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Malignant solid tumors recruit the blood vessel network of the host tissue for
nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis
(the formation of new blood vessels), vessel cooption (the integration of existing
blood vessels into the tumor vasculature), and vessel regression remodel the
healthy vascular network into a tumor-specific vasculature that is in many respects
different from the hierarchically organized arterio-venous blood vessel network
of the host tissues. Integrative models based on detailed experimental data and
physical laws implement in silico the complex interplay of molecular pathways,
cell proliferation, migration, and death, tissue microenvironment, mechanical and
hydrodynamic forces, and the fine structure of the host tissue vasculature. With
the help of computer simulations high-precision information about blood flow
patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution
can be obtained and a plethora of therapeutic protocols can be tested before clinical
trials. In this review, we give an overview over the current status of integrative
models describing tumor growth, vascular remodeling, blood and interstitial fluid
flow, drug delivery, and concomitant transformations of the microenvironment.
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INTRODUCTION

Blood vessels supply every part of a living organ-
ism with oxygen and nutrients for which

reason the establishment of a mature organized
vascular network is fundamental for tissue homeosta-
sis. Therefore angiogenesis, the creation of new blood
vessels, is vital for successful embryogenesis and organ
growth and plays a major role in wound healing and
tissue repair. During these processes, angiogenesis is
tightly controlled by manifold molecular and mechan-
ical factors1,2 resulting in tissue-specific, structured,
hierarchically organized vascular networks optimized
to meet the needs of the organ and of the body.
Importantly, all living cells of the tissue are com-
monly located within 100–200 μm of perfused blood
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vessels, the diffusion limit for oxygen. Solid tumors
are in many respects similar to a developing organ3

comprising also a functional vasculature.
Tumor vasculature, the blood vessel network

supplying a growing tumor with nutrients such as oxy-
gen or glucose, is in many respects different from the
hierarchically organized arterio-venous blood vessel
network in normal tissues. In order to grow beyond
a size of approximately 1–2 mm3, the tumor has to
switch to an angiogenic phenotype and to induce the
development of new blood vessels mainly via sprout-
ing angiogenesis, i.e., the formation of new vessels
from pre-existing vasculature.1,2 This process is reg-
ulated by a variety of pro- and antiangiogenic factors
and as a consequence the anatomy of a solid, vascu-
larized tumor grown within in a vascularized tissue
displays a characteristic compartmentalization into
essentially three regions4–7: (1) the highly vascularized
tumor perimeter with a microvascular density (MVD)
that is substantially higher than the MVD of the
surrounding normal tissue; (2) the well-vascularized
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tumor periphery with dilated blood vessels and a tor-
tuous vessel network topology; and (3) a poorly vas-
cularized tumor center with large necrotic regions
threaded by only a few very thick vessels that are sur-
rounded by a cuff of viable tumor cells.

Several microscopic phenomena on the cellu-
lar level have been identified to be involved in this
remodeling process: (1) Angiogenic sprouting: Upreg-
ulation of proangiogenic factors in tumor-cells [such
as vascular endothelial growth factor (VEGF) and
other growth factors] can create additional vessels
via sprouting angiogenesis in some regions of the
tumor, most frequently in its perimeter.1,2 (2) Vessel
regression: The maintenance of incorporated mature
microvessels depends on the survival of endothe-
lial cells (ECs) and their survival is intimately tied
to their local microenvironment and, in particu-
lar, to the presence of pericytes, survival promoting
cytokines, and extracellular matrix (ECM) proteins.
The major molecular players that control this pro-
cess are angiopoietins and VEGF,6,7 and in coopted
blood vessels Ang-2 is upregulated, causing the desta-
bilization of their capillary walls, i.e., the detachment
of pericytes from the endothelial tube. Once ECs are
separated from pericytes, they become particularly
vulnerable resulting in the regression of destabilized
vessels. (3) Vessel dilation: The vascularization pro-
gram of the proangiogenic phenotype can be switched
from sprouting angiogenesis to circumferential growth
in the interior of the tumor. This switch is medi-
ated by the guidance molecules EphB4 (and its ligand
ephrinB2), both expressed by ECs of malignant brain
tumors,8 which acts as a negative regulator of blood
vessel branching and vascular network formation, and
also reduces the permeability of the tumor vascular
system via activation of the Ang-1/Tie-2 systems at the
endothelium/pericyte interface.

Besides pro- and antiangiogenic molecular
factors, physical determinants such as mechani-
cal, hydrodynamical, and collective processes are
involved in the transformation or remodeling of the
original arterio-venous blood vessel network into a
tumor-specific vasculature. As for the generation of
vascular networks in organ development a complex
interplay among chemical signals, guidance proteins,
and mechanical forces determines the morphology
and the function of the emerging tumor vasculature.

Theoretical modeling and computer simulations
can help to understand and quantify the influence
of the various factors determining this complex mul-
tiscale phenomenon (for recent reviews, see Refs
9, 10; and references therein). The ultimate clini-
cal goal of computer-based models is the develop-
ment of patient-specific predictive models to improve

diagnosis, therapy planning, and treatment of a tumor.
A particular problem in anticancer therapies is the
delivery of blood borne drugs to the tumor cells,11

which is intimately linked to the peculiarities of the
tumor vasculature and the resulting characteristics of
interstitial fluid pressure and flow within tumors.12

Ideally, an integrative model of the dynamics of the
tumor vasculature would be able to predict conse-
quences of, e.g., antiangiogenic therapies13 or tumor
vessel normalization,14 for a specific tumor in a spe-
cific tissue by performing computer simulations rather
than an expensive clinical trial. The same holds for
drug-induced alterations of tissue permeabilities15,16

or other therapies targeting parameters defining the
spatiotemporal distribution of blood and interstitial
fluid flow. Realistic quantitative in silico models for
tumor vasculature will also help to develop new diag-
nostic tools by providing detailed information about
the characteristics of the distribution of oxygen, glu-
cose, or blood-borne tracer particles within the tumor.
Last, but not least, the tumor vasculature is besides the
lymphatic network, the main entry point for circulat-
ing tumor cells leading to metastasis, responsible for
most cancer deaths.17 In silico models of tumor vascu-
larization will help to shed light on the complex inter-
play between antiangiogenic therapies and metastatic
potential of the growing tumor.

MODEL COMPONENTS
A vascularized solid tumor growing in healthy tissue
is a complex system, similar to a developing organ.3 A
first step in a systems biological approach is to identify
several interacting subsystems and to find appropriate
mathematical representations for each as well as for
their biochemical and physical interactions between
them. Consequently, mathematical models for vascu-
lar remodeling during tumor growth comprise sev-
eral interacting components or modules, among which
the following ones might represent a backbone: (1)
a tumor growth module representing the expanding
tumor mass within healthy tissue, involving the pro-
liferation, movement, and death of tumor cells, which
depend on available oxygen and nutrients, on avail-
able space, solid pressure, drug concentrations, and
so on; (2) a vasculature module comprising a rep-
resentation of a blood vessel network that includes
intravascular blood flow and that changes dynami-
cally due to the presence of pro- and antiangiogenic
factors, solid pressure, and blood perfusion; (3) a
module for intravascular transport of oxygen [via red
blood cells (RBC)], extravasation and subsequent dif-
fusion of oxygen; (4) a module for fluid extravasa-
tion and the emerging interstitial fluid flow; and (5) a
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module for blood-borne drug transport, extravasa-
tion of drugs, convective and diffusive drug transport
through the interstitium, and adsorption of drug by
tumor cells. In the following, we summarize the phys-
iological characteristics of these subsystems and the
commonly used modeling approaches for the individ-
ual modules.

Tumor Growth
Two basically distinct mathematical approaches
toward avascular tumor growth can be taken: (1)
particle-based models, in which each cell (or micro-
scopic tissue volume) is represented by a particle that
can move, divide, vanish, and interact with other
particles, and (2) continuum models, in which the
spatiotemporal evolution of the densities, pressure
field, velocities fields, and so on of cells of differ-
ent phenotypes are described by partial differential
equation. Particle-based models follow the spirit of
molecular dynamics or Monte Carlo simulations18

commonly used in physics and chemistry and allow
for a microscopic description of tissues, whereas
continuum models find their roots in the constitutive
mesoscopic equations of hydrodynamics, phase mix-
tures, nonlinear elasticity, and so forth. In both cases,
the additional challenge posed by growing tissues in
general and tumors in particular is cell proliferation
and death.

Particle-based Models
The minimal requirements for single-cell-based mod-
els involve cell–cell adhesion, volume exclusion,
growth pressure, fluctuating random forces, expan-
sion during maturation, division when mature, and
apoptosis under certain circumstances. Cell division
rate and apoptosis should depend on oxygen and/or
glucose supply. Physically, a tissue surface tension
should arise from the cell–cell interactions and force
balance and momentum conservation should be
fulfilled.

Single Particle Models in Continuous Space
The models of Drasdo,19 based on Langevin dynamics
(thus following a stochastic approach), and Elgeti,20

based on dissipative particle dynamics (following a
deterministic approach), fulfill the aforementioned
requirements and reproduce experimentally measured
morphological properties of tumor spheroids growing
in vitro21: a compartmentalization of the tumor into
a proliferating rim, a shell of quiescent tumor cells in
the interior, and a necrotic core emerging beyond a
certain tumor radius. By varying adhesion parameters
and confinement conditions, these models predict

mechanically induced morphological instabilities such
as buckling22 and fingering.23

Integration of a particle-based tumor growth
model into an integrative modeling framework is
straightforward: The single-cell parameters determin-
ing the cells phenotype, comprising growth rate, divi-
sion rate, motility, susceptibility to external clues, and
so on are then made depend on the current local con-
centrations of oxygen, nutrients, growth factors, ther-
apeutic drugs, and so forth as determined by other
modules, as well as on mechanical solid pressure and
shear forces. Conceptually, more difficult is the inte-
gration of a blood vessel network that is not repre-
sented by individual cells, but by, e.g., pipes. For low
relative vessel volume, it is a good approximation to
neglect the excluded volume of the individual pipes as
well as the longitudinal deformation of blood vessels
due to solid pressure. Nevertheless, the latter plays a
role for transverse deformation of vessels (i.e., vessel
constriction), eventually leading to vessel collapse (see
below).

Stochastic Models on Discrete Lattices
An alternative particle-based approach is the Cellu-
lar Potts Model (CPM).24,25 In contrast to the former
single-cell-based models the CPM operates on a two-
or three-dimensional (3D) grid or lattice and each cell
(or microscopic piece of tissue) is represented by a cer-
tain number of connected lattice points, in arbitrary
shapes. An energy function reminiscent of the Potts
model in statistical physics (therefore the name) quan-
tifies the interactions between cells, and Lagrangian
parameters provide bounds for volume and surface
fluctuations of the individual cells. The dynamics of
this system is defined to be stochastic and the emerg-
ing stochastic process is computationally studied with
Monte Carlo simulations. The transition probabilities
are chosen to fulfill the detailed balance with respect
to the Boltzmann weight for the model energy. Dif-
ferent interaction energies between cells of different
times lead to differential adhesion and concomitantly
to cell sorting and related phenomena. Introducing
a nutrient concentration field in connection with a
diffusion-limitation parameter, the model predicts fin-
gering instabilities due to competition for nutrients.26

The latter is a diffusional instability as in dendritic
growth, but not a mechanical instability. This tumor
growth model has also been combined with a vessel
network model27 (see below).

Caveats
Particle-based models are analyzed with the help of
computer simulations and it is clear that the con-
cept ‘one particle–one cell’ becomes computationally
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extremely demanding when studying macroscopic vas-
cularized tumors of a size a several cm3, in which case
one faces billions (109) of tumor or tissue cells. The
mere memory requirements would be enormous, in
the range of tens to hundreds of Gigabytes depend-
ing on the number of variables describing the state
of each individual cell (such as position, age, genetic
state, etc.). Thus, particle-based models are currently
restricted to rather modest system sizes (i.e., length
scales of a few hundred micrometer). It is, however,
conceivable to extend the particle concept to ‘one
particle–one piece of tissue’, in which a single par-
ticle is equipped with the mechanical, chemical, and
dynamical properties of hundreds of cells.

Continuum Models
Continuum models provide a coarse-grained descrip-
tion of tumor development via partial differential
equations that have to be solved numerically by
using, e.g., finite element methods implemented on a
computer. The latter discretize the problem and one
should bear in mind that modern computers can cur-
rently handle only of the order of 106 discretization
volumes or voxels. For a tumor volume of 1 cm3,
this implies that one voxel has a volume of 100 μm3,
which could contain thousands of tumor or tissue
cells. Thus, in continuum models for macroscopic
tumors all quantities, such as cell densities, concen-
tration fields, velocity, pressure, force fields, and so
on, always represent a spatial average.

A comprehensive review on continuum models
for avascular tumor growth can be found in Ref 10.
An integrated description of the developing tumor
should comprise terms that quantify cell prolifera-
tion and death, cellular motility via chemo-, hapto-,
and mechanotaxis, cell–cell adhesion, and possibly
visco-elastic and compressibility properties. Cell pro-
liferation and dead are represented by source terms in
the constitutive equations for the temporal evolution
of cell densities, which might depend on other concen-
tration and in particular on pressure. Cellular motility
is represented by convective terms that depend on gra-
dients of other fields, and cell–cell adhesion can, e.g.,
be incorporated by introducing a surface tension for
the tumor boundary.28,29 Solid pressure can either be
defined by a constitutive equation of state (a nonlin-
ear relation between density and pressure) or results
from additional equations modelling stress relaxation
in tumors.30 Mechanical effects involving solid pres-
sure and stress play an important role, too, as has been
demonstrated in Ref 31, where the diameter of grow-
ing cellular spheroids in gels of different rigidity have
been measured. It was demonstrated that the tumor
size depends on the normal load exerted by the sur-
rounding gel on the multicellular spheroid. Thus, solid

pressure eventually leads to growth arrest, and is also
responsible for vessel collapse.32

A number of growth instabilities may emerge
depending on the details of the chosen growth model
and the physical parameters: a diffusion-limited insta-
bility similar to dendritic growth in diffusion-limited
aggregation33 originating in preferential growth at
tips of the tumor boundary that has better access to
oxygen or nutrients, a fingering instability similar to
the Saffmann-Taylor instability in Hele-Shaw cells34

that occurs when one immiscible fluid of lower vis-
cosity penetrates another fluid of higher viscosity, and
buckling or wrinkling instabilities similar to elastic
materials under an external load which occur when
a growing tissue generates sufficient residual stress
to destabilize its body.35 In addition to morpholog-
ical changes in which the tumor mass maintains its
integrity, aggressive tumors in nutrient-poor envi-
ronments can break up into small fragments that
penetrate the surrounding tissue, as predicted by
a model presented in Ref 36. These instabilities
are universal and each has its own basic mathe-
matical representation sometimes hidden within
the complexity of a given tumor growth model.
Which one is physiologically relevant and should be
integrated into a continuum modeling framework
depends on the tumor type, the (healthy) host tissue,
and the microenvironment. It should be mentioned
that the aforementioned instabilities also occur in
appropriately designed particle-based models.

Vasculature and Blood Flow
Solid tumors grow in an originally healthy tissue,
which already contains a normal vasculature, a hier-
archically organized arterio-venous blood vessel net-
work, and which is then dynamically modified by
the growing tumor. An integrative modeling approach
thus has to address two issues: first, it has to find an
appropriate representation of the original vasculature
of the host tissue; and second, the dynamics of the
given blood vessel network has to be defined, which
includes the insertion of new vessels via angiogenesis
as well as the removal of existing vessels (old and new)
via vessel regression, and the modification of existing
vessels via dilation, constriction or occlusion. More-
over, the network carries a blood flow, which has to
be represented, too.

In well-vascularized tissue, the average intercap-
illary distance is 50–100 μm, in highly vascularized
tissue like brain even less (depending on the oxygen
demand and the resulting diffusion length), implying
the importance of the incorporation of the original
vasculature into a model for tumor-induced angio-
genesis. This vasculature is organized in a hierarchical
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FIGURE 1 | Vascular network reconstruction: (a) A section of a cortical blood vessel network after reconstruction based on micro-CT images.
Vessels are color coded according to their radius. (Reprinted with permission from Ref 39. Copyright 2010 Nature Publishing Group). (b) Depth-coded
image obtained from confocal laser microscopy. This shows a section of human brain tissue (Reprinted with permission from Ref 37. Copyright 2006
Wiley-Blackwell). (c) A coronary vascular network based on micro-CT images. Various subnetworks are distinguished by random colors (Reprinted
with permission from Ref 38. Copyright 2007 Elsevier Science).

way, in which an arterial and a venous tree are inter-
digitated by capillaries. Oxygen and other nutrients
are distributed into the surrounding tissue by the
lowest-level capillaries, the two trees representing
their supply and drainage system. The microvascualr
density (MVD), given by the average intercapillary
distance, is homogeneous in one kind of tissue to
provide a homogeneous oxygen and nutrient supply,
but the two interdigitating hierarchical trees form a
spatially very inhomogeneous blood vessel network.
Consequently, the vascular remodeling process in a
growing tumor will also be spatially inhomogeneous:
Sprouting angiogenesis occurs mainly from capillaries
and venules, higher-level arteries protected by a thick
layer of pericytes are more stable and regress later or
not at all, regression of higher level arteries has fatal
consequences for the whole arterial subtree below
it, and newly formed vessels between arteries and
veins could act as shunts redirecting huge amount
of blood. In more than one respect, the original vas-
culature determines the fate of the emerging tumor
vasculature.

Original Vasculature
In mathematical modeling, blood vessel networks
are commonly represented as pipe networks, and
with modern computers the microvasculature of even
macroscopic tissue samples of several cubic centimeter
can be represented completely, i.e., vessel by vessel:
With a characteristic intercapillary distance of 100 μm
a tissue volume of 1 cm3 contains of the order of
106 vessels, which is manageable. Also the blood
flow computation on pipe networks of this size is
manageable as the connectivity is low which allows

for sparse matrix inversion methods to solve the
underlying set of blood flow equations. Thus, in order
to be physiologically or even clinically relevant a
major modeling effort has to be made to represent the
original vasculature of the tissue of interest.

Recent progress in enhanced image acquisi-
tion techniques such as confocal microscopy and
microcomputer tomography (!CT) applied to the
microvasculature in connection with improved image
processing allowed to obtain 3D vessel network
representations of the complete microvasculature of
several different tissues: pieces of the human cere-
bral cortex,37 the complete rat heart vasculature,38

cortical gray matter of primate brain39 (see Figure 1)
and even breast tumor microvasculature.40 For the
reconstructed networks, the resulting blood flow
and other hemodynamic parameters have been
computed39–42 using Poiseulle’s law for ideal pipe
flow and a radius-dependent effective viscosity tak-
ing into account the Faraeus-Lindqvist effect.43,44

Care has to be taken as to choose appropriate
boundary conditions for the tissue samples under
consideration45 because blood pressure or flow values
in the vessels exiting or entering the sample are not
know experimentally.

On the way to an integrative modeling frame-
work for vascular tumor growth within a particular
tissue type, first a representative microvascular net-
work for this tissue should be reconstructed, as
reviewed above, and then be used as the initial vascu-
lature for an integrative model. This is a step that has
still to be carried out, up to now researchers relied on
computer-generated synthetic networks. Early mod-
eling attempts represented the original vasculature as

Volume 7, May/June 2015 © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. 117



Advanced Review wires.wiley.com/sysbio

(a) (b)

(c) (d)

FIGURE 2 | Tumor vascular network remodeling, based on simulations of the model described in Ref 54: An initial vascular network was
synthetically generated. Then a simulation of tumor growth was performed using this network. The network edges are visualized as cylinders, color
coded according to their associated blood pressure value. The viable tumor tissue is visualized as yellow mass. Hollow interior regions appear due to
necrotic tissue which was once viable but has died from oxygen deprivation. The simulated area is a box of ca. 8 mm lateral size of which a quarter is
cut away for display purposes. The cutting faces of vessels are colored light grey. (a) The initial state with a small tumor nucleus. (b) 200 h later
angiogenesis has set in. Many tumor vessels have collapsed due to reduced blood flow. Surviving interior vessels are dilated due to switching from
angiogenesis to circumferential growth. (c) After 400 h, the tumor network is thinned out sufficiently that tumor regions are located well outside the
diffusion distance of oxygen, causing hypoxia and subsequent necrosis. (d) As the tumor continues to grow it pushes the region of angiogenic activity
further into normal tissue and leaves a sparse network behind its rim. This state, as seen after 800 h simulated time, shows typical features of tumor
vasculature: compartmentalization, highly vascularized rim, decreasing vascular density toward the center where the network is very sparse, vessel
dilation, loss of hierarchical organization. The model parameter selection for this case was guided by experimental data for human melanoma.

a capillary network in which capillaries are arranged
in a 2D or 3D grid.46–51 These grid networks can be
adapted to a given MVD, average capillary radius
and total pressure drop, but they lack a hierarchical
organization, neither represent arteries nor veins,
and produce artifacts due to a global flow bias in
one direction imprinted by the boundary conditions.
In Refs 52, 53, a synthetic arterio-venous vessel
networks were generated that match the observed
statistical distributions and satisfied given pressure
drops and flow rates (see Figure 2(a)).

Blood Flow and Hematocrit
Blood flow rates in all vessels are determined accord-
ing to conservation of mass at vessel junctions and the
Hagen-Poiseuilles law for ideal pipe flow, in which the
blood flow rate is proportional to the pressure gradi-
ent along the vessel and the fourth power of the radius
and inversely proportional to the blood viscosity. The
blood pressures at inlets (veins) and outlets (arteries)
are predetermined through boundary conditions. This
leads to a system of linear equations the solution of
which yields the pressure values at the vessel junctions.
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The boundary conditions are of Dirichlet type where
the pressure at all root nodes is set to a fixed value
p(BC)(r) depending on the respective vessel radius.

Blood viscosity and oxygen content depend on
hematocrit, which has therefore to be taken into
account. Hematocrit is the fractional volume taken
up by RBCs, which might vary from vessel to ves-
sel. The viscosity dependence, which is known as
Fahraeus-Lindqvist effect, is treated by decomposing
the viscosity into the plasma viscosity and a correction
due to the RBC content. For the latter, a phenomeno-
logical formula is commonly used.43,44

Two well-known effects contribute to the uneven
distribution of hematocrit.55 First, the Fahraeus effect,
where the hematocrit in a small perfused tube is lower
than the hematocrit at the inlet. This is due to the
formation of a RBC-free boundary layer, so that
RBCs in a central RBC rich core travel faster than the
average blood velocity. The second effect is the phase
separation effect where RBCs at arterial bifurcations
prefer to flow into either of the branches depending on
blood flow rates and geometry. Again aphenomeno-
logical formula was constructed that describes the
phase separation effect at a junction based on in
vivo measurements.55 It yields the downstream RBC
flow in one downstream vessel at a bifurcation as a
function of the upstream hematocrit and the radius
and blood flow of downstream and upstream vessels.
This relation holds for arterial bifurcations, at venous
junctions the downstream hematocrit is determined
by mass conservation alone as only the hematocrit in
one downstream vessel is unknown. As blood flow
depends on hematocrit and hematocrit distribution at
bifurcations depends on blood flow one conveniently
uses iteration schemes.56

Vascular Remodeling
Blood vessel network remodeling during tumor
growth transforms the hierarchically structured ini-
tial network of healthy tissue into a tumor-specific
vasculature and involves several processes. The most
important ones are angiogenesis, vessel dilation, vessel
wall degeneration, and vessel collapse. Besides angio-
genesis also vasculogenesis, vasculogenic mimicry,
and intussusception can contribute to the forma-
tion of new blood vessels.2 In addition to the latter,
the tumor coopts the already existing vasculature
and often destroys much of it, which has dramatic
consequences for network morphology, blood and
interstitial fluid flow patterns and drug delivery.
Recent comprehensive reviews either on mathemat-
ical models for the formation and remodeling of
vascular networks57 or on a systems biology view on
blood vessel growth and remodeling58 summarizes

the current state of knowledge. Here we sketch the
most important processes that must be taken into
account.

Sprout generation. VEGF stimulates ECs to
proliferate and migrate. The initial event is the
formation of a sprout made of one or two ECs of a
specialized phenotype (tip cells) that starts to migrate
into the ECM. A common modeling approach54,59,60

is to substitute the effect of the complex biochemi-
cal pathway involving pro- and antiangiogenic factors
leading to a sprouting event by a stochastic model
in which sprouts emerge from existing vessels with a
certain probability that depends on the local VEGF
concentration, possibly also antiangiogenic factors,
tumor environment, and lateral inhibition. The latter,
delta-like 4 (Dll4)/notch-mediated process, prevents
sprouts from being initiated where another one has
already been created earlier in the neighborhood (for a
modeling approach, see Ref 61). Within solid tumors,
angiogenic sprouting is strongly inhibited, instead the
presence of VEGF leads to circumferential growth8

(see below). Depending on the local VEGF gradient,
the sprout is also initiated with a preferred migration
direction.

Sprout migration. The tip cell of a sprout
responds to VEGF stimulation by extending filopo-
dia and migrating toward the signal, i.e., the VEGF
source.62 Behind the tip cells, the so-called stalk cells
maintain the contact with the original location of
sprout formation. They divide in response to VEGF
by which the sprout elongates. The tip cells are fur-
ther stimulated and the process repeats. Frequently
one stipulates that sprout migration is biased along
a VEGF gradient, but regarding the fact that the
average vessel to vessel distance in healthy tissue is
less than 100 μm and that sprouts produce filopo-
dia of 10–20 μm length in all directions a migrating
sprout will hit nearby vessels with a high probability,
irrespective of potential variations of the growth fac-
tor gradient, which are low anyway close to the tumor
boundary, where most of the angiogenic activity takes
place. Modeling has shown54,59,60 that imprinting a
growth direction at sprout initialization parallel to the
local VEGF gradient is sufficient and that later direc-
tional correction due to VEGF gradient variations do
not significantly improve target finding in dense vessel
networks. In case a target vessel is not found within a
certain distance (ca. 200 μm) found sprouts retreat and
vanish. Finally, sprouts become normal vessels if the
tip cells fuse with another vessel (anastomosis) such
that blood can flow. Obviously, blood flow has to be
recomputed after such an event. Sprout initiation can
also start from sprouts that emulates tip splitting as
observed in vivo and in vitro.
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Wall degeneration. As has been reported in
Ref 6, 7 the tumor environment degrades vessel
walls by detachment and disintegration of cell layers
and membranes around the vessel lumen. It can be
implemented, e.g., by a parameter for each vessel
segment, that reflects the vessel wall thickness for
normal vessels, and continuously decreases for tumor
vessels (i.e., vessels in contact with tumor cells) with
the a given rate until zero.

Vessel collapse. Vessels inside the tumor can
collapse and disintegrate completely.6,7 Obviously,
blood flow is pinched off inside a collapsed vessel
that necessitates again the recomputation of blood
flow. It can be modeled as a stochastic process54,59,60

where a vessel segment can be removed with a certain
probability that depends on its wall degeneration
parameter, blood flow shear stress, and local solid
stress. As inside the tumor wall degeneration and
solid stress do not vary strongly it is the shear force
dependence of the collapse probability that appears to
have the most important effect on the morphology of
the tumor vasculature.49

Vessel dilation. It has been shown8 that inside
tumors VEGF-stimulated angiogenic activity switches
from angiogenic sprouting to circumferential growth.
During circumferential growth, the vessel radius
increases continuously with a certain rate until max-
imum radius is reached or local conditions (such as
solid stress or flow conditions) induce dilation arrest.
It should be emphasized that this process is particular
important for blood flow characteristics within the
tumor as the blood flow varies with the fourth power
of the radius and only modest vessel radius increase
by a factor of 2 or 3 has lead to an extreme increase
in blood flow.

Structural adaption. In response to tissue needs,
microvascular networks are capable of inducing
long-term changes of vessel diameters.63 Based on
experimental data from healthy tissues, a theoreti-
cal model of this structural adaption quantifies the
change of vessel diameters in dependence of various
stimuli such as endothelial wall shear stress, intravas-
cular pressure, a flow-dependent metabolic stimulus,
and a stimulus conducted from distal to proximal
segments along vascular walls.63 It is not clear in how
far these radius adaption mechanisms work also for
tumor vessels, but is straightforward to implement
them.46,47,50

The above processes can be incorporated into a
modeling approach based on a representation of ves-
sel segments by flow-carrying cylinders with variable
radius and permeability, which neglects topological
shape transformations of the endothelial layer. Intus-
susception, which is the transluminal pillar formation

and remodeling through the interaction of blood
flow induced shear force and endothelial sheets,
and vascologenesis, the formation of capillary net-
works by self-assembly of ECs assemble via directed
cell migration and cohesion need more sophisticated
modeling approaches, which are restricted to small
sample sizes. For a mathematical model for intussus-
ception, see Refs 64, 65 and models for vasculaogen-
esis are reviewed in Ref 66.

Oxygen Concentration
The theory of oxygen transport to tissue started a
century ago with Krogh67 is now well developed.68,69

To formulate an integrative modeling approach with
which one can compute the spatiotemporal evolution
of oxygen concentration in large volumes (e.g., 1 cm3)
of inhomogeneously vascularized tissues one has to
find a sufficiently coarse-grained description of oxygen
transport, which we sketch here.

The main carrier of oxygen in blood are RBCs
containing a large amount of the protein Hemoglobin
(35% of the total weight), which has four oxygen
binding sites resulting in an oxygen-binding capacity
of 1.34 mL oxygen per gram of hemoglobin. Oxy-
gen dissolved in the blood plasma contributes only
a few percent to the total oxygen concentration in
blood. Thus the hematocrit computation along the
lines sketched in Section Blood Flow and Hemat-
ocrit serves also as a basis to calculate the oxygen
concentration—first in the individual blood vessels,
then within the surrounding tissue.

The fraction of occupied binding sites depends
on the partial pressure PO2 of dissolved oxygen,
and this dependence is conveniently described by a
Hill equation.68 Oxygen is extravasated from the
blood stream through the vessel walls into the tissue
the oxygen partial pressure of blood drops on its
journey from main arteries through the vasculature
into the veins. In principle, oxygen can flow in and
out of the vessels depending on the difference between
intravascular and interstitial oxygen partial pressure.
The oxygen flux gives rise to a loss/gain in oxygen
partial pressure and thus to the oxygen saturation,
which has to be taken into account in the computation
of the intravascular oxygen partial pressure.

Oxygen transport into the tissue is diffusive
with boundary conditions determined by an oxygen
current density across vessel walls. Radial oxygen
transport is a complex problem by itself. More accu-
rate models include the effects of boundary flow
layers, and diffusion within RBC compartments.70–73

These models achieve very good agreement with
experiments but they require the solution of nonlinear

120 © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. Volume 7, May/June 2015



WIREs Systems Biology and Medicine Integrative models of vascular remodeling

convection–diffusion type partial differential equation
in cylindrical geometry. For large blood vessel net-
works, such approaches are prohibitively expensive.
Instead Secomb et al.74 assumed the oxygen flux to be
proportional to the difference between oxygen partial
pressures at the inner and outer vessel walls (assumed
to be constant along the whole circumference) with
the proportionality constant being an oxygen per-
meability of the vessel walls. The complexities of
radial transport are incorporated into a vessel radius
dependence of the permeability K based on data
presented in Ref 71.

Secomb et al.74 also conceived a computational
approach that uses Greens Functions to formulate the
solution for a system of coupled equations describ-
ing diffusion in tissue and transvascular exchange.
In general, a Green’s function G(x, x) describes the
response of a linear differential L operator at location
x to a point-like unit source at location x′. In the
case of pure diffusion, the Green’s function falls off
like 1/|x− x′|, which implies an interaction between
all discretization points in the discretized equations
for the numerical solutions. The solution and storage
of such ‘dense’ systems are much more demanding
in both time and memory than sparse systems with
nearest neighbor interactions, i.e., as they arise from
finite difference methods. In fact, the tissue sections
analyzed in Ref 74 where quite small on the submil-
limeter scale, but an advantage of the method is a fast
convergence and an elegant handling of transvascular
coupling, alleviating the need for excessively fine
tessellation for boundary conditions.

Goldman and Popel75 coupled a small blood
vessel network to interstitial space via boundary
conditions that relate the radial oxygen flux out of
the vessels at each point on the vessel walls with
the PO2 gradient at the respective location in the
interstitial space. While being accurate, the method
of transvascular coupling requires a fine resolution
of the numerical grid to resolve the PO2 gradients
around the vascular walls. Indeed, in Ref 75 a tissue
block with a length of 400 μm was considered which
was discretized into 200 grid points, where a typical
capillary has a radius of 3 μm. Several follow-up
papers76–80 applied this method to sections of muscle
tissue and analyze various pathological conditions and
networks with different characteristics. The limitation
to relatively small systems has however remained.

In order to target larger tissue volumes, the same
remarks as for continuum models of tumor growth
hold: In order to handle volumes of the order of 1 cm3

with around 106 discretization points one has to
average oxygen extravasation (i.e., the oxygen source
term in the diffusion equation) over volumes with

a lateral size of 100 μm, possibly containing already
10–20 vessels, an approach that has yet to be tested
for its efficiency and accuracy. As an example for the
application of such a scheme the emerging oxygen
distribution together with the haemoglobin saturation
is shown in Figure 3.

Chemical Concentration Fields
The basis for the description of dissolved chemicals is
a diffusion convection reaction equation which deter-
mines the dynamical evolution of the concentration of
a constituent, such as growth factors and nutrients.81

A prominent representative is VEGF which is over-
expressed in under-oxygenated tumor cells. Its local
production rate is coupled to the state of tumor
cells, which again depends on local oxygen concen-
tration. VEGF occurs in different Isoforms, soluble
and matrix-bound, and binds to receptors on the
EC membrane, i.e., vessel walls, and can degrade.
Matrix-bound VEGF can be cleaved by Matrix Met-
alloprotease (MMP), which is released by migrating
sprouts (see below) to dissolve the ECM.

If one neglects convective transport of VEGF
by the interstitial fluid instead of solving a diffu-
sion equation one conveniently uses a simpler and
faster approximation based on a Green’s function
approach48: every source site generates a linearly
decaying contribution to the VEGF concentration
with the cutoff or diffusion radius. Consequently,
sprouting occurs within the cutoff radius of oxygen
deprived tumor cells and a concentration gradient
arises along which sprouts are oriented.

Interstitial Fluid Flow
Interstitial fluid is commonly modeled as a liquid
within a porous medium, e.g., Refs 54, 82–85 consti-
tuted by the ECM and cells. Combining d’Arcys law,
which relates the fluid velocity with the fluid pressure
gradient via a proportionality constant that represents
a tissue-dependent permeability for fluid flow, with
the fluid conservation law yields an elliptic partial dif-
ferential equation for interstitial fluid pressure with
source terms. The latter is composed of contributions
from the vessel network and lymphatic sinks. Both
are determined by the flux across the channel walls,
which enter quantitatively as channel surface area
densities. For vessels, this flux is driven by the pres-
sure difference and an osmotic contribution (Starlings
equation).86 For lymphatics one usually assumes an
analogous relation but neglects osmosis due to the lack
of data. Vessel wall and lymphatic wall permeabilities
appear as additional physiological parameters.
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FIGURE 3 | Tumor oxygen distribution, based on simulations of the model described in Ref 54, with a vascular network and tumor growth
module as in Figure 2, augmented by an oxygen concentration field computation as outlined in Section Oxygen Concentration: The distribution of
intravascular and tissue oxygen was computed for an artificially generated vascular network. Tumor vascular remodeling was simulated, where the
tumor size increases from a small nucleus to ca. 4 mm diamter, which is about half of the lateral size of the simulation box. Parameter settings were
guided by experimental data from breast tumors. The result is a typical chaotic compartmentalized tumor network which is connected to an
arterio-venously structured vasculature of the host. This configuration was taken as input for a detailed computation of oxygen. Respective model
couples advective oxygen transport by the blood stream via transvascular fluxes with diffusion within the tissue domain and seeks a self consistent
solution. Advection in each vascular segment is approximated as one dimensional problem, neglecting radial concentration and velocity variations.
These images depict slices through the simulation domain where the location of the tumor is indicated roughly by the circle. (a) depicts the vascular
and tissue oxygen partial pressure (PO2). Vessels are shown as cylinders, but everything outside a central slab of 300 μm thickness has been cut
away. The remaining vessels protrude up from the cutting plane showing the tissue oxygen distribution. (b) The vascular oxygen saturation where the
slab thickness has been increased to 600 μm.

As not many data are available for lymph net-
works, except it is drastically reduced, if not com-
pletely destroyed within solid tumors, one usually
assumes a homogeneous density of lymphatic sinks in
the different compartments (low in tumors and high
in healthy tissue).

The standard approach for modeling exchange
with vessels on a small-scale would again use bound-
ary conditions at the vessel walls, while tessellating the
surrounding space with a fine-grained mesh. However,
this would make the large length scale one is inter-
ested in inaccessible due to the system size. Instead one
can integrate the flux (approximately) over the vessel
surfaces within each numerical grid cells and add it
as source term.54 An approximation inherent to this
method is that the space covered by the vasculature is
not excluded from the interstitial space. As an example
for the application of such a scheme the emerging
interstitial fluid pressure together with the fractional
blood volume distribution is shown in Figure 4.

In principle, the loss of blood plasma volume due
to extravasation into the interstitial space should be
take into account in the mass balance for blood flow
through the vasculature. It turns out that this loss lies
in the range of less than one percent54 so that it can,
as a first approximation, be neglected.

Drug Transport and Delivery
After injection of a drug into a main artery, it will
be transported with the blood flow downstream
and then extravasated through the vessel walls into
the interstitial space, where it is then diffusively or
convectively transported and delivered to the target
cells. The starting point to compute blood-borne drug
transport is a given configuration for the vasculature
with precomputed variables for flow, flow velocity,
vessel length, and radius. The computational scheme
used in Refs 51, 60, 87–89 involves a mass parameter
associated with each vessel describing the amount of
drug in the blood volume contained in the vessel. The
mass content is deterministically updated in successive
steps as follows: First, the drug amount flowing out
of vessels is determined and added to corresponding
node mass variables. Under the assumption of perfect
mixing, the nodal masses are then redistributed into
further downstream vessel, by which mass conser-
vation is strictly enforced. In order to simulate the
application of drug over a certain time interval, vari-
ous injection schemes (therapeutic protocols) into the
main arteries can be applied.

Interstitial drug transport and uptake of drug
are modeled as diffusion advection process in the
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FIGURE 4 | Interstitial fluid flow, based on simulations of the model described in Ref 54, with a vascular network and tumor growth module as in
Figure 2: (IFF) and interstitial fluid pressure (IFP) were computed for an artificially generated vascular network, incorporating a tumor vascular
network in its center as a result of simulated tumor growth and vascular remodeling. Parameter settings were guided by experimental data for
melanoma. The resulting network was taken as input for the IFF model. It was assumed that IFF behaves like flow through a porous medium following
Darcy’s law where flow velocity is proportional to the hydrostatic pressure gradient. Vessels can be sources or sinks of interstitial fluid, depending on
the blood− IF pressure difference. The IFP coupling to tumor vessels was assumed to be particularly strong due to increased leakiness (permeability).
A homogeneous background of lymphatics absorbs most of the flow coming from the tumor. These two plots depict a slices although the center of
the tissue domain, displaying the fractional vascular volume (percentage occupied by vessels) in (a) and the IFP in (b). The location of the tumor is
best inferred by the sharp drop in fBF, but it is also indicated by a thin white line. The IFP profile exhibits the expected plateaus near the center of the
tumor and a steep gradient near the tumor edge. The simulation moreover predicts heterogeneities due to the particular vessel arrangement. It also
shows that tumor vessels can reabsorb a significant amount of fluid if their blood pressure is much lower than neighboring vessels.

interstitial fluid and sequestration into the cell
constituent. One distinguishes between the concen-
trations in the interstitial fluid and the concentration
within cells as average over the solvent volume. The
constitutive equation is again a diffusion convection
reaction equation with source/sink terms that involve
extravasation from vessels, lymphatic uptake, and
exchange between interstitial fluid and cells.54,83,84

CURRENT IMPLEMENTATIONS
AND RESULTS

Early Modelling Attempts
Earlier work focusing on tumor-induced angiogenesis
can roughly be divided into three categories: (1)
continuum models without a proper representation of
a blood vessel network and blood flow (see e.g., Refs
90–92); (2) hybrid models with a fixed vessel network
geometry and a dynamically evolving tumor (see, e.g.,
Refs 46, 47, 93), and (3) hybrid models with a fixed
tumor (as a source of a diffusing growth factor) and a
dynamically evolving tumor vasculature starting from
a single parent vessel far away from the growth factor
source (inspired by the original work of Anderson
and Chaplain,94 see e.g., Refs 83, 88, 89, 95–97).
The latter models are also denoted as vessel-ingrowth
models as the whole tumor vasculature grows from
outside toward the tumor surface, a setup motivated
by VEGF experiments in the rabbit eye cornea.98

Models of category 1 contained just the tumor
growth module (in Section Continuum Models) and
chemical concentration fields (Section Chemical Con-
centration Fields), whereas models of category 2 com-
prised tumor growth (Section Tumor Growth), an
original vasculature and blood flow (Section Vascu-
lature and Blood Flow) with vascular adaption but
no vascular remodeling (see, however, Ref 50 for an
Ansatz with vessel pruning), with oxygen (Section
Oxygen Concentration) in a rudimentary form and
chemical concentration fields (Section Chemical Con-
centration Fields). Category 3 models as in Refs 88,
89, 96 finally incorporated (in addition to chemi-
cal concentration fields) vascular remodeling only via
sprouting angiogenesis, blood flow (Section Vascu-
lature and Blood Flow) and drug delivery (Section
Drug Transport and Delivery), some even interstitial
fluid flow.83,95,97 The caveat of blood (and intersti-
tial fluid) flow and drug delivery studies within vessel
ingrowth models (as reviewed in Ref 96 are unreal-
istic predictions for blood flow and vessel perfusion
due to the lack of an initial vasculature. As tumor ves-
sels are destined to be far away from a well-perfused
parent vessel the emerging blood pressure gradi-
ents are shallow, flow velocities low, and perfusion
impeded.

The process of sprouting angiogenesis from a
single parent vessels with a static VEGF source repre-
senting the tumor was also the focus of recent detailed
modeling attempts.99,100 Subsequent work was still
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inspired by these vessel-in-growth models compris-
ing the modules of category 3 plus elaborated tumor
growth modules,52,53,101,102: although in these studies
the tumor evolved dynamically, focusing on a detailed
analysis of the interactions between tumor and host
tissue, all new vessels started to grow from one or
more parent vessels in a nonphysiologically far dis-
tance from the tumor. The remodeling process that
transforms the original arterio-venous vasculature of
the host tissue into a tumor specific vessel network has
not been addressed with this Ansatz.

Studies of Vascular Remodeling
The first studies of vascular remodeling during tumor
growth that aimed at the incorporation of all modules
described in Section Model Components assumed a
simplified initial vasculature representing a capillary
network arranged on a regular grid: Bartha and
Rieger48 introduced the concept of vessel cooption,
regression, and dilation into models for vascularized
tumor growth, which were extended from two space
dimension, and studied the dynamical change of vessel
network morphology in tumor growth in two space
dimensions48,51 and in three space dimensions.49

As a robust model prediction emerged the char-
acteristic compartmentalization of tumor vascula-
ture into the highly vascularized tumor perimeter, a
well-vascularized tumor periphery with dilated blood
vessels and a tortuous vessel network topology and a
poorly vascularized tumor center with large necrotic
regions threaded by only a few very thick vessels that
are surrounded by a cuff of viable tumor cells. Models
with an arterio-venous initial vasculature showed an
identical compartmentalization.54,59,60 Wu et al.84,103

later added interstitial fluid flow and drug delivery
(see below) to a model with a grid-like geometry for
the initial vasculature. Shirinfard et al.27 used a parti-
cle (or cell)-based approach also starting with a small
grid-like initial network. It was found that tumor cells
proliferate preferentially along existing vessels.

The essential drawback of models assuming a
grid-like initial vasculature is a global blood flow bias
from one corner of the simulation box toward the
opposite imprinted by the boundary conditions for
the blood pressure. Such a bias is generally absent
in large physiological blood vessel networks and
leads, if shear force-determined vessel collapse is
taken into account to a preferential direction of inner
tumor vessels.48,49,51 Moreover, due to the absence
of strong pressure differences between nearby vessel
(as they occur between arteries and veins in realistic
tumor vessel networks104), the formation of strongly
perfused shunts is excluded., altering the expected

blood and interstitial fluid flow characteristics in an
unphysiological way.

These artifacts could only be avoided by using
realistic arterio-venous initial networks, as was per-
formed by Welter et al. in Refs 59, 60 with a model
that incorporated a tumor growth module (Section
Tumor Growth), a dynamical blood vessel network
with an arterio-venous initial vasculature (Section
Vasculature and Blood Flow), an oxygen module
(Section Oxygen Concentration), VEGF concentration
field (Section Chemical Concentration Fields), and
blood borne drug transport (Section Drug Transport
and Delivery). The authors augmented this modeling
framework in Ref 54 by an interstitial fluid flow mod-
ule (Section Interstitial Fluid Flow) and a drug deliv-
ery module (Section Drug Transport and Delivery),
which completed the modeling framework described
in Section Model Components .

The initial blood vessel network used54,59,60 was
synthetically generated and fulfilled certain physiolog-
ical statistical constraints as homogeneous microvas-
cular (capillary) density, vessel radius and branching
number distribution, homogeneous oxygen distribu-
tion in the tissue, and so on. Indeed, the emerging
tumor vasculature morphology and blood flow dis-
tribution displayed significant differences when com-
pared quantitatively with tumor vasculature predicted
by models using a grid like initial network. In Figure 2,
we show a sequence of tumor-vessel-configurations
obtained from a computer simulation of the model
described in Ref 54. The strong influence of the initial
vascular network on the tumors growth dynamics and
its long-time composition was also reported by Perfahl
et al.,105 who used an small initial network that was
derived from experimental data.

Predictions
A number of results have been obtained by the stud-
ies within the modeling framework described in the
last subsection that appear to be robust against fur-
ther model refinements. The characteristic compart-
mentalization of the tumor vasculature was already
mentioned in the previous subsection. In Ref 49, it
was pointed out that the formation of the global mor-
phology of the tumor vasculature is dominated by ves-
sel collapse inside the tumor rather than angiogenic
sprouting, which is restricted to the outer rim of the
growing tumor. Consequently, its (apparently) fractal
nature is reminiscent of a flow correlated percolation
process49 rather than an invasion percolation as was
hypothesized in Refs 106, 107.

The formation of hot-spots, i.e., regions of
drastically increased blood density within the tumor
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was shown to be related to regions with strong
blood pressure gradients in the initial arterio-venous
vasculature.59 For shear force-determined vessel col-
lapse, such a scenario is plausible, as between vessels
with strongly different blood pressure a shunt gen-
erated by angiogenic sprouting will carry a strong
blood flow and therefore collapse with a correspond-
ingly reduced probability. Blood-borne drug trans-
port within the tumor is actually very efficient,60

in contrast to what is predicted by vessel-in-growth
models.87,108 The reason is that badly perfused ves-
sels collapse with increased probability which implies
that predominantly well perfused tumor vessels will
sustain.

Interstitial fluid pressure is generally increased
in vascularized tumors but computer simulations of
interstitial fluid flow in vascularized tumors within an
arterio-venous initial network showed54 that it cannot
be a direct cause for impeded drug delivery, as was
hypothesized in Refs 11, 12, 109 The model predicts
that an increase of the permeability of vessel walls or
tumor tissue or lymphatic walls will always increase
interstitial fluid pressure but also the interstitial fluid
flow and thus improves drug delivery via convective
transport. The physical explanation is simply that it is
misleading to consider the pressure drop along the ves-
sel wall alone as the driving force for IFF—in principle
the complete network of hydraulic resistors has to be
taken into account to obtain reliable predictions. Sim-
ilar results were later obtained with a related model
using a grid-like initial vasculature.103

A consequence of the simulations performed in
Ref 54 is that a tumor therapy aimed solely at reducing
the vessel leakiness cannot be effective, implying that
concepts like normalization of tumor vasculature14

have intrinsic problems if they target for a reduction
of vessel wall permeability (or hydraulic conductivity)
alone. Only cases in which the tumor vessel walls
are so leaky that they extravasate such a substantial
amount of blood plasma (including drug) that leads
to a drastic reduction of the downstream flux rate and
thus blood-borne drug concentration a decrease of
wall permeability would improve tumor vessel perfu-
sion and potentially drug delivery. This extreme case
was studied in the highly simplified model presented in
Ref 110, which uses a percolation network as a repre-
sentation of the tumor vasculature. It should be noted
that the drug delivery improvement reported there is
not a consequence of reducing the putative interstitial
fluid pressure barrier11,12,109 but simply a consequence
of improved vessel perfusion in the central part of the
assumed percolation network. It is questionable that
comparable effects can be obtained in realistic tumor
vasculature derived from arterio-venous networks and

displaying the characteristic compartmentalization
mentioned above.

The simulation results of Ref 54 also demon-
strated that increasing the permeability of tumor
tissue itself has the potential to improve drug deliv-
ery, supporting experimental observations reviewed in
Ref 15, 16. We would like to stress that the point
here is not whether experiments or simulations were
first in revealing correctly the role of different per-
meabilities (hydraulic conductivities) in the complex
tumor-vasculature-lymphatics system. The point is
that in the end, ideally, they should reach identical
conclusion—but simulations, or in silico models, are
much faster and much cheaper than clinical trials.

OUTLOOK
The current state of in silico models of the dynamical
evolution of tumor vasculature is still in the beginning
and still far from the ultimate goal to become a
patient-specific predictive tool to improve diagnosis,
therapy planning and treatment of a tumor. We have
sketched the basic components that an integrative
model must necessarily have and showed that the few
serious implementations of model frameworks that
comprise all the sketched modules already produce
nontrivial predictions that are in agreement with
recent experimental data.

The different modeling approaches of differ-
ent groups now appear at least to converge in an
agreement about which components an integrative
model must necessarily have. Still, as long as different
models are based on fundamentally different initial
blood vessel networks (grid-like networks in some and
synthetic arterio-venous networks in other models)
a quantitative comparison between their predictions
is not very meaningful. Some qualitative features
(such as tumor compartmentalization and relations
between interstitial fluid pressure and vessel wall
permeabilities) appear to be robust against details
of the initial vasculature, others are not (e.g., vessel
radius distributions, blood, and interstitial fluid flow
patterns). Future developments would certainly profit
if simulation results between different models could
be compared on a ‘test case’, either a precisely defined
bench-mark model or against detailed quantitative
experimental data.

To make further progress efforts have to be made
that exceed even the Cardiac Physiome Project,111

which deals with the vasculature of only one type
of tissue, the heart, whereas tumors and tumor
vasculature differs from tissue type to tissue type.
Since, as we have tried to emphasize here, the original
vasculature of the healthy tissue in which a tumor
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is growing, influences strongly the characteristics of
the emerging tumor vasculature, one needs detailed,
reliable and accessible data for them. A first step
toward the realization of integrative models that can
differentiate between different tissues or cancer types
is to have a library of representations of the complete
(micro-) vasculature of large (macroscopic) patches
of different tissue types. Some of them are already
available (see Section Original Vasculature), others
have still to be collected. Ideally one has several sam-
ples for each type of vasculature in order to have a
measure for statistical fluctuations and an equivalent
to different patients. The vasculature representations
have to be made accessible to other groups working
on the implementation of the complete modeling

framework. Although we did not mention it explicitly
similar libraries for the (tissue) micro-environment
as well as for different cancer cell types should
be established.

Next, a unified frame for the implementations
of the different model components should be set up,
which allows for an easy exchange and integration of
new modules and still has sufficient flexibility to incor-
porate features not discussed so far, like a model of cell
metabolism, genetic variability, macro-environment
etc. It is clear that such an endeavor is too large to
be tackled by a single research group. The EU spends
a billion Euro to build a brain simulator—there are
not many chances to have a tumor simulator for less.
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