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Introduction into molecular dynamics

» So far we dealt with stochastic simulation methods of
many-body systems, namely, with Monte Carlo (MC)
methods.

» MC simulation generates states according to Boltzmann (or
canonic) distribution.

» In MC we want to estimate the expectation value
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or rather the configurational version
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where the Hamiltonian H = K + U is a sum of a kinetic K
and a potential part U.



Introduction into molecular dynamics

» The MC simulation generates a stochastic sequence (Markov
chain) of states rN with distribution

pu(r())
T|L>mOO P (r (T)> N f drNe*BU(r’V(T)) (3)
and the ensemble average becomes
Tobs
(O)eps = _lim Z o (™). *)

» A deterministic type of N-body simulation methods is
molecular dynamics (MD), it generates trajectories of
interacting particles by numerically solving Newton's
equations of motion.

» The Hamiltonian of N classical particles is H =K+ U with

Z:’q and U = ZUlr,+ZZU2r,,rJ

i=1 j=i4+1

(5)



Introduction into molecular dynamics
OH

» From Hamilton’s equations p; = — %, and r; = g—:{, we get
Newton's equations of motion
m,-'f,- = _vl’iu = f,‘ = fl(r,-) =+ ng(r,-, I’j) + ... (6)
J#i

» f1 is an external force, like, gravity, electromagnetic forces,
container walls, etc.

> fo(ri,vj) = f2(ryj), where rjj = |r; —v}|, is a force due to a pair
potential, like, Lennard-Jones potential, Coulomb potential,
etc.

» The initial conditions (rV(t = 0), p"(t = 0)) determine the
time evolution of the system.

» The ergodic hypothesis links MC to MD simulations, it states
that the time spent by a system in some region of the phase
space of microstates with the same energy is proportional to
the area of this region.



Introduction into molecular dynamics

» The ergodic hypothesis: Time averaging (the MD approach)
equals ensemble averaging (the MC approach):

tobs

(O)time = lim -~ Z O(t)

= (O)ens = / dp"dr (", p")P(r,p")  (7)

Caution: Is not always true. Ergodicity breaking in glasses or
spin systems below T..
» Comment on ensambles:

» The natural ensemble of MC is the canonical or NVT
ensemble, i.e., temperature T is fixed.

» The natural ensemble of MD is the microcanonical or NVE
ensemble, i.e., total energy E is fixed.

» The equivalence of ensembles holds only if we choose E and T
consistently: E = (E)nyr (or T = (T)nve), i.e., if the total
energy of MD is chosen to be the average energy of MC.
Caution: Is not always true. Consider, for example, energy
fluctuations.




Skeleton of a molecular dynamics simulation

initialisation();

for (t=0;t<t_max;t++)
{calculate_force();
integrate();
sample_averages () ;

}

» Specify the pair potential, initial temperature, number of
particles, box size, time step.

» Select initial configuration (positions and velocities).
» Compute force on all particles.
> Integrate Newton's equation of motion.

» Calculate averages of observables, like, temperature, pressure,
mean-square displacement, etc.



Common pair potentials

» The Lennard-Jones (or 12-6) potential,

UH(r) = 4e ((o/r)'? = (o/r)°),

approximates the interaction between a pair of neutral atoms.
» The 1/r'? term describes Pauli repulsion.
» The 1/r% term describes van der Waals attraction.
> ¢ is an energy and o a length scale.
» Other idealized potentials:

<
» Hard-sphere (no energy scale): U"*(r) = o (r<o)
0 (r>o0)
» Soft-sphere (v controls the softness): U>°(r) = e(a/r)"
» Square-well potential, see Figure 2.
» lons obey Coulomb interaction: U#(r;) = 4713 , with

vacuum permittivity €g and charges z; and z; on ions i and j.

» Long-range potential U(r) ox r™" with v < d, where d is the
dimension of the system, e.g., Coulomb interaction, needs
special treatment.



Common pair potentials
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Figure 1: (Solid line) Experimental
Argon potential. (Dashed line) Effective 12-6
potential. = i

Figure 2:  (a) Hard-sphere potential. (b) Square-well
potential. (c) Soft-sphere potential with v = 1 (long-range).
(d) Soft-sphere potential with v = 12 (short-range).



Periodic boundary conditions (PBC)

> Use PBC in order to mimic an infinite bulk surrounding the
N-particle system.

» The central box with side length L is the primitive cell of an
infinite lattice of identical cells.

Figure 4:  Minimum image convention. Dashed box

Flgure 3: 2D periodic system. Particles can enter or is centered around particle 1. Dashed circle represents

leave each box across each of the 4 edges. potential cutoff.



Truncation of the interaction

» Total energy in periodic system is U = %Z:-Jn U(|rjj +nL]),
where the sum over n indicates a sum over the whole lattice
and the prime indicates that i = j is excluded for n = Q.

> In practice, we consider only nearest periodic images, i.e.,
rij = min{lr; + |} (8)

and truncate the interaction at some r. < L/2.

» Total energy is a sum of truncated interactions and a tail
contribution:

N [o¢]
U~ Z Utrunc(rij) + p/ dr 4wrU(r), 9)

2
i<j fe
assuming homogeneous system for r > r. with an average

number density p = N/L9.

» Tail contribution is infinite for U(r) o< r= with v < 3, which
is a criterion for a long-range interaction.



Truncation of the interaction

> In order to remove discontinuities in the energy (impulsive
forces) and problems with energy conservation use a truncated
and shifted potential:

V(1) = {U(r) —U(re) (r<re) (10)

0 (r>re)

» Even better is a shift-force potential, where force goes
smoothly to zero at r. and which removes problems in energy
conservation and numerical instability in the equation of
motion,

V() = V() = (%52) _ (r—r) (r<ro)
0 (r>re)
(11)

» Caution: Shifted potentials change thermodynamic properties
of the system (a correction is possible).

Ushiftfforce(r) -



Verlet neighbor list

> Verlet neighbor list avoids an naive
force evaluation with N(N —1)/2
operations.

» Store initially all neighbors of each
particle within r; > r. in a list with
dimension %erpN.

> Use neighbor list to calculate the

forces until
rp—re
E max |v;| >
i vil 2At
steps

. . Figure 5: Particle 1 interacts with
otherwise refresh the list.

particles within ro. Verlet list contains all
» With increasing r — r. the frequency ~ "=~
of updates decreases, on the other

hand, the stored number of

noninteracting particles increases.



Cell-linked list

> Verlet list becomes inefficient for large N due to huge memory
demand and expensive list update.

» Divide the simulation box into a regular lattice of M9 cells of
size r¢ with approximately N. = N/M¢ particles per cell.

» A particle interacts with particles within the same cell and
with particles from 4 (or 13) neighboring cells in 2D (or 3D).
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Figure 6:  Simulation box is divided Figure 7: A close-up of cells 1 and 2, showing

particles and the link-list structure. Particle 8 (or 10) is
the head of chain in cell 1 (or 2).

into M X M cells of size ro X rc. For
example, particles in cell 13 interact
with cells 9, 14, 18, 19.



Cell-linked list

DO 100 ICELL = 1, NCELL
HEAD(ICELL) = 0
position: 1 2 3 4 5 6 7 8 9 10
100 CONTINUE
CELLI = REAL ( M )

HEAD: 8 10 }
DO 20¢

LIsT: o 1 9 3 2 4 5 7 & 9 or=nN

V\\/\\/U ICELL = 1 + INT ( ( RX(I) + 0.5 ) * CELLT )
t + INT ( ( RY(I) + 0.5 ) % CELLI ) * ¥
: + INT ( ( RZ(I) + 0.5 ) % CELLL ) * M * M
LIST(I) = HEAD(ICELL)
HEADCICELL) = I

Figure 8: lllustration of the method for the
cells 1 and 2, see Figure 7. Consider cell 2: start at
HEAD(2)=10 and iterate LIST(10)=9,
LIST(9)=S6,..., until LIST(3)=0. Last

200 CONTINUE

Figure 9:  Construction of the linked-list array LIST
and the head-of-chain array HEAD. Here simulation box
is a unit cube [—0.5, 0.5]3 and cell size is 1/ M.

» Only 5NN, (or 14NN,) pairs in 2D (or 3D) need to be
examined.

» Construction of Verlet list using the cell-linked list is possible
(now size of the cell is r;).



Force calculation with cell-linked list

for (icell=1;icell<=ncell;icell++) // go over all cells
{i=head[icell]l; // head of icell
while (i!=0) // last particle in cell if 1list[i]=0
{j=1ist[i]; // next particle in icell

3

while (j!=0) // go over all particles in icell
{dx=Rx[i]1-Rx[jl; // apply PBC
if (dx*dx+dy*dy<r_c*r_c)
{...;} // force calculation
j=list[jl; // next particle in icell
}
jcello=4*(icell-1);
for (nabor=1;nabor<=4;nabor++) // neighbors of icell
{jcell=map[jcello+nabor]; // index of neighbor cell
j=head[jcell]; // head of neighbor cell
while (j!=0) // go over all particles in jcell
{...; j=list([jl;} // force calculation
}

i=list[i]; // next particle in icell



Integration of the equation of motion

What are properties of a good integrator?

>

>

>

Should be accurate at large time steps.
Should duplicate the classical trajectory as closely as possible.

Like Newtons equation of motion, the integrator must be
time-reversal invariant, i.e., under time-reversal t — —t

(r — r and p — —p) particles follow the forward trajectory in
reverse order.

Long-time energy and momentum conservation.

The integrator should be symplectic, i.e., should preserve the
phase space area as predicted by Liouville's theorem.

Single force evaluation per time step.



Verlet algorithm

> Verlet integration approximates 2nd order derivative with a
2nd order central difference:

r(t+ot)—r(t)  r(t)—r(t—ot)

F(t) ~ ot 5 ot (12)
_or(t+6t) —2r(t) +r(t—ot)  f(t)
- St? m (13)

» Basic Verlet algorithm
f(t
r(t+5t):2r(t)—r(t—5t)+En)ét2 (14)

» Discretization error via Taylor expansion of the position r
around t

r(t+0t) = r(t)+v(t)ot+ 2( )5t +0(6t%) (15)
f(t
2m

r(t—0t) = r(t)—v(t)dt + ft) 5,2 —0(5t%)  (16)



Verlet algorithm

» Summing these two equations gives

f
r(t+ot) :2r(t)—r(t—5t)+57:)51?2—#(9(51?4) (17)
> Is time-reversible due to symmetrical roles of r(t + 0t) and
r(t —dt).
» Local error is of order dt*, because terms of order 6t3 (jerk or
t') cancel out.

» Note that Verlet algorithm does not use v to compute new
positions, however, v(t) may be obtained via

_ r(t +dt) —r(t —ot)

v(t) 20t

+ O(6t?) (18)



Leap Frog algorithm

> Write Taylor expansion of the position r in a different form

r(t+4dt) =r(t) + <v( )+ f( )9

= r(t+ 0t) = r(t) + v(t + 6t/2)5t + O(5t3)

» Taylor expansion of the velocity v around t

v(t+0t/2) = ()+f()52t+(9(5t)
v(t—6t/2) — v(t)—ffn)‘;t + 03582

Subtracting these two equations gives
(i f(t) 3
v(t+0t/2) = v(t —0t/2) + - it + O(ot>)

» Note that, velocities are given at mid-step.
» Leap Frog algorithm is also time-reversible.

5 ) 5t + O(6t3)

(19)

(20)

(21)

(22)

(23)



The great integrator (Velocity Verlet algorithm)

» Velocity Verlet algorithm stores positions, velocities and forces
at the same time.

r(t46t) = r(t)+v(t)ot + 2(2&2 (24)

f(t+dt) + f(¢)

v(t+0t) = wv(t)+ -

ot (25)

> Velocity Verlet algorithm involves two stages:
» Calculate r(t + dt) and v(t + 6t/2) = v(t) + %61‘
» Calculate f(t + dt) and v(t + 5t) = v(t + §t/2) + %ét.

» Velocity Verlet algorithm is equivalent to the original Verlet
algorithm.

» Note that, the Taylor expansion of r up to 6t2, see Eq.(24), is
the simple Euler integrator. Although it is similar to Verlet
method it is not time-reversible and area preserving and
exhibits catastrophic energy drift.



Schema of the Verlet family
(’)‘_fh 1._ t+dt =0t bt t=dt 1 (+dt =gttt

& \\‘I""
r |
T l_

Figure 10: (a) Verlet method. (b) Leap-frog form. (c) Velocity-Verlet algorithm.
Acceleration is denoted as a = f/m.

» Absence of long-term energy drift, phase area preservation
and time reversibility of the Verlet algorithm can be proofed
using discretized version of the Liouville equations.

> Verlet algorithm can be derived from variational principle, as a
consequence a Verlet trajectory can still be close to some true
trajectory of the system over a time that is longer than the
time it takes the Lyapunov instability to develop.



Reduced units

> It is convenient to express quantities in reduced units due to:

» Law of corresponding states, i.e., many combinations of p, T,
€ and o correspond to the same state in reduced units.

» Avoidance of numerical over- or underflow, i.e., all quantities
are of order O(1).

» For a pair potential of the form U(r) = ef(r/co) the natural
choice of basic units is

» o as length scale

> ¢ as energy scale

> mass m
» Some quantities in reduced units
Number density p* = po?
Temperature T* = kg T /e
Time t* = \/e/mo?t
Energy E* = E /e
Pressure P* = Po3 /e

» Alternatively, use kg T as energy scale.

vV vy VY VvVYyy



Starting up the simulation

» Initial positions
» Face-centered cubic lattice will melt rapidly.
» Start with an ideal gas and slowly increase the interaction (via
o or €) to the desired value.

» Initial velocities

2
> Chose randomly velocities form P(vx) =, /575 exp (f Z;#)

and analogously for v, and v,.
> Alternatively, chose uniformly distributed velocities from
[— Vimax, Vmax] (system rapidly relaxes to Maxwell-Boltzmann
distribution)
» Ensure that the overall momentum vanishes: Z,N:1 miv; =0
» Adjust velocities to the desired mean kinetic energy.

> In thermal equilibrium: <%mv2> = %kBT in 3D.

N mv?

i=1 N
with Nf (= 3N — 3 for a system with fixed total momentufm)
degrees of freedom.

> Rescale velocities Vnew = Voidn/ T/ Tk in order to enforce the
target tempature T.

> The instantaneous kinetic temperature is kg Tx =



Typical observables

v

Kinetic energy: (K) = <E,N:1 %mv?>

Potential energy: (U) = <Z,N:EI ZJ-N:,-H U(fij)>

Specific heat Cy = (%)V via

v

v

<U2>NVE - <u>%\IVE = <K2>NVE - <K>$VVE

= gNk?BTZ <1 -

3Nkg
2Cy

v

Virial pressure: P = pkgT + 3%, <Z,N:_11 ZjN:iH r,-jf,-j>



Equation of state P(p) of the Lennard-Jones fluid

Figure 11: Equation of state P(p) of the Lennard-Jones fluid P(p). Left: Isotherm at
T* = 2. Right: Isotherm below the critical temperature T* =0.9 < T} ~ 1.32.
Filled circles indicate the coexisting vapor and liquid phases. Circles are simulation
results (N = 500).



Structural observable

Pair correlation function for isotropic
and translation symmetric systems

V N-1 N
0= 3 (X 2 )

i=1 j=i+1

is the probability to find a pair of
particles at distance r, relative to the
probability of an corresponding ideal
gas.

3.0

20 -

a(r)

0.0 L L
0.0 1.0 2.0 3.0

r

Figure 12: g(r) of a
Lenard-Jones fluid close to triple
point: T* = 1.504 and

p* ~ 0.844

pg(r)4mridr = average number of particles with interparticle

distance in [r, r + dr]



Time correlation functions and transport coefficients

» Time correlation functions (§A(t)dB(0)) provide information
about the dynamics of the system.
» Their integrals are often related to macroscopic transport
coefficients.
» Transport coefficients relate a response of a system to a
external perturbation.
» For example: a particle drifts with a constant velocity
Varift = ifext when dragged through a viscous environment by
an external force fe,:, where p is called mobility.
> In equilibrium the system is thermally perturbed and the
transport coefficients can be obtained:
» via velocity autocorrelation function (VACF):

D = pksT =5 [~ dt (vi(t)vi(0)) (26)

which is called Green-Kubo relation and where D is the
diffusion constant.
» or via mean-square displacement (MSD):

2dDt = <[r,-(t) - r,-(O)]2> (27)



Velocity autocorrelation function
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Figure 13: Left: MSD ([r;(t) — r;(0)]?) as a function of t. Note that for long times
([ri(t) — ri(0)]2) = 2dDt. Right: VACF (v(t)v(0)) as a function of t.

» Short-time behaviour of VACF:
(vi(t)vi(0)) = (vZ) — = <v )2 = (v?) <1 - SwEt > (28)
(Viu)

with Einstein frequency wg = ~5/

the mean force of its neighbors.

of a vibrating particle in



Long-time tail of VACF

Figure 14: Velocity field of a 2D fluid surrounding a central particle (a) at short and
(b) at long times.

» VACF does not decay exponentially at long times, but rather,
algebraically
(vi(t)vi(0)) o< 72, (29)
where d is the dimension of the system.
» Simple explanation: a moving particle compresses the liquid in
front of it and causes a vortex flow to circulate around it, due
to momentum conservation.



Further transport coefficient: shear viscosity

» The viscosity of a fluid 1 expresses its resistance to shearing
flows.
» Newtonian fluid: shear stress —P,, is linearly proportional to

. . 8VX )
the velocity gradient By
Ovy
(Pyx(t = 00)) e = _nﬁiy (30)
» Shear viscosity from Green-Kubo relation:
v o0
== [ dt{Pas(t)Pas(0)), (31)
ks T

where

046 = — Z mviaVig + Z Z rya ijB (32)

i=1 j=i+1

are the off-diagonal elements of the pressure tensor.



Calculation of ACF

For7=0,...,7cor :  {(A(7)A(0)) = zm:f A(m0)A(T0 + 7)

 TI8I71615 7 ACF ©
A
® IBITI6I5113121710] ACF (g : ; ACF
NSNS us
TN
[ szmui] Iil] A ST TR n A
- —_—

Figure 15: Calculation of ACF in asingle sweep. Here 7cor = 10. The data A is
correlated with itself to give the ACF. The latest imported data is shaded.



Canonical MD

>

In the canonical (or NVT) ensemble the system is in thermal
contact with a large heat bath.
In NVT ensemble states are distributed according to

N N . .
P(rN, pN) e A7 ") resulting in Maxwell-Boltzmann

5 \32 a2

distribution of momenta P(p) = ( e 2m

2mm

The relative variance of the kinetic energy per particle is

<(%)2>NVT - <%>fVVT 2
Fwr N

(33)

Thus, the kinetic energy per particle fluctuates in the
canonical ensemble of a finite system.

Note, the definition of the instantaneous kinetic temperature:
2K

ke Tic = 2X0. (34)
N¢

where Ny is the number of degrees of freedom.



Problematic method: Berendsen thermostat

» At each time step rescale velocities by a factor

ot (T
Vhew = Vold\/l + 7 <TIC - 1>7 (35)

where 7 is the relaxation time of the thermostat.

» For 7 = §t the thermostat keeps (K) constant and (K?) =0,
which is not the property of the canonical ensemble.

» Berendsen thermostat is an isokinetic scheme, which does not
generate a canonical distritution.

» The equation of motion are not the Newtonian ones:

mi =f —&Emv, (36)
kg Tic—ka T
orkg Tk
» Berendsen thermostat dissipate energy uniformly in the
system, it is a global thermostat.

with friction coefficient & =



Problematic method: Andersen thermostat

» Coupling to the heat bath via stochastic collisions.

» Each particle has a probability vdt per time step dt of
undergoing a bath collision, where v is the collision frequency.

» A bath collision involves assigning the particle a new velocity
taken from the Maxwellian distribution with the desired
temperature T.

Voq If vt < CI
Vhew =
¢ n if vot>(

with uniform random number ¢’ € [0,1] and

n= %(Cl,@,@) where (; are sampled from normal
distribution with zero mean and unit variance.

» High v leads to a totally stochastic dynamics, at low v the
dynamics is rather deterministic.

» This method satisfies detailed balance and generates canonical
distribution.



Problematic method: Andersen thermostat

» Andersen thermostat dissipate energy on a spatially localized
scale, it is a local thermostat.
» Momentum is not conserved (dynamics is unphysical).
» Method disturbs the dynamics substantially for high v.
» Enhanced exponential decay of the VACF with increasing v.
» Decreasing diffusion with increasing v.

0.2 r

Figure 16: MSD versus time for various values of the collision frequency v of the
Andersen thermostat.



Less problematic method: Langevin thermostat

» The original Langevin equation describes Brownian motion,
i.e., every particle is coupled to viscous background and a
stochastic heat bath.

» Langevin equation reads as
m¥; =f; — Emv; + \/2mékg Tn;, (38)

where £ is the friction constant. The stochastic variable 17 is
assumed to be Gaussian white noise with zero mean and

<77ia(t)77jﬁ(t/)> = 5U(5a65(t - t,)a (39)

where a, 8 € {x,y, z}, such that equipartition is fulfilled.
» We assume that the random force is memoryless (or
delta-correlated) and independent for different particles.

» The dynamics becomes diffusive in the long-time limit with

diffusion constant D = %'



Numerical solution of overdamped Langevin equation

» For negligible inertia the 1D version of Eq.(38) becomes

_f [2keT
~&m &m

X

f’
n:E—m+\/En (40)

» Introducing a Wiener process 7(t) = ‘L—Vtv and using first order

discretisation of the derivatives:
f
x(t+dt) = x(t) + g—mét + V2D [W(t+dt) — W(t)] (41)

» Increments of the Wiener process W (t + dt) — W(t) are

normally distributed with mean 0 and variance 4Jt.
» Hence W(t + dt) — W(t) = V/6t(, where ¢ are a Gaussian

random numbers with () = 0 and (¢?) = 1.
» First order integrator of the overdamped Langevin equation

x(t+0t) :x(t)+§in(5t+\/2D5t§, (42)



Numerical solution of Langevin equation

» Define 0 = \/@ and a = % and integrate Eq.(38) over a
time step dt:

t+dt
v(t+dt) = v(t) + /t [a(x(s)) — &v(s)] ds
+o [W(t+dt) — W(t)] (43)
» Approximate v(s) in s € [t, t + dt] with
v(s) = v(t) + (s — t) [a(x(t)) — Ev(t)] + o [W(s) — W(t)]
and hence

t+dt &2
/t (s)ds = v(8)3t + - [a(x(2)) — €v(2)]

t+4t
vo [ W - wieds (@)



Numerical solution of Langevin equation
» Proceed in the same way with a(x(s)) using M = rgj,

which yields

t44t St
/t a(x(s))ds = — [a(x(t + 0t)) + a(x(t))] (45)

» The integral of the Wiener increment in Eq.(44),
ftt+6t [W(s) — W(t)] ds, is a Gaussian variable with

(1) - wioies) ) = °F

(IW(e+3e) = w(e] ([ W(s) - w(olds)) = -,

using (W(s)W(s")) = min(s,s’).

» The last relation means that the stochastic variables
W(t + 6t) — W(t) and [T [W(s) — W(t)] ds are
correlated.



Numerical solution of Langevin equation

> As above, see Eq.(42), W(t + dt) — W(t) is Gaussian with
mean 0 and variance dt, thus

W(t+6t)— W(t) = V6t¢ (46)
t+ot ) C C,
/t [W(s)— W(t)lds = ot (2 + 2\/§> . (47)

where ¢ and (' are independent Gaussian variables with mean
zero and variance (¢?) = (¢"?) =1 and {¢¢’) = 0.
» Second order integrator of Langevin equation

x(t+0t) = x(t)+ v(t)ot + A(t)
v(t+0t) = v(t)+[a(x(t—l—dt))—i—a(x(t))]%
—~ gv(t)5t+mﬁ< §A()
¢, ¢

At = [alx(t) - v(n)] 25 5t3/2<2+m>



Comments on the Langevin thermostat

> Langevin thermostat generates Maxwellian velocity
distribution.

» VACF decays exponentially as

ke T
3 B e_Et
m

(v(t)w(0)) = (v*)e™*" = (48)

» The equation of motion does not conserve momentum, i.e.,
center of mass of the overall system diffuses.

» Hydrodynamic correlations are damped on length scales larger

mép’
viscosity of the molecular fluid.

then , /—L-, where p is the number density and 7 the shear

» Langevin thermostat is local.



Up-to-date method: dissipative particle dynamics (DPD)

> DPD is similar to Langevin dynamics, there is also local
friction and noise.

» However, in DPD the dissipative and the random force are
pairwise and velocity differences of nearby particles are
damped.

» DPD thermostat is local, Galilean invariant and conserves
linear and angular momentum, which are the basic
requirements for recovering the hydrodynamics on large length
and time scales.

» The equation of motion is mr; = f; with total forces

= > [F(r) + FPlrgvi) + F5(r) |, (49)
J(#)
where rj =r; —r; and vjj = v; — v;.
> fC(r,-j) denotes a conservative force, for example, due to
Lennard-Jones interaction.



Dissipative particle dynamics
» The dissipative force reads as
FO(rj,vip) = —€wP () (Fy - vi)Rij, (50)
with friction constant ¢, weight function wP(r;) and #; = ﬁﬁ
» The random force reads as
fR(r;) = owR(ry)Cit, (51)

with noise strength o, weight function w®(r;) and Gaussian
white noise (j; = (j; with,

(Ci) =0 and (Cy(t)&u(t)) = (Oiwdj+did)d(t—t') (52)
» DPD generates states according to canonical distribution if
02 =2kgTE (53)
and
[wf (rg)? = wP(ry), (54)

which is the fluctuation-dissipation theorem for the DPD
method.



Dissipative particle dynamics

» One can rewrite DPD into a Langevin-type equations and
thus into a Fokker-Planck equation, which describes the time
evolution of the probability density function of rV and v/.

» The canonical distribution is the solution of the Fokker-Planck
equation in the steady-state if both conditions Eq.(53) and
Eq.(54) are satisfied.

» A simple choice of the weight functions

W) = R(r) = {; e (55)

with cut-off distance r, i.e., the thermostat operates only if
the interparticle distance is smaller then r..



Lowe-Andersen thermostat: DPD plus Andersen

» Bath collision between a pair of particles takes place with
probability vdt provided that their distance is smaller then r..

» A bath collision then takes the form

iV if ot
v = TS (sp)
miv; + Ap,-j if vot>(
iV if vot
v = " PR Cl)
miv; — Apj; if vit>(

where ¢ € [0,1] is a uniform random number and

ri—r; ri —r;
i J i J

is the momentum change.



Lowe-Andersen thermostat

v

The stochastic variable with a dimension of a velocity is given
by
kg T
Hij

G = ¢, (59)
where (" is sampled from normal distribution with zero mean

and unit variance, and p;; = mjﬂ;) is the reduced mass.
U J

The procedure is carried out sequentially for each pair.

Lowe-Andersen thermostat is local, Galilean invariant, and
conserves linear and angular momentum.

Further, it is straightforward to implement, e.g., mix
velocity-Verlet integrator with bath collision scheme.



Non-equilibrium MD: shear flow

» Green-Kubo relation allows the estimation of the shear
viscosity 7 in the limit of vanishing velocity gradients ¥ = %—‘;X.

» Non-equilibrium simulation method allows to investigate
nonlinear regimes of fluids, for example:

» Non-Newtonian character of the fluids at high shear rates,
where

<Pyx(t — OO)>ne =" (’7)7 (60)
» Shear banding, where the translational symmetry in y-direction
is spontaneously broken as a result of a hydrodynamic
instability.
» In order to simulate shear flows without introducion of walls
the periodic boundary conditions must be modified.

» Such a modification was proposed by Lees and Edwards.



Non-Newtonian viscosity of suspensions

log (nr)

log (v)

Figure 17: Representation of relative viscosity 7, versus shear rate * for a
fluid suspension. ¢ denotes the packing fraction.

> For 4 — 0, the suspension is Newtonian except for the yield
stress behavior of very dense suspensions.

> All suspensions generally shear-thin at low to intermediate +.

> With increasing shear rate, there is a Newtonian plateau and
finally a steep shear-thickening region.



Lees-Edwards boundary condition

» Boxes in the top layer (B,C,D) move with velocity LY to the
right, boxes in the bottom layer (F,G,H) move with velocity
L¥ to the left.

> A particle that leaves the box in y direction at the top and
reenters at the bottom is displaced appropriately both in
position and velocity space.

\
&

Figure 18: Homogeneous shear boundary conditions.



Lees-Edwards boundary condition

» Displacement of the upper box relative to the cental box:

STRAIN+=shear_ratexly*dt;
STRAIN-=1x*floor (STRAIN/1x);

shear_rate refers to 4.
» Periodic minimum image convention (force calculation):
dx=Rx[1]-Rx[j];
dy=Ry [i]-Ry[j];
dx-=STRAIN*floor(0.5+dy/1ly) ;
dx-=1x*floor(0.5+dx/1ly);
dy-=1ly*floor(0.5+dy/1y);

» Periodic boundary crossing:
Rx[i]-=STRAIN*floor(Ry[i]/1ly);
Vx[i]-=shear_rate*ly*floor (Ry[i]/1ly);
Rx[i]-=1x*floor (Rx[i]/1x);
Ry[il-=1ly*floor (Ry[il/1y);



Note that a sheared system heats (viscous heating) up and a
thermostat is needed.

Viscous heating is the transfer of coherent motion into
non-coherent molecular fluctuations. Neighboring fluid layers
move at different velocities relative to each other. This leads
to collisions between the particles and to redistribution of
kinetic energy.

We favor profile-unbiased thermostat, which does not perturb
the velocity profile.

A DPD or Lowe-Andersen thermostat is by construction
unbiased, because it act on relative velocities.



Hard sphere event-driven MD

» Calculate the time of the next collision t 4 t;; between a pair
of particles with positions r; and r; and velocities v; and v; at
time t.

» The overlap condition is

(e + tg) = [ry + vyt = o, (61)
where o is the diameter, rj =r; —r; and vjj = v; — v;.
> If rjj - vjj = bjj > 0 particles are going away from each other.

> For by — vi(r7 — ) > 0 there are to real solutions and the

smaller corresponds to impact:

t,'j = 5 (62)



Hard sphere event-driven MD

> Using linear momentum and kinetic energy energy
conservation we obtain the collision dynamics:

m,-vf- = m,-v,-—i—Ap,-j (63)
mjvJ'- = mjvj—Ap,-J- (64)

with momentum change

A N 'U,U
Apyj = —py (- vy) ¥y = =5 (v -vy) vy (65)
where 1j; = " js the reduced mass and #; = L is the
Hij = mi—+m; i = Tyl

unit vector along the line connecting the centers of i and .
At impact |rjj| = 0.



Rough hard sphere

>

Rough hard spheres are characterized by a diameter o, mass
m and a moment of inertia | (or k = 41/mo?).

They have a translational v and a angular velocity w.

Conservation laws are total kinetic energy (rotational plus
translational), linear momentum and total angular momentum

Z mr; X v; + Z lw; (66)

The relative velocity at impact point (just before collision) is

1
Vi = (vi —vj) = S(wi + wj) xr (67)

During impact the relative velocity is reversed and the change
in relative velocity is

AV =V} —V; = -2V (68)



Rough hard sphere

> Using conservation laws the change in momentum is

1
Apj = 5m <AV” + HAVL)

(69)

where AVLL = (% - AVjj)¥;; is the parallel component of the

relative velocity change and AV = AV; — AV is the

corresponding perpendicular component.
» Collision dynamics:

mv; = mv;+ Apj
mv; = mv;— Ap;
1
I, = lw;— 5 % Apj
, 1
ij = le—ar,-ijp,-j

Note that, the spin angular momentum is not conserved.

(70)
(71)
(72)

(73)
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