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Introduction to Monte-Carlo method
I Statistical physics deals with systems with many

(
N ∼ 1023

)
degrees of freedom. For example:

I System of N classical particles in 3D
(r1, . . . , rN ,p1, . . . ,pN) =

(
rN ,pN

)
, with positions

ri = (xi , yi , zi ) and momenta pi = (pxi , pyi , pzi ).
I System of N Ising spins S = (S1, . . . ,SN) with Si = ±1 (model

for magnetic dipole moments of atomic spins)
I System in thermodynamic equilibrium in the canonical or NVT

ensemble (temperature T , volume V and number of particles
N fixed) is characterized by its energy H (r,p) (Hamiltonian)
or H (S) and the temperature of the heat bath T ≥ 0.

I For example:

H
(
rN ,pN

)
=
∑N

i=1
p2
i

2m︸ ︷︷ ︸
kinetic energy

+
∑

i ,j V (ri − rj)︸ ︷︷ ︸
potential energy

(1)

or
H (S) = −

∑
〈ij〉 JijSiSj︸ ︷︷ ︸

interaction energy

− h
∑N

i=1 Si︸ ︷︷ ︸
external field

(2)



Introduction to Monte-Carlo method
I The canonical ensemble assigns a probability to each distinct

microstate
(
rN ,pN

)
or S according to the so called

Boltzmann distribution:

P
(
rN ,pN

)
=

1

Z
e−βH(rN ,pN) or P (S) =

1

Z ′
e−βH(S) (3)

with inverse temperature β = 1/T and canonical partition
function (sum runs over all microstates of the system)

Z =

∫
dpNdrNe−βH(rN ,pN) or Z ′ =

∑
S

e−βH(S) (4)

I Macroscopic observables of physical quantities O
(
rN ,pN

)
or

O (S) are given by Boltzmann-weighted (or ensemble)
averages

〈O〉 =

∫
dpNdrN O

(
rN ,pN

)
P
(
rN ,pN

)
or

〈O〉 =
∑
S

O (S)P (S) (5)



Introduction to Monte-Carlo method

I For example: kinetic energy Ekin =
〈∑N

i=1
p2
i

2m

〉
or mean

magnetisation M =
〈∑N

i=1 Si

〉
.

I The weighted averages (thermodynamic expectation values)
are multidimensional integrals or sums over all possible
microstates of the systems.

I A straightforward approach to evaluate 〈O〉 via a numerical
quadrature cannot be performed with the today’s computers
even for systems with N ≈ 100 particles.

I The idea of Monte Carlo methods is to evaluate the integrals
or sums in a stochastic manner.



Introduction to Monte-Carlo method

I Simple Monte Carlo sampling: generate randomly microstates
(r,p) or S and calculate weighted averages. However, this
method is useless, because most of the unbiased generated
microstates have a negligible Boltzmann weight.

I Importance sampling: generate microstates, which are
already Boltzmann distributed.

I How to generate a stochastic sequence of microstates (r,p) or
S, which asymptotically (in the thermodynamic limit) are
distributed according to P (r,p) or P (S)?



How to generate P (S) for the Ising model
I Aim is to generate a sequence of microstates

S1 → S2 → S3 → . . . (6)

with transition probabilities w (Sn → Sn+1) such that

lim
n→∞

Pn (S) = Peq (S) = e−βH(S)/Z ′, (7)

where

Pn (S) ≡ probability of occurrence of S at nth position
in the sequence of microstates

I How should transition probabilities w (Sn → Sn+1) look like?
I Assume that the sequence is a realization of a Markov process,

whose probability distribution Pn (S) obeys a master equation:

Pn+1 (S) = Pn (S) +
∑
S′

w
(
S′ → S

)
Pn

(
S′
)

−
∑
S′

w
(
S→ S′

)
Pn (S)



Detailed balance
I Markov process is a memorylessness stochastic process, i.e.,

the probability of moving to the next state depends only on
the present state and not on the previous states:

w (Sn → Sn+1) ≡ P (Sn+1|Sn, . . . ,S1) = P (Sn+1|Sn) (8)

I Let’s define the probability current from state S to state S′ as

Jn
(
S→ S′

)
= −w

(
S′ → S

)
Pn

(
S′
)

+ w
(
S→ S′

)
Pn (S)

= −Jn
(
S′ → S

)
(9)

Thus the master equation can be written as

Pn+1 (S) = Pn (S)−
∑

S′( 6=S) Jn (S→ S′) (10)

I In the steady-state Pn+1 (S) = Pn (S) and∑
S′( 6=S)

Jst

(
S→ S′

)
= 0, ∀S (11)

i.e., the net flow from state S vanishes (note the analogy to
Kirchhoff’s junction rule).



Detailed balance

I A stronger condition for stationarity is the so-called detailed
balance,

Jeq

(
S→ S′

)
= 0 ∀S,S′, (12)

i.e., there are no currents in the system at all.

I Detailed balance forbids circular currents, which are
generally allowed in case of a weak stationarity condition.
Circular currents correspond to cyclic solutions of the type
Pn (S) = Pn+m (S), where m is the length of the cycle, and
are excluded by detailed balance.

I The detailed balance condition for the time- or n-independent
distribution reads as

w
(
S′ → S

)
Peq

(
S′
)

= w
(
S→ S′

)
Peq (S) . (13)



How to choose w (S→ S′)

This means that, a set of transition probabilities w (S→ S′),
which satisfy:

w (S→ S′)

w (S′ → S)
=

Peq (S′)

Peq (S)
= e−β[H(S′)−H(S)]

= e−β∆H(S,S′) ∀ S′,S (14)

guarantee that the stationary solution of the master equa-
tion, which also is the stationary distribution of the generated
Markov process, is the Boltzmann distribution

Peq (S) =
1

Z ′
e−βH(S). (15)



Metropolis–Hastings algorithm

w
(
S→ S′

)
=

{
e−β∆H(S,S′) if ∆H (S,S′) > 0

1 otherwise
(16)

where ∆H (S,S′) = H (S′) −H (S) is the energy difference
between the old S and the new state S′.

I If ∆H ≤ 0, i.e., new state has a lower energy than the
old, accept always the new state.

I If ∆H > 0, i.e., new state has a higher energy than the
old, accept the new state with a probability
0 < e−β∆H < 1.



Practice issues of Monte-Carlo simulations

I Metropolis–Hastings algorithm:

(1) generate new state S′

(2) calculate ∆H (S,S′)
(3) generate a uniformly distributed random number r ∈ [0, 1]
(4) accept S′ if r < e−β∆H, else go to (1)

I Assume that S1, . . . ,Sτrun is a sequence of τrun microstates
generated by the Metropolis algorithm and P (Sl) = Peq (Sl),
then the ensemble averages of observables O (S) is given by

〈O〉 = lim
τrun→∞

(
1

τrun

τrun∑
l=1

O (Sl)

)
, (17)

since the Boltzmann weight is already included in the
frequency of occurrence of state Sl .

I Generate new states S′ such that the change in energy,
∆H (S,S′), is not to large and that half of the trials are
accepted.



Single-spin-flip dynamics

I A common update method of Ising spins Si = ±1 is the
single-spin-flip dynamics Si → −Si , i.e., a trial state is

S′ = (S1, . . . ,Si−1,−Si , Si+1, . . . ,SN) (18)

I The energy change ∆H (S′,S) is

∆H (Si → −Si ) = 2
N∑
j 6=i

JijSjSi + 2hSi = 2Sibi (19)

with the local field bi = h +
∑N

j 6=i JijSj .

I Acceptance ratio:

w (Si → −Si ) =

{
e−2βSibi if Sibi > 0

1 otherwise
(20)

Spin Si is parallel to the local field bi if Sibi > 0.



Simple Monte-Carlo computer program

I Equilibrate the system before starting measurements.

set initial configuration; // e.g. high temperature

m_av=0; // calculate e.g. magnetization per spin

for (step=1;step<=MC_steps;step++)

{for (i=1;i<=N;i++)

{if (S[i]*b[i]<0)

{S[i]=-S[i];}

else if (rand()<exp(-2*beta*S[i]*b[i]))

{S[i]=-S[i];}

if (step>MC_equi_steps)

{m_av+=S[i];}

}

}

m_av/=N*(MC_steps-MC_equi_steps);



Ising model
I Ising Hamiltonian: H (S) = −

∑
〈ij〉 JijSiSj − h

∑N
i=1 Si

I Ferromagnetic interaction Jij > 0 favors parallel spins.
I Antiferromagnetic interaction Jij < 0 favors antiparallel spins.

I In realistic model of a 3D magnet, spins are arranged on a
cubic lattice and interact with its neighbors with the same
interaction strength Jij = J.

I Important observables:
I Mean magnetization per spin:

〈m〉 =
〈

1
N

∑N
i=1 Si

〉
∈ [−1, 1] (21)

I Susceptibility per spin:

χ = βN
(〈

m2
〉
− 〈m〉2

)
∈ [−βN, βN] (22)

I Mean energy per spin:

e = 1
N 〈H (S)〉 (23)

I Specific heat per spin:

c = N
(〈

e2
〉
− 〈e〉2

)
(24)



A bit of statistical mechanics
I Reminder: The canonical partition function and the Helmholtz

free energy is

Z =
∑

S e
−βH(S) and βF = − ln (Z) , (25)

respectively. Expectation values in the canonical ensemble are

〈(. . .)〉 =

∑
S (. . .) e−βH

Z
(26)

I Magnetization:

〈M〉 =

〈
N∑
i=1

Si

〉
= −∂F

∂h

=
∂

∂h

{
1

β
ln

[∑
S

exp
(
β
∑
〈ij〉

JijSiSj + βh
∑
i

Si

)]}

=
1

β

∑
S β (

∑
i Si ) e

−βH∑
S e
−βH =

∑
S

Me−βH

Z
= 〈M〉 (27)



A bit of statistical mechanics

I Susceptibility (fluctuation of the magnetization):

χN =
∂M

∂h
= −∂

2F
∂h2

=
∂

∂h

∑
S (
∑

i Si ) e
−βH

Z

=

∑
S β (

∑
i Si )

2 e−βH

Z
−
β
(∑

S (
∑

i Si ) e
−βH)2

Z2

= β
{〈(∑

i

Si

)2〉
−
〈∑

i

Si

〉2}
(28)

I Mean energy (E/N = e): E = 〈H〉 = −∂ ln(Z)
∂β = F − T ∂F

∂T

I Specific heat (C/N = c fluctuation of the energy):

C =
∂E

∂T
= −T ∂

2F
∂T 2

=

〈
H2
〉
−
〈
H
〉2

T 2
(29)



Phase behaviour of the Ising model

I Ising’s exact solution in 1D for N →∞ (thermodynamic limit)

f = lim
N→∞

F
N

= lim
N→∞

1

βN
ln (ZN)

= β−1 ln

(
eβJ cosh (βh) +

√
e2βJ sinh2 (βh) + e−2βJ

)

⇒ m =
∂f

∂h
=

eβJ sinh (βh)√
e2βJ sinh2 (βh) + e−2βJ

(30)

and m→ 0 for h→ 0 since sinh (βh)→ 0 for h→ 0
⇒ No phase transition of the Ising model with short-range
interaction in 1D

I In higher dimensions (d > 1) and at zero external field
(h = 0) Ising model exhibits an continuous phase transition
from a paramagnetic (disordered) phase (m = 0) for T > TC

to a ferromagnetic (ordered) phase (m 6= 0) for T < TC .



Phase behavior of the Ising model in d > 1



Near the critical point: Exponents
I Magnetization is the order parameter, which describes the

spontaneous symmetry breaking:

m ∝

{
0 for T ≥ TC

(TC − T )β for T < TC

I Continuous phase transition are characterized by divergent
susceptibilities, an infinite correlation length, and a power-law
decay of correlations near criticality.

I Susceptibility: χ ∝ |T − TC |−γ
I Specific heat: c ∝ |T − TC |−α
I The spatial spin-spin correlation function:

C (r) = lim
N→∞

1

N

∑
i ,j with
r=|ri−rj |

{〈SiSj〉 − 〈Si 〉 〈Sj〉} ∝ r−(d−2+η)e−r/ξ

with correlation length ξ ∝ |T − TC |−ν .
⇒ At the critical point T = TC : C (r) ∝ r−(d−2+η)



Phase behavior of the Ising model in d > 1

Figure 1: Magnetization m versus
temperature T of a 100× 100 Ising
model in 2D.

Figure 2: Specific heat c versus
temperature T of a 100× 100 Ising
model in 2D.



Near the critical point: Scaling relations

I Critical exponents obey scaling relations.

I For T 6= TC :∑
r

C (r) ∝
∫
dr rd−1C (r) ≈

∫ ξ
1 dr rd−1r−d+2−η

=
∫ ξ

1 dr r1−η ∝ ξ2−η ∝ |T − TC |−(2−η)ν (31)

and ∑
r

C (r) =
∑
i ,j

{〈SiSj〉 − 〈Si 〉 〈Sj〉}

=
〈
M2
〉
−
〈
M
〉2 ∝ χ ∝ |T − TC |−γ (32)

⇒ Fisher equality: 2− η = γ/ν

I Rushbrooke inequality: α + 2β + γ ≥ 2 (Follows from the
formula for the difference between heat capacities at constant
h and at constant m)



Near the critical point: Scaling relations

I The singular part of the free energy F should vanish with
increasing volume of the correlated domain:

Fsing ∝ ξ−d ∝ |T − TC |νd (33)

From specific heat: c ∝ ∂2F
∂T 2 ∝ |T − TC |−α.

⇒ Fsing ∝ |T − TC |2−α (34)

⇒ Hyperscaling relation: 2− α = νd



Finite size scaling

I Singularities are smoothed out in finite systems.

I For example, χ→∞ as T → Tc in an infinite system. On the
other hand, χ ∝ L in a finite system of dimension L = N1/d .

I Scaling ansatz:

χ (L,T ) ∝ |t|−γχ0 (L/ξ) ∝ ξγ/νχ0 (L/ξ) (35)

with t = T−Tc
Tc

and

χ0 (x) ∝

{
const , for x � 1

xγ/ν , for x � 1
(36)

⇒ Such a choice of χ0 ensures
I correct power-law scaling of χ as L→∞
I T -independent χ for ξ � L



Finite size scaling

With scaling function χ̃(x) = x−γχ0(xν) (and analog for m̃ and c̃)
we get rid of the unknown ξ:

m (L,T ) ∝ L−β/νm̃
(
L1/νt

)
, m̃ (x) ∝

{
const , for x � 1

xβ , for x � 1
(37)

χ (L,T ) ∝ Lγ/νχ̃
(
L1/νt

)
, χ̃ (x) ∝

{
const , for x � 1

x−γ , for x � 1
(38)

c (L,T ) ∝ Lα/ν c̃
(
L1/νt

)
, c̃ (x) ∝

{
const , for x � 1

x−α , for x � 1
(39)

⇒ For example, simulation data of χL(t) for different L collapse
on each other if we plot L−γ/νχL(t) versus L1/νt with the right
choice of γ, ν and Tc .



Finite size scaling

Figure 3: Data collapse of χL(t) for 2D Ising model. Plot of L−γ/νχL(t) versus
L1/νt. Data collapse achieved for γ = 1.76, ν = 1 and Tc = 2.27J.



First choice method to estimate Tc

I Estimate of Tc via Binder cumulant: g = 1
2

(
3− 〈M

4〉
〈M2〉2

)
I g characterizes the deviation of p(M), distribution of

magnetization M, from a Gaussian distribution.

g =

{
0 if p(M) is a Gaussian distribution

1 if p(M) = δ(M ±m)
(40)

⇒ g(T ) is a step function in the thermodynamic limit.
I g does not depend on L at T = Tc , because

〈|M|n〉 ∝ L−nβ/νM̃n

(
L1/νt

)
(41)

with scaling functions M̃n and thus

g =
1

2

(
3−

M̃4

(
L1/νt

)
M̃2

(
L1/νt

)2

)
∝ g̃

(
L1/νt

)
(42)

⇒ Curves of gL(t) for different L intersect at the critical point
T = Tc .



Further scaling relation

I From Eq.(41) and Eq.(38) we get a further scaling relation:

χ ∼ N
〈
|M|2

〉
⇒ Lγ/ν ∼ LdL−2β/ν ⇒ γ = dν − 2β (43)

With hyperscaling relation (2− α = νd) follows the
Rushbrooke equality

α + 2β + γ = 2− νd + 2β + νd − 2β = 2 (44)



Known results of the d-dimensional Ising model

d 1 2 3
(MFT )

≥ 4

kBTC/J 0 2.26917 . . . 4.511 . . . 2d

ξ ∝ t−ν ν 1 1 0.629 . . . 1/2
c ∝ t−α α 1 0 0.105 . . . 0
m ∝ tβ β 0 1/8 0.326 . . . 1/2
χ ∝ t−γ γ 1 7/4 1.239 . . . 1

C ∝ r−d+2−η η 1 1/4 0.036 . . . 0

m ∝ h1/δ δ ∞ 15 4.789 . . . 3



q-state Potts models
I Si ∈ {1, 2, ..., q} and J > 0 for ferromagnetic interaction
I The Hamiltonian is

H = −J
∑
〈ij〉

δSiSj (45)

with Kronecker delta δSiSj , which equals one whenever Si = Sj
and zero otherwise.

I The q = 2 Potts model is equivalent to the Ising model with
JIsing = JPotts/2.

I Phase transition in 2D for q ≤ 4 is continuous (q > 2 not
Ising universality class) and for q > 4 first order.

I Order parameter is

mσ =

〈
1

N(q − 1)

N∑
i=1

(qδSi ,σ − 1)

〉
(46)

for σ ∈ {1, 2, ..., q}, such that mσ = 0 for T > Tc and
mσ > 0 for T < Tc .



q-state Potts models

I There is a duality transformation for the q-state Potts model
on a square lattice (like the Kramers–Wannier duality for Ising
model), which maps the partition function Z at low T onto Z
at high T .

I The Potts model is self-dual if q = (eβcJ − 1)2, which defines
the critical temperature

Tc =
J

ln (1 +
√
q)
. (47)

I For 2-state Potts model (Ising model):

Tc =
JPotts

ln (1 +
√

2)
=

2JIsing

ln (1 +
√

2)
≈ 2.27JIsing , (48)

which agrees with Onsager’s exact solutions.



q-state Potts models

I Single-spin-flip dynamics:
I For small q: choose a spin Si and generate a random number

out of {1, . . . , q} \ Si .
I For large q use a heat-bath algorithm: choose a spin Sk and

generate a new value of spin Sk = n ∈ {1, 2, ..., q} with
probability

pn = e−βHn/

q∑
m=1

e−βHm , (49)

where Hn is the energy of the system when Sk = n. This
works because

H = −J
∑
〈ij〉

(i,j 6=k)

δSiSj − J
∑

N.N. of k

δSiSk
(50)

and the first sum cancels out from Eq.(49).



n-vector or continuous spin model

I In the n-vector model, a n-component spins Si ∈ Rn with unit
length (|Si | = 1) are placed on the vertices of a lattice.

I Hamiltonian: H = −J
∑
〈ij〉 SiSj

I n = 2: XY (or rotor) model
I Hamiltonian: H = −J

∑
〈ij〉 cos(θi − θj)

I No spontaneous magnetization in 2D, however, there is a
Kosterlitz–Thouless transition. It is a transition from bound
vortex-antivortex pairs at low T to unpaired vortices and
anti-vortices at Tc . Furthermore, at high T correlations decay
exponentially fast, while at low T they decay with power law.

I Model for superfluid helium or hexatic liquid crystals.
I Single-spin-update dynamics: θi → θi + ∆θ with random

∆θ ∈ [0, 2π]

I n = 3: Heisenberg model



Kosterlitz–Thouless transition of the XY model



Autocorrelation function
I Ideally, the simulation should explore the whole phase space

and averages should be calculated from independent samples
of the Boltzmann distribution. Thus it is crucial to know
when two successive measurements are uncorrelated. Such an
information could provide the correlation time τ .

I Consider time autocorrelation function of the magnetization

χ(t) =
∫
dt ′[m(t ′)− 〈m〉][m(t ′ + t)− 〈m〉]

=
∫
dt ′[m(t ′)m(t ′ + t)− 〈m〉2] (51)

I χ(t) can be also calculated via fast Fourier transform and
convolution.

I Often χ(t) ∝ e−t/τ and τ is an estimate of the correlation
time.

I Alternative, calculate integrated correlation time via∫∞
0 dt χ(t)

χ(0) =
∫∞

0 dt e−
t
τ = τ (52)

I Thus, if run lasts a time tmax , then the number of
independent measurements is of the order n ≈ tmax

2τ .



Autocorrelation function

Figure 4: Magnetization autocorrelation function χ(t)/χ(0) for 100× 100 Ising
model in 2D at T = 2.4 with J = 1. Time measured in MC steps per spin.

I Near critical point T = Tc the correlation length ξ ∝ t−ν and
time τ ∝ t−zν diverges (critical slowing down).

I Combining both scaling relations we get τ ∝ ξz and in a finte
system (ξ > L) near Tc it is τ ∝ Lz .

I The value of z depends on the algorithm and for the 2D Ising
model simulated using Metropolis algorithm z ≈ 2.17.



The Wolff algorithm

I Near Tc the CPU time needed to simulate one correlation
time scales as τCPU ∝ Ld+z .

I For the Metropolis algorithm with single spin flip dynamics in
2D τCPU ∝ L2+2.17.

I The probability near Tc ≈ 2.269J for a spin flip of a spin
surrounded by 4 spins with same direction in 2D is
e−8J/Tc ≈ 0.0294 . . ..

I Solution is a cluster-flipping algorithm which allows for
non-local moves.

I Consider an example of cluster flipping from state µ to state
ν:

statestate µ ν



The Wolff algorithm

I Number of broken or released bonds in going from µ to ν:

m = B(µ→ ν) = {number of broken ++ bonds} = 6

n = B̃(µ→ ν) = {number of released +− bonds} = 4

I Number of broken or released bonds in going from ν to µ:

B(ν → µ) = {number of broken −− bonds} = B̃(µ→ ν)

B̃(ν → µ) = {number released +− bonds} = B(µ→ ν)

I The energy difference between the old and the new state is

∆E = Eν − Eµ = 2JB(µ→ ν)− 2JB̃(µ→ ν) = 2J(m − n)

I The transition probabilities must satisfy detailed balance:

w (µ→ ν)

w (ν → µ)
= e−2βJ(m−n) (53)



The Wolff algorithm

I w (µ→ ν) is a product of selection probability g (µ→ ν) and
acceptance probability A (µ→ ν):

w(µ→ ν)

w(ν → µ)
=

g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
(54)

I Choose a seed spin at random and add successively neighbors
with the same orientation to the cluster with probability Padd .

I There are b bonds added to the cluster with probability
(Padd)b in the forward as well as in the reverse move.

I There are m bonds broken (or not added to the cluster) in the
forward move with probability (1− Padd)m and n broken
bonds in the reverse move with probability (1− Padd)n. Thus
the selection probabilities obey

g(µ→ ν)

g(ν → µ)
=

(1− Padd)m

(1− Padd)n
· (Padd)b

(Padd)b
(55)



The Wolff algorithm

I The condition for the acceptance probabilities is

w(µ→ ν)

w(ν → µ)
=

A(µ→ ν)

A(ν → µ)
· (1− Padd)m−n = e−2βJ(m−n) (56)

⇒ A(µ→ ν)

A(ν → µ)
=
[
(1− Padd)e2βJ

]n−m
(57)

I The optimal choice:

Padd = 1− e−2βJ ⇒ A(µ→ ν)

A(ν → µ)
= 1 (58)

The optimal choice A(µ→ ν) = A(ν → µ) = 1 satisfies
detailed balance and guarantees that every move is accepted.

I The dynamic exponent of the 2D Ising model for the Wolff
algorithm is z ≈ 0.25 (Metropolis algorithm: z ≈ 2.17).

I Wolff outperforms Metropolis near the critical point.



Remark on Metropolis algorithm

I In the Metropolis algorithm the selection probabilities
g(µ→ ν) for all possible states ν are equal.

I With single-spin-flip dynamics there are then N different spins
in a system of N spins that we could flip.

I Hence there are N possible states ν and thus
g(µ→ ν) = g(ν → µ) = 1

N .



Pseudocode of the Wolff algorithm

i=1+(int) (N*ran3(&seed)); //random seed spin

stack[0]=i;

pointer=1;

old_s=spin[i];

new_s=-spin[i];

spin[i]=new_s; //flip seed spin

while(pointer!=0)

{i=stack[--pointer]; //go to next unchecked spin

for (m=1;m<=4;m++) //go over 4 neighbors of spin i

{j=neighb[i][m];

if (spin[j]==old_s) //spin has the sign like seed

{if (ran3(&seed)<prob) //prob=1.0-exp(-2.0/T);

{stack[pointer++]=j; //store index of new spin

spin[j]=new_s; //flip neighbor

}

}

}

}



Improved estimator for the susceptibility
I We show that the susceptibility is related to the mean size 〈n〉

of the clusters flipped by the Wolff algorithm

χ = β 〈n〉 (59)

I For the proof consider a modified Wolff algorithm. Connect
every pair of neighbouring spins, which are pointing in the
same direction, with a bond with probability Padd . The whole
lattice is divided into correct Wolff clusters.



Improved estimator for the susceptibility

I Choose a seed spin from the lattice at random, and flip the
cluster to which it belongs.

I The total magnetization M of the lattice is M =
∑

i Sini ,
where ni is the size and Si the spin value of the ith cluster.

I Mean square magnetization is

〈
M2
〉

=
〈∑

i Sini
∑

j Sjnj

〉
=
〈∑

i 6=j SiSjninj

〉
+
〈∑

i S
2
i n

2
i

〉
=
〈∑

i n
2
i

〉
, (60)

since SiSj = ±1 are equally likely and S2
i = 1.

I The magnetization per spin
〈
m2
〉

= 1
N2

〈∑
i n

2
i

〉



Improved estimator for the susceptibility

I The probability to flip a particular cluster i is

pi =
ni
N
, (61)

since the probability to choose a seed from cluster i is
proportional to its size ni .

I The average size of a flipped cluster is

〈n〉 =

〈∑
i

pini

〉
=

1

N

〈∑
i

n2
i

〉
= N

〈
m2
〉

=
χ

β
, (62)

the last equality is valid only for T ≥ Tc where 〈m〉 = 0.

I The statistical error in the cluster definition of the χ is smaller
than that obtained using the fluctuations of m.



The Swendsen-Wang algorithm

I Is similar to Wolff algorithm. However, unlike Wolff algorithm,
Swendsen-Wang algorithm is a multi-cluster-flipping
algorithm.

I Pseudo code:
I Connect every pair of neighboring spins, which are pointing in

the same direction, with a bond with probability
Padd = 1− e−2βJ .

I Identify all connected clusters using the Hoshen-Kopelman
algorithm.

I For each cluster in turn, decide independently with probability
1
2 whether to flip it or not.

I Swendsen-Wang algorithm has a similar performance as Wolff
algorithm (z ≈ 0.25 in 2D).

I Wolff algorithm is always two times faster, since only half of
the clusters generated are flipped in the Swendsen-Wang
algorithm.



The Swendsen-Wang algorithm

I Wolff algorithm preferentially flips larger clusters because the
probability to select a seed from a cluster of size ni is pi = ni

N .
The Swendsen-Wang algorithm treats all clusters equally,
regardless of their size, and therefore wastes much effort on
small clusters, which do not contribute to the critical slowing
down.

I There exists also an improved estimator for the susceptibility.



Cluster algorithm for q state Potts model

I Wolff algorithm for Potts model is similar to that for Ising
model

I Choose a seed spin at random from the lattice.
I Add neighbor spins with probability Padd = 1− e−βJ instead

of Padd = 1− e−2βJ as in the case of the Ising model (a
broken bond costs now J instead of 2J).

I Choose at random a new value for the spins in the cluster,
different from the present value, and set all the spins to that
new value.

I The Swendsen-Wang algorithm is analog to the case of the
Ising model, however, a new value of all spins in the cluster is
chosen randomly from {1, ..., q}.



Cluster algorithm for continuous spin model

I Similar to Wolff algorithm for the Ising model.

I Choose a random direction n with |n| = 1.

I Choose a seed spin i with Si · n > 0 and add bonds to
neighbor spin j if Sj · n > 0 with probability

Padd(Si ,Sj) = 1− exp [−2β(Si · n)(Sj · n)] (63)

I Flip cluster by reflecting all the spins in the plane
perpendicular to n.



The single histogram method
I Method allows to extrapolate simulation results obtained at

temperature T0 to nearby T 6= T0.
I Canonical distribution at β = 1/T can be easily related to the

distribution at other β0 = 1/T0 via

Pβ(S) ∝ e−βH(S) = e−(β−β0)H(S)e−β0H(S)

= Ce−(β−β0)H(S)Pβ0(S), (64)

with an so far undetermined constant C .
I The expectation value of O at temperature β = 1/T is

〈O〉β =

∑
{S}O(S)Pβ(S)

Zβ

= C
Zβ0

Zβ

∑
{S}O(S)e−(β−β0)H(S)Pβ0(S)

Zβ0

= C
Zβ0

Zβ

〈
Oe−(β−β0)H

〉
β0

(65)



The single histogram method
I Setting O = 1 we determine the constant

C =
Zβ
Zβ0

1

〈e−(β−β0)H〉
β0

(66)

and obtain finally the fundamental equation of the histogram
method as

〈O〉β =

〈
Oe−(β−β0)H

〉
β0〈

e−(β−β0)H
〉
β0

(67)

I During a MC simulation at β0 = 1/T0 we perform M
measurements of O(St) at configurations St and the
estimator of O at β0 is

〈O〉T0
= limM→∞

1
M

∑M
t=1O(St). (68)

I Therefore, the estimator of O at β = 1/T 6= β0 using MC
configurations at β0 is

〈O〉T = lim
M→∞

∑M
t=1O(St)e

−(β−β0)H(St)∑M
t=1 e

−(β−β0)H(St)
(69)



The single histogram method
I To get the mean energy 〈E 〉T at T calculate

〈E 〉T =

∑
E E · N(E )e−(β−β0)E∑
E N(E )e−(β−β0)E

, (70)

where N(E ) is the histogram of energies obtained from MC
simulation at T0.

I Method works as long as | 〈E 〉T − 〈E 〉T0
| ≤ σE , where σE is

the standard deviation of N(E ) and σ2
E = C (T0)/β2

0 with
specific heat C (T0).
Satisfactory extrapolation should be obtained in

T ∈ [T0 −∆T ,T0 + ∆T ] with ∆T = T0/
√
C (T0). (71)

I For the magnetisation we need a two dimensional histogram
N(E ,M) and

m =
〈M〉T
N

=

∑
M,E M · N(E ,M)e−(β−β0)E∑

M,E N(E ,M)e−(β−β0)E
(72)



Hints for the Metropolis simulation of the 2D Ising model
I Set J = 1 such that T in units JkB . Set number of spins to

N = L2.

I Construct a neighbor list using
periodic boundary conditions.
4 array of size N: nxm[N], nxp[N],
nym[N], nyp[N].
For example:

for (i=1;i<=N;i++)

{nxp[i]=i+1

if (i%L==0) {nxp[i]=i+1-L;}

}

I Make a table for the acceptance probabilities for ∆E > 0.
∆E = 2Sihi ∈ {4, 8} with
hi = Snxm[i] + Snxp[i] + Snym[i] + Snyp[i]
⇒ e−β∆E ∈

{
e−4β, e−8β

}
for (i=0;i<=4;i++) {prob[i]=exp(-2.0*((double) j)/T);}



Hints for the Metropolis simulation of the 2D Ising model

I Use an array for the local fields:

for (i=0;i<N;i++)

{field[i]=spin[nxm[i]]+spin[nxp[i]]

+spin[nym[i]]+spin[nyp[i]];}

and update field[i] if a spin flip took place:

field[nxm[i]]+=2*spin[i];

field[nxp[i]]+=2*spin[i];

field[nym[i]]+=2*spin[i];

field[nyp[i]]+=2*spin[i];

I Equilibrate the system first (check if energy reached a steady
state) and measure afterwards the observables, like: 〈m〉,
〈m2〉, 〈m4〉, 〈e〉, 〈e2〉, C (r).



Riegers implementation of the Metropolis algorithm

Figure 5:



Riegers implementation of the Metropolis algorithm

Figure 6:



Riegers implementation of the Metropolis algorithm

Figure 7:



Riegers implementation of the Wolff algorithm

Figure 8:



Riegers implementation of the Wolff algorithm

Figure 9:
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