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We investigate collective behavior in a Q-species Vicsek model with a nonreciprocal velocity
alignment interaction. This system is characterized by a constant phase shift α in the inter-species
velocity alignment rule. While the phase shift renders the interaction nonreciprocal, the system is
globally invariant under any permutations of particle species, possessing Potts symmetry. The com-
bination of Potts symmetry and nonreciprocity gives rise to a rich phase diagram. The nonreciprocal
phase shift generates either counter-clockwise or clockwise chirality. Potts symmetry can be broken
spontaneously. Consequently, the system exhibits four distinct phases: A species-mixed chiral phase
where particles perform counter-clockwise chiral motion with quasi-long-range order, a species sepa-
ration phase where Potts symmetry is broken and species-separated particles form vortex cells with
clockwise chirality, a coexistence phase, and a disordered phase. We derive a Boltzmann equation
and a hydrodynamic equation describing the system in the continuum limit, and present analytic
arguments for the emergence of chirality and species separation.

I. INTRODUCTION

Advances in active matter physics reveal that collec-
tive behavior of many-body systems is characterized not
only by the nature of interactions among constituent par-
ticles but also by their self-propulsion [1–6]. A compar-
ison between the equilibrium XY model in two dimen-
sions (2D) [7] and the Vicsek model [8] exemplifies the
relevance of active motility. Both models possess contin-
uous rotational symmetry. However, the XY model can-
not exhibit long-range order due to the Mermin-Wagner
theorem [9], while the Vicsek model can.

Recently, active systems with nonreciprocal interac-
tions have attracted growing interest. A nonreciprocal in-
teraction, violating the action-reaction principle, is ubiq-
uitous in active matter systems. A bird in a flock can
follow a leader but not vice versa [10, 11]. In an ecologi-
cal system, a predator tends to pursue a prey, but a prey
tends to evade a predator [12]. In these examples, asym-
metry in the leader-follower or prey-predator relationship
is the origin of nonreciprocity.

Fruchart et al. formulated a nonreciprocal active sys-
tem model consisting of two species, A and B, of self-
propelled particles with asymmetric roles [13]: A species
particles (pursuers) tend to align their velocity with B
species particles while B species particles (evaders) tend
to anti-align with A species particles. It turned out
that the system can resolve the dynamic frustration by
forming a chiral state: both species particles perform
chiral motion, counter-clockwise or clockwise, with a
relative phase difference. Nonreciprocal active systems
have been investigated further in the context of self-
propelled particles with pursuer-evader type asymmetric
interactions[13–19] and with random interactions [20, 21],
and in the context of continuous field theories [22–26]
involving an asymmetric coupling matrix. Experimen-
tal studies have also been performed with robotic sys-
tems [27, 28]. These studies have revealed interest-
ing nonreciprocity-induced phenomena such as run-and-

chase states [19, 26], traveling waves [23, 24], cluster-
ing [16], and phase separation [22].

More recently, we have proposed a multi-species Vicsek
model with a nonreciprocal alignment interaction [29].
In contrast to nonreciprocal systems built upon an
asymmetric relationship among constituent particles, the
model is fully symmetric under any permutations of
particle species. Such a nonreciprocal yet symmetric
model is established by introducing a phase shift into the
Vicsek-type alignment interaction as shown in Eqs. (7)
and (8). The model with Q species possesses the permu-
tation (SQ) symmetry, or equivalently Potts symmetry
of the Q-state Potts model [30], as well as continuous ro-
tation symmetry. It was shown that nonreciprocity and
Potts symmetry result in intriguing collective behaviors.

In this paper, we present a detailed analysis of the
nonreciprocal Q-species Vicsek model with Potts sym-
metry. In Sec. II, we introduce the model consisting
of Q species particles subject to a Vicsek-type velocity
alignment interaction. The model assumes a constant
phase shift in the inter-species velocity alignment inter-
action. We justify the phase shift by assuming a time
delay in signal transformation processes between parti-
cles of different species. In Sec. III, we derive the Boltz-
mann equation and the hydrodynamic equation describ-
ing the particle-based model in terms of continuum fields
for species-dependent particle density, polarization, and
so on. A mean-field treatment, assuming spatial homo-
geneity, predicts that the nonreciprocal phase shift gives
rise to chirality. In Sec. IV, we present extensive nu-
merical simulation results for Q = 2, · · · , 6. These nu-
merical studies reveal that the system displays a disor-
dered phase, a chiral phase with quasi-long-range-order,
a species-separation phase, and a coexistence phase. In
the chiral phase, particles of all species are mixed and
perform counter-clockwise chiral motion. Surprisingly,
a correlation function of the local polarization follows a
power-law decay indicating quasi-long-range order. We
present an argument that the quasi-long-range order in
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the chiral phase has the same origin as the equilibrium
XY model in 2D. In the species-separation phase, Potts
symmetry is broken spontaneously and particles of differ-
ent species unmix. We demonstrate numerically that an
effective repulsion between different species emerges from
the nonreciprocal phase shift. We also present theoretical
evidence for the repulsion from a perturbative analysis of
the hydrodynamic equation derived in Sec. III C. Finally,
we conclude the paper in Sec. V.

II. NONRECIPROCAL MULTI-SPECIES
VICSEK MODEL

To analyze the emergence and consequences of non-
reciprocity and SQ symmetry (or Potts symmetry) in
active systems, we formulate a generic model of self-
propelled particles with an internal phase degree of free-
dom. Particles tend to align with their neighbors based
on time-delayed information about the state of these in-
ternal phases. Similar systems of agents that couple their
motility with internal degrees of freedom have been con-
sidered in the past [31–33].

Concretely, we consider a Q-species ensemble of self-
propelled particles in square boxes of size L2 in two
dimensions. Each species has the same population of
N0 = ρ0L

2 particles. The total number of particles
is denoted as Ntot. = QN0 with ρtot. = Qρ0. Each
particle, indexed by n = 1, · · · , Ntot., is characterized
by its position rn = (xn, yn), its direction of motion
ê(θn) = (cos θn, sin θn) with polar angle θn ∈ (−π, π],
a species index (or ‘spin’) sn = 1, · · · , Q, and a phase
ψn as an internal degree of freedom. This phase has an
intrinsic eigen-frequency Ωint. and is subject to an align-
ment interaction.

Particles are self-propelled to a direction set by their
polar angles: ṙn(t) = v0ê(θn(t)) in continuous-time dy-
namics or rn(t+∆t) = rn(t) + v0∆tê(θn(t)) in discrete-
time dynamics with a self-propulsion speed v0. Our
model assumes that the internal phase relates to the po-
lar angle via

ψn(t) = Ωint.t+ θn(t). (1)

Adopting alignment rules of the continuous-time Vicsek
model, or the active Brownian particle (ABP) model [34,
35], the particles update their phases based on time-
delayed information about the phases of their neighbors
and an additional noise:

ψ̇n(t) = Ωint. − J
∑
m∈Nn

sin[ψn(t)− ψm(t− τnm)] + ξn(t),

(2)
where Nn denotes the set of particles within a circle with
radius r0 around particle n, and ξn(t) is Gaussian delta-
correlated noise. This kind of dynamics is readily realiz-
able with programmable micro-robots, c.f. [13]. Without
time delays (τnm = 0) and without an intrinsic eigen-
frequency (Ωint. = 0), this is identical to the ordinary
active Brownian particle dynamics.

The internal phase degree of freedom can be eliminated
to derive the equations of motion for the polar angle θn.
First, we note the Taylor expansion for ψm(t− τnm):

ψm(t− τnm) = ψm(t)− ψ̇m(t)τnm +O(τ2nm) (3)

with ψ̇m(t) = Ωint. + θ̇m(t). For a large eigen-frequency,
|Ωint.| ≫ |θ̇m(t)| = O(J), we can approximate ψ̇m(t) ≈
Ωint. to obtain

ψm(t− τnm) ≈ ψm(t)− Ωint.τnm. (4)

Plugging this into Eq. (2) and using ψn(t) − ψm(t) =
θn(t)− θm(t), we obtain

θ̇n(t) = −J
∑
m∈Nn

sin[θn(t)− θm(t)− αnm] + ξn(t)

ṙn(t) = v0ê(θn(t))

(5)

with phase shifts

αnm = −Ωint.τnm (mod 2π). (6)

Reciprocity requires that sin(θn−θm−αnm) = − sin(θm−
θn − αmn). This is achieved only if the phase shifts are
antisymmetric, i.e., αmn = −αnm (mod 2π). Other-
wise, the phase shift renders the alignment interaction
nonreciprocal.

The discrete-time version of this dynamics, which we
will consider throughout this paper for numerical works,
is given by a conventional Vicsek model dynamics with
phase shifts αnm:

θn(t+∆t) = Arg

[ ∑
m∈Nn

ei(θm(t)+αnm)

]
+ ζn(t),

rn(t+∆t) = rn(t) + v0∆tê(θn(t)),

(7)

where ζn(t) is an independent random variable drawn
from a uniform distribution on [−ηπ, ηπ] with noise
strength parameter η [36]. The interaction terms in
Eqs. (5) and (7) enforce velocity alignment with a phase
misfit αnm. We expect that the continuous- and discrete-
time models share the same qualitative characteristics,
which we confirmed numerically.

The origin of time-delays τnm could be manifold. Here
we assume that they are dominated by signal conver-
sion/transformation processes rather than transmission
speed (in which case the delays would become distance
dependent [31]). Moreover, here we focus on the case in
which these processes are slower between particles of dif-
ferent species than between particles of the same species,
but otherwise independent of the species index, which
implies

αnm = α(1− δsnsm). (8)

It suffices to consider the nonreciprocal phase shift in
the range 0 ≤ α ≤ π due to global rotational symme-
try in the polar angle and inversion symmetry under
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(x, y) → (x,−y). It constitutes a minimal model for a
multi-species flocking system with nonreciprocal interac-
tion for 0 < α < π. In this setting, the velocity align-
ment interaction among particles of different species is
subject to a constant phase misfit α: Particle n tends to
align with the apparent polar angle of neighboring par-
ticles, which is identical to the true angle for the same
species, but shifted by α for different species. This model
will be called a Q-species nonreciprocal Vicsek model (Q-
NRVM).

When α = 0, the model reduces to the original Vic-
sek model. When α = π, the dynamics favors alignment
among particles of the same species and anti-alignment
among those of different species. The two-species model
with α = π was explored in Ref. [37]. The inter-species
anti-alignment stabilizes a parallel flocking state in which
the two species self-organize into an alternating band
structure flowing in the same direction, and an anti-
parallel flocking state in which the two species flow in
the opposite direction penetrating through each other.

The Q-NRVM possesses permutation (SQ) symmetry
or Potts symmetry of the Q-state Potts model [30] since
any permutation of the Q particle species leaves the sys-
tem invariant, meaning all particle species are equiva-
lent. This permutation symmetry is broken explicitly in
other nonreciprocal systems based on prey-predator-type
or pursuer-evader-type interactions [13, 14, 22, 38–41].

Finally, we note that the continuous-time dynamics for
the polar angle, Eq.(5), resembles the equation of mo-
tion of the Kuramoto model [42]. Flocking in the for-
mer corresponds to phase synchronization in the latter.
The Kuramoto model includes quenched random noise
instead of temporal noise, and the phase shift is absent.
Sakaguchi and Kuramoto [43] later introduced a constant
phase shift term to the Kuramoto model. The phase shift
term was shown to result in an asymmetric distribution of
the angular velocity. Abrams et al. [44] and Pikovsky and
Rosenblum [45] extended the Sakaguchi and Kuramoto
model by introducing multi-species subpopulations of os-
cillators and found chimera states in which synchronized
and desynchronized domains coexist [46]. In our model,
the angle variables are coupled locally to the spatial de-
grees of freedom. A global coupling has also been studied
recently [32, 33].

III. CONTINUUM FIELD THEORY

To explore potential collective states of our model,
we derive a Boltzmann equation and a hydrodynamic
equation. Before proceeding, it is useful to consider a
naive mean-field limit where the alignment interaction is
infinite-ranged. Let Ωµ = 1

N0

∑
n e

iθnδµsn = Aµe
iΘµ be

the polarization of species µ. When A1 = · · · = AQ, the
discrete-time dynamics Eq. (7) yields an iterative map

for the phase:

Θ′
µ = Arg

[
(1− eiα)eiΘµ + eiα

Q∑
ν=1

eiΘν

]
. (9)

This map allows an in-phase chiral solution, in which all
the phases are synchronized and advance by

ψin = Arg[1 + (Q− 1)eiα] > 0. (10)

each time step. In this state, particles perform counter-
clockwise chiral motion with synchronized polar angles.

The discrete map (9) also allows an out-of-phase chiral
solution with vanishing net polarization (

∑
ν e

iΘν = 0),
in which the phase angles advance by

ψout = Arg(1− eiα) = −1

2
(π − α) < 0 (11)

each time step. In this state, particles perform clockwise
chiral motion with species-dependent polar angles. These
mean-field considerations indicate that the nonreciprocal
phase shift can generate chirality.

A. Boltzmann equation

We proceed further to derive a field theory based on the
Boltzmann equation approach [47–49]. Let fµ(r, θ, t) :=
⟨∑n δ(rn(t)− r)δ(θn(t)− θ)δµsn⟩ be the one-particle
distribution function for species µ = 1, · · · , Q. The
Boltzmann equation approach assumes (i) a continuous-
time dynamics incorporating single particle diffusion at a
rate λ, (ii) an alignment interaction through binary col-
lisions, and (iii) a factorization of multi-particles distri-
bution function as a product of one-particle distribution
functions, known as the molecular chaos assumption.

The single-particle distribution function fµ(r, θ, t) is
governed by the coupled equations

∂tf
µ = −v0ê(θ) ·∇fµ + Id[f

µ] +

Q∑
ν=1

Icol[f
µ, fν ]. (12)

The first term in the righthand side accounts for the self-
propulsion. The operators in the second and the third
terms, abbreviated to Iµd = Id[f

µ] and Iµνcol = Icol[f
µ, fν ],

describe single-particle diffusions and binary collisions,
respectively. They are given by

Iµd =− λfµ(r, θ, t)

+ λ

∫ π

−π
fµ(r, θ′, t)Pn(θ − θ′)dθ′ (13)

Iµνcol =− fµ(r, θ, t)

∫ π

−π
K(θ, θ′)fν(r, θ′, t)dθ′

+

∫∫ π

−π
[fµ(r, θ1, t)f

ν(r, θ2, t)K(θ1, θ2)

×Pn(θ − θ1 −Θµν(θ1, θ2))] dθ1dθ2. (14)
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For simplicity, we adopt the Gaussian distribution

Pn(ϕ) =
1√
2πη2

∞∑
m=−∞

e−(ϕ−2πm)2/(2η2) (15)

of mean zero and variance η2 folded into the interval
[−π : π] for both the polar angle diffusion and the noise
in the alignment interaction. The scattering cross section
K(θ1, θ2) and the scattering angle Θµν(θ1, θ2) depend on
the relative angle θ2 − θ1. Hence we will regard them as
functions of a single variable ϕ = θ2 − θ1. The scattering
cross section is given by K(ϕ) = 4r0v0

∣∣∣sin ϕ
2

∣∣∣ [49]. The
scattering angle for a reciprocal intra-species collision is
given by Θ(ϕ) = ϕ/2 [49]. In contrast, upon a nonrecip-
rocal inter-species collision, the scattering angle should
be modified due to the phase shift α. The scattering an-
gle is written as Θµν(ϕ) = δµνΘR(ϕ) + (1− δµν)ΘNR(ϕ)
with

ΘR(ϕ) :=
ϕ

2
,

ΘNR(ϕ) :=
(ϕ+ α) (mod 2π)

2
.

(16)

The Boltzmann equation can be casted into a di-
mensionless form by rescaling r → v0

λ r, t → 1
λ t, and

fµ → ρ0f
µ. In the dimensionless form, we can set

λ = v0 = ρ0 = 1 and the scattering cross section is
replaced by

K(ϕ) = 2πκ

∣∣∣∣sin ϕ2
∣∣∣∣ . (17)

with a dimensionless coupling constant

κ =
2r0v0ρ0
πλ

. (18)

It is convenient to use the complex coordinates z =
x + iy and z∗ = x − iy instead of the Cartesian coordi-
nates x and y. In terms of the complex coordinates, the
directional derivative becomes

ê(θ) ·∇ = (cos θ)∂x+(sin θ)∂y = (eiθ∂z+e
−iθ∂z∗) (19)

with ∂z = 1
2 (∂x− i∂y) and ∂z∗ = 1

2 (∂x+ i∂y). We further
expand the one-particle distribution function in terms of
the Fourier or multipole modes

fµ(r, θ, t) =
1

2π

∑
k∈Z

fµk (r, t)e
−ikθ. (20)

These modes correspond to the local particle density
fµ0 (r, t) = ρµ(r, t), the local complex polarization field
fµ1 (r, t) = ⟨eiθ⟩fµ =

∫
dθeiθfµ(r, θ, t), and so on. The

polarization field may be represented with a complex
field wµ(r, t) = mµ

x(r, t) + imµ
y (r, t) or a vector field

mµ(r, t) = (mµ
x(r, t),m

µ
y (r, t)) with mµ

x(r, t) = ⟨cos θ⟩fµ

and mµ
y (r, t) = ⟨sin θ⟩fµ . Note that f−1 = f∗

1 .

Plugging Eq. (20) into Eq. (12), one can derive the
coupled equations for fµk . To handle the multi-species
system with ease, we introduce a Q-dimensional species
space and represent the multipole moments as a column
vector

fk = (f1k , · · · , fµk , · · · , f
Q
k )T (21)

in the species space. The interaction kernels between kth
and lth modes can be written in a compact form using a
Q×Q matrix Jkl whose matrix elements are given by

[Jkl]µν = δµνJ
kl
R + (1− δµν)J

kl
NR. (22)

Here, JklR and JklNR denote intra-species reciprocal and
inter-species nonreciprocal coupling constants, respec-
tively (see Sec. A for their explicit expressions). We
also introduce the Hadamard product ◦ which maps two
species space vectors a and b to c = a ◦ b = b ◦ a where
cµ = aµbµ. The Boltzmann equation is then written in a
compact form

∂tfk =− ∂z∗fk−1 − ∂zfk+1

− (1− Pk)fk +
∑
l∈Z

fk−l ◦ (Jklfl), (23)

where Pk = e−k
2η2/2 is the k-th Fourier coefficient of the

noise distribution in Eq. (15). In particular, for k = 0,
Eq. (23) reduces to a continuity equation

∂tf0 + ∂z∗f−1 + ∂zf1 = 0, (24)

or ∂tρµ +∇ ·mµ = 0.

B. Linear stability analysis

The Boltzmann equation has a trivial steady state so-
lution fk(r, t) = f̄k(r) = δk01Q with 1Q = (1, · · · , 1)T .
This corresponds to a homogeneous disordered state. We
inspect linear stability of this disordered state against a
uniform temporal fluctuation fk(t) = f̄k + ϵk(t). Ex-
panding the Boltzmann equation with respect to ϵk, we
obtain

ϵ̇k =
∑
l

Mklϵl (25)

with the stability matrix

Mkl = δkl(Pk − 1 + Jkk +D(Jk01Q)). (26)

Here, we introduce an operator D(·) mapping a species
space vector u = (u1, · · · , uQ)T to a diagonal matrix
D(u) = diag(u1, · · · , uT ) [50]. Since different Fourier
modes do not couple, it suffices to consider each mode
k separately with the stability matrix M (k) = Mkk.
Noting that D(Jk01Q) = Jk0R + (Q − 1)Jk0NR, we obtain
[M (k)]µν = D(k)δµν +O(k)(1− δµν) with

D(k) =Pk − 1 + JkkR + Jk0R + (Q− 1)Jk0NR,

O(k) =JkkNR.
(27)
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FIG. 1. Mean-field phase diagram from the linear stability
analysis at Q = 3 in the α− κ plane with fixed η = 0.3 in (a)
and in the α − η plane with fixed κ = 0.1 in (b). The chiral
angular frequency Ω in the in-phase and out-of-phase chiral
states are color-coded according to the bar chart.

The matrix M (k) has a nondegenerate complex eigen-
value Λ

(k)
in = D(k) + (Q − 1)O(k) with an eigenvector

λin = 1Q [in-phase mode] and a (Q− 1)-fold degenerate
complex eigenvalue Λ

(k)
out = D(k) − O(k) with eigenvec-

tors λout ⊥ λin [out-of-phase mode]. We focus on the
polarization field with k = 1.

The disordered state is destabilized by the in-phase
mode and the out-of-phase mode. The stability bound-
aries set by ℜ[Λ(1)

in,out] = 0 are given by

κin =
1− e−η

2/2

4e−η2/2[1 + (Q− 1) cos3 α2 ]− 8Q/3
,

κout =
1− e−η

2/2

4e−η2/2[1 + Q
2 cos α2 − cos3 α2 + Qα

4 sin α
2 ]− 4Q

.

(28)

In the in-phase chiral mode (κ > κin), all particles per-
form a counter-clockwise chiral motion with identical
phases (λin = 1Q) with a positive angular frequency

Ωin = ℑ[Λ(1)
in ] = 4κ(Q− 1)e−η

2/2 sin
α

2
cos2

α

2
> 0. (29)

On the other hand, in the out-of-phase mode (κ > κout),
all particles perform a clockwise chiral motion with a
negative angular frequency

Ωout = −κe−η2/2(Qα+ 2 sinα) cos
α

2
< 0. (30)

The linear stability analysis yields the mean-field phase
diagram as shown in Fig. 1. It suggests that chiral states
can emerge due to nonreciprocity.

C. Hydrodynamic equation

The Boltzmann equation is an infinite hierarchy of cou-
pled equations for the multipole moments. For the long-
time and large-distance behavior, it is useful to consider
a hydrodynamic equation for the lowest order multipole

moments: a density field (k = 0) and a polarization
field (k = ±1). Following Ref. [47], we will neglect higher
order moments with |k| ≥ 3 and take a quadrupole mo-
ment with k = ±2 as a fast variable enslaved by the
density and polarization fields. The Boltzmann equation
in Eq. (23) with k = 2 then yields

∂z∗f1 ≃− (1− P2)f2 + f2 ◦ (J20f0)

+ f1 ◦ (J21f1) + f0 ◦ (J22f2).
(31)

Using a ◦ b = D(a)b = D(b)a, we can solve the above
equation to obtain

f2 = −X(f0)
{
∂z∗f1 − f1 ◦ (J21f1)

}
(32)

with

X(f0) =
{
(1− P2)−D(f0)J

22 −D(J20f0)
}−1

. (33)

Inserting f2 into Eq. (23) with k = 1, we finally obtain
the hydrodynamic equation

∂tf1 =− ∂z∗f0 + Y (f0)f1

+ ∂z
(
X(f0)

(
∂z∗f1 −D(f1)J

21f1

))
+Z(f−1,f0)

(
∂z∗f1 −D(f1)J

21f1

)
,

(34)

where

Y = −(1− P1) +D(J10f0) +D(f0)J
11

Z = −
[
D(J1,−1f−1)−D(f−1)J

12
]
X(f0).

(35)

Note that the Q×Q matrices X and Y depend only on
f0 while Z is linear in f−1 = f∗

1 . The righthand side of
Eq. (34) includes terms quadratic in f±1, which manifests
the broken time reversal symmetry. The hydrodynamic
equation is highly nonlinear, which makes it improbable
to obtain an analytic solution. Nevertheless, one can gain
useful physical insights considering limiting cases.

We consider the hydrodynamic equation restricted
within the species-symmetric subspace in which
f0(r, t) = ρ(r, t)1Q and f1(r, t) = w(r, t)1Q with a
constant vector 1Q = (1, · · · , 1)T . Taking an inner
product of Eqs. (24) and (34) with 1

Q1Q, one can obtain
the field equation

∂tρ =− ∂z∗w
∗ − ∂zw (36)

∂tw =− ∂z∗ρ+
(
µ(ρ)− ξ(ρ)|w|2

)
w + 4∂zν(ρ)∂z∗w

+ 2ζ(ρ)w∗∂z∗w + 2∂zη(ρ)w
2, (37)

where the coefficients are given by ν(ρ) := 1
4 ⟨X⟩Q,

µ(ρ) := ⟨Y ⟩Q, ζ(ρ) := ⟨Z⟩Q/(2w∗), η(ρ) :=
⟨XJ21⟩Q/2, and ξ(ρ) := ⟨ZJ21⟩Q/w∗ with ⟨M⟩Q :=
1TQM1Q/Q [51]. These coefficients vary spatially
through the r dependence of the density field. We em-
phasize that they are complex numbers in the presence
of a nonreciprocal phase shift α ̸= 0, π. For instance, for
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Q = 2, they are given by

ν(ρ) =
1

4

1

(1− P2) +
8
15κρ(14 + 5(1 + eiα)P2)

µ(ρ) = −(1− P1) + 4κρ

((
1 + eiα/2 cos2

α

2

)
P1 −

4

3

)
ζ(ρ) = 4κν(ρ)

(
P1e

iα/2 cosα(1 + cosα) + 2P1 −
8

5

)
η(ρ) = 8κν(ρ)

(
(1 + eiα)P2 +

2

3

)
ξ(ρ) =

ζ(ρ)η(ρ)

ν(ρ)

with Pk = e−k
2η2/2.

If one further neglects spatial fluctuations such that
ρ(r, t) = 1 and w(r, t) = w(t), Eq. (37) reduces to a
Stuart-Landau equation [52]

ẇ(t) = µ0w(t)− ξ0|w(t)|2w(t) (38)

with complex parameters µ0 = µr+ iµi and ξ0 = ξr+ iξi.
The Stuart-Landau equation undergoes a supercritical
Hopf bifurcation [52, 53] at µr = 0. For µr > 0, it has a
limit cycle solution w(t) = AeiΩt with a constant ampli-
tude A =

√
µr

ξr
and an angular velocity Ω = µi − µrξi

ξr
.

The limit cycle solution corresponds to the homogeneous
in-phase chiral phase found in the linear stability analysis
of the Boltzmann equation.

In summary, we have derived the Boltzmann equation
and the hydrodynamic equation for the Q-NRVM. The
naive mean-field theory and the more sophisticated con-
tinuum field theory demonstrate that the nonreciprocal
interaction leads to chiral states.

IV. PHASE DIAGRAM

The continuum theory, assuming spatial homogeneity,
predicted in-phase and out-of-phase chiral states. Here
we investigate whether the chiral order survives temporal
and spatial fluctuations.

In Monte Carlo simulations, we have measured a chi-
rality

γ(t) =
1

N∆t

∑
n

sin(θn(t+∆t)− θn(t)) (39)

and a polarization

m(t) =

∣∣∣∣∣ 1N ∑
n

ê(θn(t))

∣∣∣∣∣ . (40)

A positive (negative) chirality indicates a collective
counter-clockwise (clockwise) chiral motion. The po-
larization measure the degree of phase coherence. It is
nonzero in the presence of long-range flocking order. It

α/π
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η
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α/π

η
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(b) es
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(c) γs
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α/π

η
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(d) βρ
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0.0
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FIG. 2. Color plot of the order parameters (a) ms, (b) es,
(c) γs, and (d) the bimodality coefficient βρ for the three-
species system of size L = 128 with ρ0 = 2. Phase boundaries
of a chiral phase (◦), a species separation phase (□), and a
coexistence phase (⋄) are drawn.

is also nonzero when particles exhibit chiral motion with
synchronized polar angles. We have also measured an
energy

e(t) =
1

(2πr20ρtot)N

∑
|rn−rm|<r0

(
Qδsnsm − 1

Q− 1

)
. (41)

This quantity is analogous to the energy density of the
Q-state Potts model [30]. It equals zero if the parti-
cle species are perfectly mixed, and becomes positive
when Potts symmetry is broken and particles of different
species are spatially separated. The mean steady-state
values ms = ⟨m(t)⟩s, γs = ⟨γ(t)⟩s, and es = ⟨e(t)⟩s are
used to characterize the macroscopic state of the system,
where ⟨. . . ⟩s denotes a time average in the steady state.

Figure 2 presents an overall behavior of those order
parameters in the α− η plane for the three-species case,
along with the phase boundaries obtained in Ref. [29].
Analyzing the order parameters quantitatively, we have
identified four distinct phases: a disordered phase, a chi-
ral phase with quasi-long-range order (QLRO), a species-
separation (SS) phase with vortex cells, and a coexistence
phase [29]. We will characterize each phase in the subse-
quent subsections. The overall behavior of the order pa-
rameters, presented in Fig. 12, indicates that the phase
diagram has a similar structure for all values of Q. As Q
increases, the phase boundaries shift toward a higher α
region.
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(a) (b)

FIG. 3. Snapshots of a particle configuration in (a) and a
polarization field in (b) in the QLRO chiral phase. In (a),
each dot representing a particle is color-coded according to
particle species. In (b), the phase angle of a polarization field
is color-coded according to the chart in the inset. Parameters:
Q = 3, L = 128, ρ0 = 2, α = 0.3π, and η = 0.4.

A. Chiral phase with quasi-long-range order

The chiral phase, occurring when α and η are small,
is characterized by species mixing (es ≃ 0) and counter-
clockwise chirality (γs > 0). The polarization order pa-
rameter ms takes larger values than in the other regions.

Figure 3 presents representative snapshots of a par-
ticle configuration and a polarization field m(r, t) =∑
n ê(θn(t))δ(r − rn(t)) obtained from a Monte Carlo

simulation. The polarization field displays a long wave-
length orientational fluctuation. It turned out that polar
order is not long-ranged but quasi-long-ranged [29]. The
steady-state correlation function Cm(r) := ⟨m(r+r0, t) ·
m(r0, t)⟩r0,s/ρtot., averaged over r0 and t in the steady
state, decays algebraically as

Cw(r) ∼ r−η̃, (42)

and the polarization order parameter decreases with in-
creasing system size L according to the power-law

ms(L) ∼ L−β̃ . (43)

The critical exponents η̃ and β̃ vary continuously inside
the chiral phase [29].

The mean-field analysis for the Boltzmann equation
predicted a homogeneous in-phase chiral state for small
α and η. Figure 4 presents typical snapshots of a density
field and a polarization field obtained by integrating nu-
merically the Boltzmann equation with a random initial
configuration. As these snapshots demonstrate, spatial
fluctuations persist in the in-phase chiral state. There-
fore, the homogeneous in-phase chiral phase in Fig. 1
should be understood as the QLRO chiral phase.

The QLRO chiral phase of the Q-NRVM reminds us of
the QLRO phase of the equilibrium 2D XY model [7, 57–
59]. This model describes ferromagnetic ordering of con-
tinuous planar spins sn = (cos θn, sin θn) on a 2D lattice.

(a) (b)

FIG. 4. Snapshots of a density field in (a) and a polariza-
tion field in (b) computed with the Boltzmann equation (23)
for the three-species system [54]. The Boltzmann equation,
truncated within |k| ≤ 4, is integrated numerically using
the pseudo-spectral method [55, 56]. For numerical conver-
gence, the Boltzmann equation is regularized with a diffusion
term [49]. The snapshots are taken when the system, starting
from a random initial configuration, reaches a steady state.
The density field in (a) is color-coded using local densities
(ρ1, ρ2, ρ3) of the three species as an RGB code. These snap-
shots reveal that the three species particles are mixed with
ρ1 = ρ2 = ρ3 and that spatial fluctuations persist. Parame-
ters: Lx = Ly = 64, η = 0.3, α/π = 0.1 and κ = 0.053.

The spins interact via the XY Hamiltonian

HXY = −J
∑
⟨n,m⟩

sn · sm = −J
∑
⟨n,m⟩

cos(θn − θm), (44)

where J > 0 and the sum is over nearest-neighbor
pairs. The Hamiltonian has continuous rotational sym-
metry. Consequently, according to the Mermin-Wagner
theorem [9], the equilibrium XY system in 2D cannot
maintain long-range order. Instead, below a Berezinskii-
Kosterlitz-Thouless (BKT) transition temperature TBKT,
the system displays QLRO, which is characterized by
the power-law scaling of the correlation function as in
Eq. (42) and the order parameter as in Eq. (43) with
the exponents η̃ and β̃ related by a scaling relation
β̃ = η̃/2 [58]. The exponents vary continuously in the
QLRO phase and take the universal values β̃BKT = 1/8
and η̃BKT = 1/4 at the transition temperature TBKT [58].
The BKT transition is driven by topological excitations,
vortices and antivortices [7].

The original 2D Vicsek model has continuous rota-
tional symmetry but achieves long-range order because
the self-propulsion drives the system strongly out of equi-
librium [60]. Variants of the XY model were recently
studied, where XY spins diffuse independently while in-
teracting via a ferromagnetic coupling with local neigh-
bors [61, 62]. These models are a passive version of the
Vicsek model. Although passive diffusion drives the sys-
tem out of equilibrium, the numerical study showed that
the system undergoes a BKT transition between a QLRO
phase and a disordered phase [61]. The QLRO was also
observed in a Vicsek-type model in which self-propelled
particles reverse its velocity stochastically [63].
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Given that the Q-NRVM consists of self-propelled par-
ticles, it is an intriguing question whether the QLRO in
our model has the same origin as that of the 2D equi-
librium XY model. The numerical finding makes this
scenario plausible, and we will elaborate on this possibil-
ity using an analytic argument. In essence, we will show
that, in the chiral phase, the angles behave like motile
XY spins, and the spatial fluctuations of the particles
around their circular orbits are diffusive. This result,
combined with the findings in Ref. [61], implies QLRO.

We can simplify the continuous-time dynamics given
in Eq. (5) in the QLRO chiral phase. The mean angular
velocity of particle n is approximately given by Ω0 =
⟨θ̇n⟩ ≈ J

∑
m∈Nn

sinαnm ≈ πr20ρ0(Q − 1)J sinα. Then,
the equation of motion for a phase angle ϕn := θn − Ω0t
in the co-rotating frame becomes

ϕ̇n ≈ −J
∑
m∈Nn

V (ϕn − ϕm, αnm) + ξn(t) (45)

with

V (∆ϕ, φ) := sin(∆ϕ− φ) + sinφ ≈ cosφ sin∆ϕ. (46)

To obtain the last expression, we neglected the higher-
order term (1 − cos∆ϕ) = O(∆ϕ2). Inserting Eq. (46)
into Eq. (45), we obtain

ϕ̇n ≈ −Jeff
∑
m∈Nn

sin(ϕn − ϕm) + ξn(t) (47)

with Jeff = (Q−1)J cosα
Q . The resulting equation has the

form of a Langevin equation for XY spins.
The key difference from the XY model lies in the

particle motility. A particle displacement is given by
∆z =

∫ t0+t
t0

dt′v0e
i(Ω0t

′+ϕ(t′)) with complex coordinate
z = x+ iy. The mean square displacement is given by

⟨|∆z|2⟩ = v20

∫∫ t0+t

t0

dt′dt′′ eiΩ0(t
′−t′′)

〈
ei(ϕ(t

′)−ϕ(t′′))
〉
.

(48)
It is reasonable to assume that

〈
ei(ϕ(t

′)−ϕ(t′′))
〉

=

ae−|t′−t′′|/τp with a constant a > 0 and a persistent time
τp. The integral can then be evaluated exactly.

When α = 0 (Vicsek model case), Ω0 = 0 and we get

⟨|∆z|2⟩ ≃
{
av20t

2, (t≪ τp)

2av20τpt, (t≫ τp).
(49)

This shows a crossover from ballistic motion to diffusive
motion. This ballistic motion, occurring over the per-
sistence time scale, causes strong temporal fluctuations
in the interaction network, which we believe to be the
reason why the Vicsek model is not constrained by the
Mermin-Wagner theorem. In contrast, when α ̸= 0 and
τpΩ0 ≫ 1 (meaning particles can complete multiple rev-
olutions within a persistent time scale), the mean square

(a) (b)

FIG. 5. Snapshots of a particle configuration in (a) and a
polarization field in (b) in the SS phase. The same color
scheme is used as in Fig. 3. Snapshots for different values of
Q are found in Fig. 13. Parameters: Q = 3, L = 128, ρ0 = 2,
α = 0.8π, and η = 0.35.

displacement is given by

⟨|∆z|2⟩
(4av20/Ω

2
0)

≃
{

t
τp

+ (1− t
τp
) sin2 Ω0t

2 , (t≪ τp)
t

2τp
, (t≫ τp).

(50)

Interestingly, chirality makes the particles’ motion diffu-
sive at all time scales. Since particles disperse slowly, the
temporal fluctuation of the mutual interaction network
is weaker than in the original Vicsek model. As passively
diffusing XY spins undergo a BKT transition to a QLRO
phase [61], we conclude that the Q-NRVM should exhibit
a QLRO phase and the BKT transition.

The BKT transition is associated with unbinding and
proliferation of vortex-antivortex pairs. In the Q-NRVM,
these topological excitations destroy the phase coher-
ence and also generate inhomogeneities in the density
field: we find that the density field develops an oscillat-
ing monopole moment at a vortex core while a rotating
quadrupole moment at an antivortex core (see App. C).
Thus, the disordered phase is characterized by phase in-
coherence and density fluctuations.

In summary, we have shown in this subsection that the
Q-NRVM is in a QLRO chiral phase when α and η are
small. In this phase, the polarization correlation function
decays algebraically and the polarization order parame-
ter obeys critical FSS behavior. We have presented an
analytic argument that the transition from the QLRO
chiral phase to a disordered phase is the BKT transition.

B. Species separation

For large α and small η, the Q-NRVM exhibits species
separation. If particles of different species were mixed
well, they would form an out-of-phase chiral state as pre-
dicted by the mean-field theory. We find that the nonre-
ciprocal phase shift generates repulsion between counter-
propagating flocks of different species, which destabilizes
a species-mixed out-of-phase chiral state. In this section,
we will characterize the SS phase, and present an analytic
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(a) (b)

FIG. 6. Snapshots of a density field in (a) and a polarization
field in (b) computed with the Boltzmann equation (23) for
the three-species system [54]. We adopt the same color-coding
scheme as in Fig. 4. Parameters: Lx = Ly = 64, η = 0.3,
α/π = 0.9 and κ = 0.212.

argument for its existence based on the hydrodynamic
equation.

Figure 5 presents representative snapshots of a parti-
cle configuration and a polarization field in the SS phase.
Particles are species-separated and self-organize into a
vortex cell (VC) structure. Each cell is occupied predom-
inantly by particles of a single species flowing clockwise
along a boundary. Accordingly, the SS phase is char-
acterized by a positive energy order parameter es and
a negative chirality γs (see Figs. 2 and 12). The phase
transition into the SS phase is signified by a discontinu-
ous jump in es.

The continuum Boltzmann equation (23) also confirms
the SS phase solution (see Fig. 6). This assures that the
continuum field theory captures the physics of species
separation.

In the SS phase, particles of different species do not mix
with each other as if there were an inter-species repulsive
interaction. We demonstrate this effective repulsion us-
ing a setting in which particles of species µ = 1 (µ = 2)
are distributed uniformly in the x < 0 (x > 0) region
and flow collectively to the positive (negative)-x direc-
tion. These counter-propagating flocks collide at time
t = 0 at x = 0. We have measured density and polar-
ization profiles ρ̄µ(x) and (m̄µ

x(x), m̄
µ
y (x)) at successive

time steps after the collision (see Fig. 7). The numerical
data clearly show that particles of different species can-
not penetrate into each other beyond a narrow collision
band. The inter-species nonreciprocal interaction within
the band causes the polarization field of each species to
turn clockwise from the initial longitudinal direction to
the perpendicular transverse direction [64]. This reorien-
tation prevents mixing and leads to SS.

We present an analytic theory for the scattering of
counter-propagating flocks using the hydrodynamic equa-
tion (34) with Q = 2. Our theory relies on a perturbative
description for the hydrodynamic fields within the nar-
row collision band for small ϵα := π−α. Let wµ(t) be the
complex polarization field of species µ = 1, 2 near x ≃ 0.
A spatial variation of the polarization field is assumed to

x
0

8

16

ρ̄

(a)
ρ̄1 ρ̄2

x
−3

0

3

m̄
x

(b) m̄1
x

m̄2
x

−32 −16 0 16 32
x

−5

0

5

m̄
y

(c)

m̄1
y

m̄2
y

FIG. 7. Effective repulsion between counter-propagating
flocks of species µ = 1, 2. Each panel presents columnar pro-
files of (a) particle density, (b) x component of polarization,
and (c) y component of polarization at successive time steps
tn = 20 × n with n = 0, · · · , 5. Curves for species µ = 1 (2)
are drawn in red (blue) color getting darker as tn increases.
Parameters: Lx = Ly = 128, Q = 2, η = 0.4, and α = 0.85π.

be negligible at x ≃ 0.
When α = π, the counter-propagating flocks form

an anti-parallel flocking (APF) state [37], in which they
counter-propagate through each other with opposite po-
larizations w1(t) = −w2(t) = w(t). The hydrodynamic
equation (34) at α = π for the APF state becomes

∂tw(t) =
(
µπ − ξπ|w|2

)
w, (51)

where

µπ = (1 + 2(π + 2)κ)P1 − (1 + 8κ) (52)

ξπ = 32κ2
P2(15P1 − 2)

15 + 112κ− 15P2
(53)

with Pk = e−k
2η2/2. The steady-state polarizations in

the APF state are given by w1 = −w2 = wπ with

wπ =

√
µπ
ξπ
. (54)

When α < π, the counter-propagating flocks deviate
from the APF state. We investigate the deviation us-
ing the hydrodynamic equation linearized with respect
to δw1(t) := w1(t)−wπ and δw2(t) := w2(t)+wπ. After
lengthy but straightforward algebra, we have derived the
linearized equations of motion

∂tδwS =a1δwS + a2δw
∗
S (55)

∂tδwA =b1 + (b1 + b2)δwA + b2δw
∗
A, (56)
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FIG. 8. Real part of the Lyapunov exponent ΛA,+ for the anti-
symmetric part δwA in the α− κ plane with fixed η = 0.3 in
(a) and in the α−η plane with fixed κ = 0.5 in (b). The thick
dashed lines represent the stability boundary ℜ[ΛA,+] = 0.

for a symmetric part δwS := δw1 + δw2 and an anti-
symmetric part δwA := (δw1 − δw2)/(2wπ).

It is instructive to consider a limiting case with η = 0.
In App. D, we present explicit expressions for the coef-
ficients a1,2 and b1,2, and four normal mode solutions.
It turns out that δwA has an unstable normal mode
eiΘA,+eΛA,+t whose Lyapunov exponent ΛA,+ is real and
positive and eigen-direction eiΘA,+ ≃ −i points toward
the negative y direction for sufficiently small ϵα (see
Eqs. (D10) and (D11)). Due to this unstable normal
mode, the two flocks turn their polarization by −π/2
upon collision, and flow eventually along the boundary
between them in the opposite direction. Consequently,
the two species cannot mix.

For general η, we can evaluate the Lyapunov exponents
numerically. Lyapunov exponents for the symmetric part
remain negative. One the other hand, one normal mode
for the antisymmetic part has a real positive Lyapunov
exponent in a broad parameter range. We present the
real part of the most relevant Lyapunov exponent ΛA,+
in Fig. 8. The stability boundary, ℜ[ΛA,+] = 0, has a
similar shape as the phase boundary of the SS phase.
We conclude that the instability is responsible for the SS
and the VC pattern.

Species separation, such as cell sorting during embryo-
genesis, is an important phenomenon in biological pro-
cesses. It has been shown that a mixture of two active
matter systems with different mechanical properties can
phase separate [65, 66]. Our model reveals that non-
reciprocity gives rise to species separation of multiple
species that are equivalent to each other. Vortex cell
patterns have been reported in various experimental sys-
tems [67–69]. Some studies show that geometric confine-
ment creates vortex cells [70–72]. Other studies show
that particles with intrinsic chirality can self-organize
into a vortex cell pattern [68, 69, 73–75]. Our model
can serve as a minimal model for vortex cell patterns in
active matter systems.

(a)

0 2 4
ρb, χb

10−3

10−2

10−1

100

101

P
ρ
,P

χ

(b) ρb
χb

FIG. 9. (a) Snapshot of a particle configuration for the three-
species system in the coexistence phase. (b) Probability dis-
tribution of a local particle density ρb and a local chirality χb

at square meshes of size b × b with b = 2. These quantities
are normalized by ρtot.b

2. The double peaks structure mani-
fests the coexistence. Parameters: Q = 3, L = 128, ρ0 = 2.0,
η = 0.55, α = 0.6π.

C. Coexistence phase

The species-mixed chiral phase and the species-
separated vortex cell phase can coexist for intermediate
values of α. Figure 9 demonstrates this coexistence in
the three-species system. The probability distribution
functions of the local density and the local chirality den-
sity are characterized by double peaks. These peaks cor-
respond to the species-mixed chiral phase (high density
and positive chirality) and the SS phase (low density and
negative chirality), respectively.

The system is in a dynamical equilibrium in the coex-
istence phase. Inside a high-density species-mixed chiral
cluster, particles perform counter-clockwise chiral motion
with almost identical but fluctuating phases. Phase co-
herence is reinforced by the nonreciprocal inter-species
interaction. Such an interaction becomes weaker near
a cluster boundary. Thus, a group of one species los-
ing phase coherence with the other species can leak from
the cluster, which leads to a nucleation of a vortex cell.
A vortex cell can also be absorbed into a chiral cluster.
These nucleation and absorption processes are balanced
in the steady state.

We quantify this coexistence with the bimodality coef-
ficient βρ of the local density distribution function [76].
The bimodality coefficient takes the minimum value of 0
for a unimodal Gaussian distribution and the maximum
value of 1 for a distribution with two distinct delta peaks.
It equals 5/9 for a uniform distribution, which is taken
as a bimodality threshold phenomenologically [77]. Using
this threshold value, we construct the phase boundary of
the coexistence phase in Fig. 2.

The coexistence phase features intriguing dynamical
patterns depending on relative areal fractions of the chi-
ral and the SS phases. For instance, we observe a bubble
state, in which a species-mixed chiral background is punc-
tured by vortex cells (see Fig. 10 for Q = 4 and Fig. 11 for
other values of Q). A bubble is nucleated spontaneously
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(a)

Qρ0

(b)

FIG. 10. Bubble state in the coexistence phase for the four-
species system with L = 128, ρ0 = 3, η = 0.3, and α = 0.72π.
(a) Snapshot of individual particles colored according to their
species. Each bubble is inhabited by particles of single species.
The local density field within the dashed square region in
(a) is drawn in (b). The brighter the image is, the higher
the local density is. The density field across the horizontal
section, represented by a dashed line, is plotted with solid
line. The thick vertical segment represents the scale for the
overall particle density ρtot. = ρ0Q. The bubble boundary is
densely populated.

(a) Q = 2 (b) Q = 3 (c) Q = 6

FIG. 11. Bubble states for Q = 2, 3, 6 with (α/π, η) =
(0.40, 0.37), (0.57, 0.30), and (0.86, 0.30), respectively. Par-
ticles only in a low density region with ρ < ρtot./2 are plotted
with dots colored according to their species. A high density
region with ρ > ρtot./2 is filled in gray scale. The darker, the
local density is higher. Bubbles inhabited by a single species
are bounded by a sharp boundary. On the other hand, bub-
bles inhabited by multiple species have an indistinct bound-
ary. These are annihilating bubbles. Parameters: L = 128
and ρtot. = 12.

when a coherent group of single species is separated from
the others due to statistical fluctuations. These parti-
cles interact nonreciprocally with surrounding particles
acquiring clockwise chirality. As they flow and push
other species particles away, a bubble grows with a sharp
boundary. However, these bubbles are not robust. As a
bubble grows, an inhabiting chiral gas becomes dilute and
cannot exert enough pressure against background parti-
cles. Consequently, such a bubble dissolves eventually.
Bubbles can also be annihilated in pairs. When two bub-
bles of different species collide each other and merge into
one, particles are mixed. Then, chiral motion along the
bubble boundary weakens, which destabilizes both bub-
bles (see Fig. 11). The emergent dynamical pattern of
the bubble as well as the vortex cell array can be useful
in control and microfabrication of active mixture. Quan-

titative and theoretical understanding of these emergent
dynamical pattern is in order.

In the coexistence phase, the system phase separated
into high- and low-density regions. Phase separation is
common in active matter systems, and various field the-
oretical models have been proposed to explain the mech-
anism. The active Cahn-Hilliard equation [78] and the
ϕ4-type scalar field theory [79, 80] successfully describe
phase separation in single-component active matter. The
nonreciprocal multi-component Cahn-Hilliard equation
displays phase separation and pattern formation [22]. It
will be interesting to establish a theoretic framework for
species separation in a nonreciprocal multi-species sys-
tem with Potts symmetry, like the Q-NRVM. The co-
existence phase was not captured by the linear stability
analysis. A theoretical framework for species separation
in the Q-NRVM, possibly by extending the linear sta-
bility analysis to include r-dependent perturbation, is
warranted.

V. DISCUSSION AND OUTLOOK

This work proposes a Q-species Vicsek model and a
corresponding continuum hydrodynamic equation as a
minimal model for nonreciprocal active matter systems
with Potts symmetry (SQ permutation symmetry). The
unique feature of our model is the introduction of a con-
stant phase shift in the velocity alignment interaction.
This phase shift makes the mutual interaction nonrecip-
rocal while maintaining symmetric coupling amplitudes
between all species. In contrast, most prior studies incor-
porate nonreciprocity through asymmetric coupling am-
plitudes among non-equivalent agents.

The nonreciprocal phase shift α is the origin of the
emergent collective chiral motion, counter-clockwise or
clockwise. For small α, particles are well mixed and
perform counterclockwise chiral motion characterized by
QLRO. The QLRO chiral phase is destroyed by the BKT
transition, a result which is unexpected for an ensemble
of self-propelled particles. We argue this is because the
emergent chirality impedes particle motility, which ef-
fectively renders advective fluctuations irrelevant. The
chiral phases thus interact akin to XY spins, allowing
the BKT transition to emerge.

For large α, species separation occurs and a vortex cell
pattern emerges. Each vortex cell is predominantly in-
hibited by a single species. Particles in adjacent cells
interact along the cell boundary to generate clockwise
chiral motion. The perturbative linear stability analysis
in Sec. IV B reveals an instability that the polarizations
of two distinct species flocks should turn by π/2 upon
head-on collision. This instability generates an effective
repulsion among different species particles and is respon-
sible for species separation. We note that this rotation
of polarization can be regarded as an odd viscosity phe-
nomenon [64].

We found a coexistence phase in which the QLRO chi-
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ral phase and the SS phase coexist in space. Phase sep-
aration is common in active matter systems [22, 78–80].
The coexistence phase in our model cannot be fully ac-
counted for by existing active matter theories for phase
separation: First, our model possesses permutation sym-
metry, and second, the density field is coupled to the chi-
rality field emerging from the nonreciprocal interactions.
Therefore, the coexistence phase calls for an effective field
theory. The hydrodynamic equation (34) could serve as
a starting point for the study, which will be pursued in
future work.

In summary, we have established a minimal model for
multi-species active chiral fluids with Potts symmetry.
One may consider species-dependent phase shifts in the
velocity-alignment interaction to explore systems with
broken SQ symmetry. It will also be interesting to in-
vestigate its transport properties, particularly in view of
the odd viscosity and odd diffusivity. We leave these for
future work.

The data that support the findings of this article are
openly available [81].
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Appendix A: Explicit expressions for interaction
kernels

The interaction kernels JklR and JklNR represent the cou-
pling amplitudes between the kth and lth Fourier modes
of the same and different species, respectively. They are
given by

JklR =PkL
kl
R − Il,

JklNR =PkL
kl
NR − Il,

(A1)

where

Pk =

∫ π

−π
dϕ Pn(ϕ)e

ikϕ = e−k
2η2/2

Ik =

∫ π

−π

dϕ

2π
K(ϕ)eikϕ

LklR =

∫ π

−π

dϕ

2π
K(ϕ)eikΘR(ϕ)−ilϕ

LklNR =

∫ π

−π

dϕ

2π
K(ϕ)eikΘNR(ϕ)−ilϕ

(A2)

with the noise distribution function Pn(ϕ) in Eq. (15),
the scattering angle ΘR,NR in Eq. (16), and the scattering
cross section K(ϕ) in Eq. (17).

We note that Ik and LklR,NR involve a Fourier coeffi-
cients of K(ϕ). Thus, it is convenient to introduce an

auxiliary function

F (c, β) :=

∫ π

β

dθ

∣∣∣∣sin θ2
∣∣∣∣ eicθ (A3)

for an integer or an half-integer c. Then, one obtains that

Ik =κF (k,−π) = 4κ

1− 4k2
,

LklR =κF

(
k

2
− l,−π

)
,

LklNR =κe
i
2kα

[
F

(
k

2
− l,−π

)
−(1− e−iπk)F

(
k

2
− l, π − α

)]
.

(A4)

The nonreciprocity parameter α appears in LklNR, hence
in JklNR.

Appendix B: Order parameters and snapshots

In the main text, we presented the numerical result
primarily for the three-species case. Here, we present
supplemental numerical data for other values of Q.

Figure 12 compares the order parameters in the α− η
plane for Q = 2, 4, 5, 6. These results suggest that the Q-
NRVM displays the four distinct phases irrespective of
the Q values. On the other hand, the phase boundaries
shift toward the large α side as Q increases. The SS
phase is invisible for Q = 5 and 6 in these plots. One
have confirmed the SS phase using higher values of ρ0.

Figure 13 present snapshots in the SS phase for Q = 2,
4, and 5. Species separation is manifest in the parti-
cle configurations. The polarization fields clearly demon-
strate vortex cells with clockwise chirality.

Appendix C: Density field near vortex and
antivortex cores

Vortex and antivortex excitations generate density
fluctuations. Consider an idealized situation in which
a perfect in-phase chiral state is perturbed by a sin-
gle vertex-antivortex pair: Particles revolve on circular
orbits whose centers are located regularly at positions
un = un,x + iun,y with un,x, un,y ∈ Z forming a square
lattice. Particle n moves along a trajectory zn(t) =
un + v0

iΩ0
ei(Ω0t+ϕn) with velocity vn = v0e

i(Ω0t+ϕn), re-
gardless of its species, with different phase ϕn and iden-
tical angular frequency Ω0.

A vortex at z = z⊕ and an antivortex at z = z⊖ are
introduced by choosing

ϕn = Arg [un − z⊕] + Arg [(un − z⊖)
∗] (C1)

We illustrate four snapshots taken consecutively in a time
step of ∆t = 1

4
2π
ψ in Fig. 14. The snapshots demon-
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FIG. 12. Density plot of ms, es, γs, and βρ in the α − η plane for Q = 2 with ρ0 = 2 and Q = 4, 5, 6 with ρ0 = 1. Numerical
simulations were performed on a system of size 128×128. The contour lines drawn at ms = 0.5, es = 0.5, γs = 0, and βρ = 5/9,
are guides for the eye.

strate that these topological excitations generate a time-
periodic modulation in the particle density field. An os-
cillating monopole moment develops near the vortex core,
while a rotating quadrupole moment develops near the
antivortex core.

We derive the exact density modulation due to a
vortex or an antivortex excitation in the otherwise in-
phase chiral state in the continuum limit. Let r(u, t) =
(x(u, t), y(u, t)) denote the position vector of a particle
revolving on a circular orbit centered at u = (ux, uy) with
angular frequency Ω0. The orbit centers are distributed
uniformly with a constant density function ρc(u) = ρ
with ρ = ρ0Q. We use the complex coordinate z = x+ iy
and its complex conjugate z∗, the polar coordinate r =

√
x2 + y2 and θ = tan−1(y/x), as well as the Cartesian

coordinate. We will use these systems interchangeably.
In the chiral state, the particle position z = x + iy is

given by the mapping

z = f(u, u∗, t) = u+ r0e
i(Ω0t+ϕ(u,u

∗)) (C2)

from u = ux+iuy and its complex conjugate u∗, where r0
is the radius of the orbit, Ω0 is the angular frequency, and
the phase field ϕ(u, u∗) describes an excitation from the
in-phase chiral state. Assuming particles are well mixed,
we do not distinguish the particle species.

In the presence of a vortex excitation with its core at
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(a) Q = 2 (b) Q = 4 (c) Q = 5

(d) Q = 2 (e) Q = 4 (f) Q = 5

FIG. 13. Snapshots of a particle configuration and a polar-
ization field in the SS phase for Q = 2 in (a, d), Q = 4 in
(b,e), Q = 5 in (c,f). Parameters: (ρ0, α/π, η) = (2.0, 0.8, 0.3)
for Q = 2, (1.0, 0.8, 0.35) for Q = 4, and (1.0, 0.95, 0.3) for
Q = 5).

⊕ 	

⊕ 	⊕ 	

⊕ 	

FIG. 14. Illustration of a series of particle configurations in
the presence of a vortex at position marked with ⊕ and an
antivortex at position marked with ⊖. Particles are marked
with an empty circle and orbit centers with a dot. The dis-
placement from the orbit center is represented with an arrow
color-coded according to the direction.

the origin u = u∗ = 0, the phase field ϕ(u, u∗) becomes

ϕ⊕(u, u
∗) = Arg[u] = tan−1

(
uy
ux

)
, (C3)

and the mapping is given by

f⊕(u, u
∗, t) = u+ r0

u√
uu∗

eiΩ0t. (C4)

The particle density is then given by

ρ⊕(z, z
∗, t) = ρc(u, u

∗)

∣∣∣∣∂(f⊕, f∗⊕)∂(u, u∗)

∣∣∣∣−1

. (C5)

The last term is the Jacobian of the transformation (C4),

which equals∣∣∣∣∂(f⊕, f∗⊕)∂(u, u∗)

∣∣∣∣ = 1 +
r0√
uu∗

cosΩ0t. (C6)

The transformation (C4) is inverted to yield that z =
f⊕ ≃ u for |u|, |z| ≫ r0. Thus, we obtain the density
function

ρ⊕(r, t) ≃ ρ
(
1− r0

r
cosΩ0t

)
(C7)

away from the vortex core (r ≫ r0). The vortex ex-
citation induces an isotropic monopole moment in the
particle density. Its amplitude decays algebraically with
the distance from the core as 1/r and oscillates with the
angular frequency Ω0.

In the presence of an antivortex with its core at the
origin u = u∗ = 0, the phase field becomes

ϕ⊖(u, u
∗) = Arg[u∗] = − tan−1

(
uy
ux

)
, (C8)

which yields that

f⊖(u, u
∗, t) = u+ r0

u∗√
uu∗

eiΩ0t. (C9)

It is straightforward to derive that∣∣∣∣∂(f⊖, f∗⊖)∂(u, u∗)

∣∣∣∣ = 1− r0√
uu∗

cos(Ω0t+ 2ϕ⊖(u, u
∗)). (C10)

The transformation (C9) is inverted to yield z ≃ u for
|z|, |u| ≫ r0. Thus, we finally obtain that

ρ⊖(r, t) ≃ ρ
(
1 +

r0
r
cos(Ω0t− 2θ)

)
(C11)

away from the vortex core, r ≫ r0. The anti-vortex
excitation induces a quadrupole moment in the particle
density. The amplitude decays algebraically with the dis-
tance from the core as 1/r. The principal direction ro-
tates with the angular frequency Ω0.

Appendix D: Perturbative analysis of the
hydrodynamic equation for the two-species system

We present a normal-mode analysis for the linearized
hydrodynamic equations (55) and (56) in a limiting case
with η = 0. Before addressing the problem, we first docu-
ment the normal model solution for a general linear equa-
tion for a complex variable z(t)

∂tz = pz + qz∗ (D1)

with complex coefficients p and q. It can be recasted into
a coupled linear system for z and z∗:(

∂tz
∂tz

∗

)
=

(
p q
q∗ q∗

)(
z
z∗

)
, (D2)
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whose normal modes can be found from eigenvectors and
eigenvalues of the 2×2 matrix. Explicitly, the eigenvalues
are given by

Λ± = ℜ[p]±
√
|q|2 −ℑ[p]2, (D3)

with the corresponding eigenvectors (1, (Λ±−p)/q)T . For
|q|2 ≥ ℑ[p]2, in particular, the two eigenvalues are real
and the normal modes are given by

z±(t) = eiΘ±eΛ±t (D4)

with the phase angle

Θ± =
1

2
Arg

[
q

Λ± − p

]
. (D5)

At η = 0, the symmetric mode is governed by ∂tδwS =
a1δwS + a2δw

∗
S with

a1 = −4κ

39
(21π − 29) +O(ϵ2α),

a2 = −6(π − 2)κ

91
(7− 6iϵα) +O(ϵ2α).

(D6)

Using Eq. (D3), we find that two normal modes for δwS
have negative Lyapunov exponents ΛS,+ ≈ − 2

39 (33π −
40)κ and ΛS,− ≈ − 2

39 (51π − 76)κ. Therefore, the two
flocks flow in the opposite direction for small ϵα = π−α
and at η = 0.

At η = 0, the anti-symmetric mode is governed by
∂tδwA = b1 + (b1 + b2)δwA + b2δw

∗
A with

b1 = − iκ
7
(24− 5π) ϵα +O(ϵ2α),

b2 = −2(π − 2)κ

7
(7− 6iϵα) +O(ϵ2α).

(D7)

The inhomogeneous term b1 = O(ϵα) with negative imag-
inary part accounts for a clockwise bending of δwA. The
inhomogeneous term also renders a fixed point at

δwA,f = i
28(π − 2)

(29π − 72)ϵα
+O(ϵ0α). (D8)

Stability is determined by the Lyapunov exponent. Using
Eq. (D3), we obtain that

ΛA,− = −3(π − 2)κ+O(ϵα) (D9)

ΛA,+ =
47π2 + π − 288

98(π − 2)
κϵ2α +O(ϵ3α). (D10)

The first Lyapunov exponent λA,− is negative. Thus, the
normal mode associated with it is irrelevant. However,
the second Lyapunov exponent ΛA,+ is real and positive
with the phase angle

ΘA,+ ≃ −π/2 +O(ϵα). (D11)

Thus, the anti-symmetric mode grows indefinitely as
δwA(t) ∼ eiΘA,+ΛA,+t = −ieΛA,+t. Recalling that w1 =
wπ+δwS/2+wπδwA and w2 = −wπ+δwS/2−wπδwA, we
conclude that the unstable mode eiΘA,+ΛA,+t is responsi-
ble for the effective repulsion between different species.
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