion

Odwg =a10wg + a20ws (55)
00w =by + (b1 + bg)éwA + bgdw:‘:‘, (56)
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FIG. 8. Real part of the Lyapunov exponent A 4  for the anti-
symmetric part Jw4 in the a — k plane with fixed n = 0.3 in
(a) and in the o —n plane with fixed x = 0.5 in (b). The thick
dashed lines represent the stability boundary R[A4 4] = 0.

for a symmetric part dwg := dw'! + éw? and an anti-
symmetric part dwa = (6wt — dw?)/(2wy).

It is instructive to consider a limiting case with n = 0.
In App. we present explicit expressions for the coef-
ficients a1 2 and by2, and four normal mode solutions.
It turns out that dw, has an unstable normal mode
e+ e+t whose Lyapunov exponent A A,+ is real and
positive and eigen-direction e*®4.+ ~ —i points toward
the negative y direction for sufficiently small e, (see
Egs. and (DII)). Due to this unstable normal
mode, the two flocks turn their polarization by —m/2
upon collision, and flow eventually along the boundary
between them in the opposite direction. Consequently,
the two species cannot mix.

For general 7, we can evaluate the Lyapunov exponents
numerically. Lyapunov exponents for the symmetric part
remain negative. One the other hand, one normal mode
for the antisymmetic part has a real positive Lyapunov
exponent in a broad parameter range. We present the
real part of the most relevant Lyapunov exponent A4 4
in Fig. 8l The stability boundary, R[A4 +] = 0, has a
similar shape as the phase boundary of the SS phase.
We conclude that the instability is responsible for the SS
and the VC pattern.

Species separation, such as cell sorting during embryo-
genesis, is an important phenomenon in biological pro-
cesses. It has been shown that a mixture of two active
matter systems with different mechanical properties can
phase separate [65, 66]. Our model reveals that non-
reciprocity gives rise to species separation of multiple
species that are equivalent to each other. Vortex cell
patterns have been reported in various experimental sys-
tems [67H69]. Some studies show that geometric confine-
ment creates vortex cells [T0H72]. Other studies show
that particles with intrinsic chirality can self-organize
into a vortex cell pattern [68] [69] [73H75]. Our model
can serve as a minimal model for vortex cell patterns in
active matter systems.
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FIG. 9. (a) Snapshot of a particle configuration for the three-
species system in the coexistence phase. (b) Probability dis-
tribution of a local particle density p, and a local chirality xs
at square meshes of size b x b with b = 2. These quantities
are normalized by ptot‘bz. The double peaks structure mani-
fests the coexistence. Parameters: QQ = 3, L = 128, pp = 2.0,
n = 0.55, a = 0.67.

C. Coexistence phase

The species-mixed chiral phase and the species-
separated vortex cell phase can coexist for intermediate
values of . Figure [J] demonstrates this coexistence in
the three-species system. The probability distribution
functions of the local density and the local chirality den-
sity are characterized by double peaks. These peaks cor-
respond to the species-mixed chiral phase (high density
and positive chirality) and the SS phase (low density and
negative chirality), respectively.

The system is in a dynamical equilibrium in the coex-
istence phase. Inside a high-density species-mixed chiral
cluster, particles perform counter-clockwise chiral motion
with almost identical but fluctuating phases. Phase co-
herence is reinforced by the nonreciprocal inter-species
interaction. Such an interaction becomes weaker near
a cluster boundary. Thus, a group of one species los-
ing phase coherence with the other species can leak from
the cluster, which leads to a nucleation of a vortex cell.
A vortex cell can also be absorbed into a chiral cluster.
These nucleation and absorption processes are balanced
in the steady state.

We quantify this coexistence with the bimodality coef-
ficient 3, of the local density distribution function [76].
The bimodality coefficient takes the minimum value of 0
for a unimodal Gaussian distribution and the maximum
value of 1 for a distribution with two distinct delta peaks.
It equals 5/9 for a uniform distribution, which is taken
as a bimodality threshold phenomenologically [77]. Using
this threshold value, we construct the phase boundary of
the coexistence phase in Fig.

The coexistence phase features intriguing dynamical
patterns depending on relative areal fractions of the chi-
ral and the SS phases. For instance, we observe a bubble
state, in which a species-mixed chiral background is punc-
tured by vortex cells (see Fig. for Q = 4 and Fig. for
other values of @)). A bubble is nucleated spontaneously



FIG. 10. Bubble state in the coexistence phase for the four-
species system with L =128, po = 3, = 0.3, and a = 0.727.
(a) Snapshot of individual particles colored according to their
species. Each bubble is inhabited by particles of single species.
The local density field within the dashed square region in
(a) is drawn in (b). The brighter the image is, the higher
the local density is. The density field across the horizontal
section, represented by a dashed line, is plotted with solid
line. The thick vertical segment represents the scale for the
overall particle density ptot. = po@. The bubble boundary is
densely populated.

FIG. 11. Bubble states for Q@ = 2,3,6 with (a/m,n) =
(0.40,0.37), (0.57,0.30), and (0.86,0.30), respectively. Par-
ticles only in a low density region with p < piot. /2 are plotted
with dots colored according to their species. A high density
region with p > pios./2 is filled in gray scale. The darker, the
local density is higher. Bubbles inhabited by a single species
are bounded by a sharp boundary. On the other hand, bub-
bles inhabited by multiple species have an indistinct bound-
ary. These are annihilating bubbles. Parameters: L = 128
and piot. = 12.

when a coherent group of single species is separated from
the others due to statistical fluctuations. These parti-
cles interact nonreciprocally with surrounding particles
acquiring clockwise chirality. As they flow and push
other species particles away, a bubble grows with a sharp
boundary. However, these bubbles are not robust. As a
bubble grows, an inhabiting chiral gas becomes dilute and
cannot exert enough pressure against background parti-
cles. Consequently, such a bubble dissolves eventually.
Bubbles can also be annihilated in pairs. When two bub-
bles of different species collide each other and merge into
one, particles are mixed. Then, chiral motion along the
bubble boundary weakens, which destabilizes both bub-
bles (see Fig. . The emergent dynamical pattern of
the bubble as well as the vortex cell array can be useful
in control and microfabrication of active mixture. Quan-
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titative and theoretical understanding of these emergent
dynamical pattern is in order.

In the coexistence phase, the system phase separated
into high- and low-density regions. Phase separation is
common in active matter systems, and various field the-
oretical models have been proposed to explain the mech-
anism. The active Cahn-Hilliard equation [78] and the
p*-type scalar field theory [79, 80] successfully describe
phase separation in single-component active matter. The
nonreciprocal multi-component Cahn-Hilliard equation
displays phase separation and pattern formation [22]. It
will be interesting to establish a theoretic framework for
species separation in a nonreciprocal multi-species sys-
tem with Potts symmetry, like the Q-NRVM. The co-
existence phase was not captured by the linear stability
analysis. A theoretical framework for species separation
in the Q-NRVM, possibly by extending the linear sta-
bility analysis to include r-dependent perturbation, is
warranted.

V. DISCUSSION AND OUTLOOK

This work proposes a (Q-species Vicsek model and a
corresponding continuum hydrodynamic equation as a
minimal model for nonreciprocal active matter systems
with Potts symmetry (Sg permutation symmetry). The
unique feature of our model is the introduction of a con-
stant phase shift in the velocity alignment interaction.
This phase shift makes the mutual interaction nonrecip-
rocal while maintaining symmetric coupling amplitudes
between all species. In contrast, most prior studies incor-
porate nonreciprocity through asymmetric coupling am-
plitudes among non-equivalent agents.

The nonreciprocal phase shift « is the origin of the
emergent collective chiral motion, counter-clockwise or
clockwise. For small «, particles are well mixed and
perform counterclockwise chiral motion characterized by
QLRO. The QLRO chiral phase is destroyed by the BKT
transition, a result which is unexpected for an ensemble
of self-propelled particles. We argue this is because the
emergent chirality impedes particle motility, which ef-
fectively renders advective fluctuations irrelevant. The
chiral phases thus interact akin to XY spins, allowing
the BKT transition to emerge.

For large «, species separation occurs and a vortex cell
pattern emerges. Each vortex cell is predominantly in-
hibited by a single species. Particles in adjacent cells
interact along the cell boundary to generate clockwise
chiral motion. The perturbative linear stability analysis
in Sec. [V B|reveals an instability that the polarizations
of two distinct species flocks should turn by 7/2 upon
head-on collision. This instability generates an effective
repulsion among different species particles and is respon-
sible for species separation. We note that this rotation
of polarization can be regarded as an odd viscosity phe-
nomenon [64].

We found a coexistence phase in which the QLRO chi-



ral phase and the SS phase coexist in space. Phase sep-
aration is common in active matter systems [22] [T8H80].
The coexistence phase in our model cannot be fully ac-
counted for by existing active matter theories for phase
separation: First, our model possesses permutation sym-
metry, and second, the density field is coupled to the chi-
rality field emerging from the nonreciprocal interactions.
Therefore, the coexistence phase calls for an effective field
theory. The hydrodynamic equation could serve as
a starting point for the study, which will be pursued in
future work.

In summary, we have established a minimal model for
multi-species active chiral fluids with Potts symmetry.
One may consider species-dependent phase shifts in the
velocity-alignment interaction to explore systems with
broken Sg symmetry. It will also be interesting to in-
vestigate its transport properties, particularly in view of
the odd viscosity and odd diffusivity. We leave these for
future work.

The data that support the findings of this article are
openly available [8T].
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Appendix A: Explicit expressions for interaction
kernels

The interaction kernels J{{l and Jff]lR represent the cou-
pling amplitudes between the kth and Ith Fourier modes
of the same and different species, respectively. They are
given by

JE =P LY — I,
ki ki (A1)
JNr =Pulyr — I,
where
Pi= [ do Pi(¢)e™? = e/
T d .
o= [ PR
_x 2T
i (A2)
Lkl :/ @K(qs)eik@yg(qﬁ)—il(b
27
7r d(]5 R w
J :/ e ikONR (¢)—ild
NR o (p)e

with the noise distribution function P,(¢) in Eq. ,
the scattering angle ©r nr in Eq. , and the scattering

cross section K (¢) in Eq. (17).
We note that I, and L]f{l!NR involve a Fourier coefli-

cients of K(¢). Thus, it is convenient to introduce an
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auxiliary function
eicG ( A 3)

.0
sin —

F(e,p) = /; de

for an integer or an half-integer c¢. Then, one obtains that

B 4k
1 — 4k

k
L =k F <2 —1, —7r> ,

; k
LYy =kezh {F (2 -1, 7r>

I, =xF(k,—m)

The nonreciprocity parameter a appears in L’IiIlR, hence
in JEL.

Appendix B: Order parameters and snapshots

In the main text, we presented the numerical result
primarily for the three-species case. Here, we present
supplemental numerical data for other values of Q).

Figure |12 compares the order parameters in the o — n
plane for Q = 2,4,5,6. These results suggest that the Q-
NRVM displays the four distinct phases irrespective of
the @ values. On the other hand, the phase boundaries
shift toward the large « side as @ increases. The SS
phase is invisible for Q = 5 and 6 in these plots. One
have confirmed the SS phase using higher values of py.

Figure [13] present snapshots in the SS phase for Q = 2,
4, and 5. Species separation is manifest in the parti-
cle configurations. The polarization fields clearly demon-
strate vortex cells with clockwise chirality.

Appendix C: Density field near vortex and
antivortex cores

Vortex and antivortex excitations generate density
fluctuations. Consider an idealized situation in which
a perfect in-phase chiral state is perturbed by a sin-
gle vertex-antivortex pair: Particles revolve on circular
orbits whose centers are located regularly at positions
Up = Un,z + WUn,y With Uy o, U,y € Z forming a square
lattice. Particle n moves along a trajectory zngt) =
Uy, + %eimow%) with velocity v, = vge!(ottén)  re-
gardless of its species, with different phase ¢,, and iden-
tical angular frequency 2.

A vortex at z = zg and an antivortex at z = z5 are
introduced by choosing

On = Arg [un — 20] + Arg [(un — 25)"] (C1)
We illustrate four snapshots taken consecutively in a time

step of At = %%ﬂ in Fig. The snapshots demon-
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FIG. 12. Density plot of ms, es, s, and 5, in the a — n plane for Q = 2 with pp = 2 and Q = 4,5,6 with po = 1. Numerical
simulations were performed on a system of size 128 x 128. The contour lines drawn at ms = 0.5, es = 0.5, 75 = 0, and 8, = 5/9,

are guides for the eye.

strate that these topological excitations generate a time-
periodic modulation in the particle density field. An os-
cillating monopole moment develops near the vortex core,
while a rotating quadrupole moment develops near the
antivortex core.

We derive the exact density modulation due to a
vortex or an antivortex excitation in the otherwise in-
phase chiral state in the continuum limit. Let r(u,t) =
(z(u,t),y(u,t)) denote the position vector of a particle
revolving on a circular orbit centered at w = (ug, u,) with
angular frequency €y. The orbit centers are distributed
uniformly with a constant density function p.(u) = p
with p = pg@Q. We use the complex coordinate z = x +1iy
and its complex conjugate z*, the polar coordinate r =

V22 +y? and 6 = tan~!(y/x), as well as the Cartesian
coordinate. We will use these systems interchangeably.

In the chiral state, the particle position z = = + iy is
given by the mapping

2= f(u,u,t) = u+ roe! Pt ()

from u = u, +1%u, and its complex conjugate u*, where ry
is the radius of the orbit, )¢ is the angular frequency, and
the phase field ¢(u,u*) describes an excitation from the
in-phase chiral state. Assuming particles are well mixed,
we do not distinguish the particle species.

In the presence of a vortex excitation with its core at



FIG. 13. Snapshots of a particle configuration and a polar-
ization field in the SS phase for Q = 2 in (a, d), @ = 4 in
(b,e), @ = 51in (c,f). Parameters: (po,a/m,n) = (2.0,0.8,0.3)
for @ = 2, (1.0,0.8,0.35) for @ = 4, and (1.0,0.95,0.3) for
Q=5).
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FIG. 14. Illustration of a series of particle configurations in
the presence of a vortex at position marked with @ and an
antivortex at position marked with &. Particles are marked
with an empty circle and orbit centers with a dot. The dis-
placement from the orbit center is represented with an arrow
color-coded according to the direction.

the origin u = u* = 0, the phase field ¢(u,u*) becomes

doluu?) = Mgl =t (22) (03
and the mapping is given by
fo(u,u*t) =u+rg ettt (C4)
uu*
The particle density is then given by
. o [0Uas f8)|
pa(2*,0) = pelu) | SEIE L (cs)

The last term is the Jacobian of the transformation (C4]),
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which equals

Wentd))

O(u,u*)

cos Qot. (C6)

uu*

The transformation is inverted to yield that z =
fo ~ u for |ul,|z| > r9. Thus, we obtain the density
function
To
po(r,t) ~p (1 — - cos Qot) (Cn
away from the vortex core (r > rg). The vortex ex-
citation induces an isotropic monopole moment in the
particle density. Its amplitude decays algebraically with
the distance from the core as 1/r and oscillates with the
angular frequency g.
In the presence of an antivortex with its core at the
origin u = u* = 0, the phase field becomes

o (u, u*) = Arg[u*] = — tan™ (Zl’) , (C8)
which yields that
folu,u*,t) = u+ro %em“t. (C9)
It is straightforward to derive that
‘W —1- \/Z’T cos(Qot + 206 (u, u*)). (C10)

The transformation (C9)) is inverted to yield z ~ wu for
|z|, |u| > r¢. Thus, we finally obtain that
po(r,t) ~p (1 + 0 cos(Qpt — 29)) (C11)
r
away from the vortex core, r > r3. The anti-vortex
excitation induces a quadrupole moment in the particle
density. The amplitude decays algebraically with the dis-

tance from the core as 1/r. The principal direction ro-
tates with the angular frequency .

Appendix D: Perturbative analysis of the
hydrodynamic equation for the two-species system

We present a normal-mode analysis for the linearized
hydrodynamic equations and in a limiting case
with n = 0. Before addressing the problem, we first docu-
ment the normal model solution for a general linear equa-
tion for a complex variable z(t)

Oz = pz + qz* (D1)
with complex coefficients p and ¢. It can be recasted into
a coupled linear system for z and z*:

()= (2 ) ()

(D2)



whose normal modes can be found from eigenvectors and
eigenvalues of the 2 x 2 matrix. Explicitly, the eigenvalues
are given by

Ax =R[p] £ V/lg* — S[pl?,
with the corresponding eigenvectors (1, (A+—p)/q)*. For

lg|* > 3[p)?, in particular, the two eigenvalues are real
and the normal modes are given by

(D3)

21 (t) = Ottt (D4)

with the phase angle

01 = %Arg [ (D5)

=]
Ay —p

At n = 0, the symmetric mode is governed by 0;6wg =
a1 dwg + axdwg with

4
a = —% (217 — 29) + O(€2),

6(m —2)k (D6)
a2 = == (7 = Giea) + O(c2).

Using Eq. , we find that two normal modes for dwg
have negative Lyapunov exponents Ag ~ —3%(337r —
40)r and Ag_ ~ —(51m — 76)k. Therefore, the two
flocks flow in the opposite direction for small ¢, = 7 — «
and at n = 0.

At n = 0, the anti-symmetric mode is governed by
0idwa = by + (bl + bg)(s’wA + bzd’wz with
—g (24 — 57) €a + O(e2),
2(r = 2)k

7

by
(D7)

by = — (7 — 6iey) + O(€2).
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The inhomogeneous term b; = O(e,, ) with negative imag-
inary part accounts for a clockwise bending of dw4. The
inhomogeneous term also renders a fixed point at

28(m — 2)

297 — 2)en Olca)-

5w,4,f =1 ps (DS)

Stability is determined by the Lyapunov exponent. Using
Eq. (D3)), we obtain that

Ay =-3(r—2)k+ O(eq) (D9)
A7m? + 7 — 288
A = T Re 3. D1
A+ 98(’/T — 2) K€y + O(ea) ( 0)

The first Lyapunov exponent A4 _ is negative. Thus, the
normal mode associated with it is irrelevant. However,
the second Lyapunov exponent A4 y is real and positive
with the phase angle

O4 4+ >~ —7/2+ O(eq). (D11)

Thus, the anti-symmetric mode grows indefinitely as
Swa(t) ~ ePa+hast — _jeha+t Recalling that w! =
Wr+ows /24w 0w and w? = —w,+6wg/2—w, 0w 4, We
conclude that the unstable mode e?©4.+44.+% is responsi-
ble for the effective repulsion between different species.
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