Computational physics

Heiko Rieger and Adam Wysocki

Theoretical Physics
Saarland University
SS2017

Contents

- Molecular Dynamics

Introduction into molecular dynamics

- So far we dealt with stochastic simulation methods of many-body systems, namely, with Monte Carlo (MC) methods.
- MC simulation generates states according to Boltzmann (or canonic) distribution.
- In MC we want to estimate the expectation value

$$
\begin{equation*}
\langle\mathcal{O}\rangle_{\mathrm{ens}}=\frac{\int d \mathbf{p}^{N} d \mathbf{r}^{N} \mathcal{O}\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right) e^{-\beta \mathcal{H}\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)}}{\int d \mathbf{p}^{N} d \mathbf{r}^{N} e^{-\beta \mathcal{H}\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)}} \tag{1}
\end{equation*}
$$

or rather the configurational version

$$
\begin{equation*}
\langle\mathcal{O}\rangle_{\mathrm{ens}}=\frac{\int d \mathbf{r}^{N} \mathcal{O}\left(\mathbf{r}^{N}\right) e^{-\beta \mathcal{U}\left(\mathbf{r}^{N}\right)}}{\int d \mathbf{r}^{N} e^{-\beta \mathcal{U}\left(\mathbf{r}^{N}\right)}} \tag{2}
\end{equation*}
$$

where the Hamiltonian $\mathcal{H}=\mathcal{K}+\mathcal{U}$ is a sum of a kinetic \mathcal{K} and a potential part \mathcal{U}.

Introduction into molecular dynamics

- The MC simulation generates a stochastic sequence (Markov chain) of states \mathbf{r}^{N} with distribution

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} P\left(\mathbf{r}^{N}(\tau)\right)=\frac{e^{-\beta \mathcal{U}\left(\mathbf{r}^{N}(\tau)\right)}}{\int d \mathbf{r}^{N} e^{-\beta \mathcal{U}\left(\mathbf{r}^{N}(\tau)\right)}} \tag{3}
\end{equation*}
$$

and the ensemble average becomes

$$
\begin{equation*}
\langle\mathcal{O}\rangle_{\text {ens }}=\lim _{\tau_{\text {obs }} \rightarrow \infty} \frac{1}{\tau_{\text {obs }}} \sum_{\tau=1}^{\tau_{\text {obs }}} \mathcal{O}\left(\mathbf{r}^{N}(\tau)\right) \tag{4}
\end{equation*}
$$

- A deterministic type of N -body simulation methods is molecular dynamics (MD), it generates trajectories of interacting particles by numerically solving Newton's equations of motion.
- The Hamiltonian of N classical particles is $\mathcal{H}=\mathcal{K}+\mathcal{U}$ with

$$
\begin{equation*}
\mathcal{K}=\sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}} \quad \text { and } \quad \mathcal{U}=\sum_{i=1}^{N} U_{1}\left(\mathbf{r}_{i}\right)+\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} U_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)+\ldots \tag{5}
\end{equation*}
$$

Introduction into molecular dynamics

- From Hamilton's equations $\dot{\mathbf{p}}_{i}=-\frac{\partial \mathcal{H}}{\partial \mathbf{r}_{i}}$ and $\dot{\mathbf{r}}_{i}=\frac{\partial \mathcal{H}}{\partial \mathbf{p}_{i}}$ we get Newton's equations of motion

$$
\begin{equation*}
m_{i} \ddot{\mathbf{r}}_{i}=-\nabla_{\mathbf{r}_{i}} \mathcal{U}=\mathbf{f}_{i}=\mathbf{f}_{1}\left(\mathbf{r}_{i}\right)+\sum_{j \neq i} \mathbf{f}_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)+\ldots \tag{6}
\end{equation*}
$$

- \mathbf{f}_{1} is an external force, like, gravity, electromagnetic forces, container walls, etc.
- $\mathbf{f}_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=\mathbf{f}_{2}\left(r_{i j}\right)$, where $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$, is a force due to a pair potential, like, Lennard-Jones potential, Coulomb potential, etc.
- The initial conditions $\left(\mathbf{r}^{N}(t=0), \mathbf{p}^{N}(t=0)\right)$ determine the time evolution of the system.
- The ergodic hypothesis links MC to MD simulations, it states that the time spent by a system in some region of the phase space of microstates with the same energy is proportional to the area of this region.

Introduction into molecular dynamics

- The ergodic hypothesis: Time averaging (the MD approach) equals ensemble averaging (the MC approach):

$$
\begin{align*}
\langle\mathcal{O}\rangle_{\text {time }} & =\lim _{t_{\text {obs }} \rightarrow \infty} \frac{1}{t_{\text {obs }}} \sum_{t=0}^{t_{\text {obs }}} \mathcal{O}(t) \\
\stackrel{!}{=}\langle\mathcal{O}\rangle_{\text {ens }} & =\int d \mathbf{p}^{N} d \mathbf{r}^{N} \mathcal{O}\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right) P\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right) \tag{7}
\end{align*}
$$

Caution: Is not always true. Ergodicity breaking in glasses or spin systems below T_{c}.

- Comment on ensambles:
- The natural ensemble of MC is the canonical or NVT ensemble, i.e., temperature T is fixed.
- The natural ensemble of MD is the microcanonical or NVE ensemble, i.e., total energy E is fixed.
- The equivalence of ensembles holds only if we choose E and T consistently: $E=\langle E\rangle_{N V T}$ (or $T=\langle T\rangle_{N V E}$), i.e., if the total energy of MD is chosen to be the average energy of MC. Caution: Is not always true. Consider, for example, energy fluctuations.

Skeleton of a molecular dynamics simulation

```
initialisation();
for (t=0;t<t_max;t++)
    {calculate_force();
        integrate();
        sample_averages();
    }
```

- Specify the pair potential, initial temperature, number of particles, box size, time step.
- Select initial configuration (positions and velocities).
- Compute force on all particles.
- Integrate Newton's equation of motion.
- Calculate averages of observables, like, temperature, pressure, mean-square displacement, etc.

Common pair potentials

- The Lennard-Jones (or 12-6) potential,

$$
U^{L J}(r)=4 \epsilon\left((\sigma / r)^{12}-(\sigma / r)^{6}\right),
$$

approximates the interaction between a pair of neutral atoms.

- The $1 / r^{12}$ term describes Pauli repulsion.
- The $1 / r^{6}$ term describes van der Waals attraction.
- ϵ is an energy and σ a length scale.
- Other idealized potentials:
- Hard-sphere (no energy scale): $U^{H S}(r)= \begin{cases}\infty & (r<\sigma) \\ 0 & (r \geq \sigma)\end{cases}$
- Soft-sphere (ν controls the softness): $U^{S S}(r)=\epsilon(\sigma / r)^{\nu}$
- Square-well potential, see Figure 2.
- Ions obey Coulomb interaction: $U^{z z}\left(r_{i j}\right)=\frac{z_{i} z_{j}}{4 \pi \epsilon_{0} r_{i j}}$, with vacuum permittivity ϵ_{0} and charges z_{i} and z_{j} on ions i and j.
- Long-range potential $U(r) \propto r^{-\nu}$ with $\nu \leq d$, where d is the dimension of the system, e.g., Coulomb interaction, needs special treatment.

Common pair potentials

Figure 1: (Solid line) Experimental Argon potential. (Dashed line) Effective 12-6 potential.

Figure 2: (a) Hard-sphere potential. (b) Square-well potential. (c) Soft-sphere potential with $\nu=1$ (long-range).
(d) Soft-sphere potential with $\nu=12$ (short-range).

Periodic boundary conditions (PBC)

- Use PBC in order to mimic an infinite bulk surrounding the N-particle system.
- The central box with side length L is the primitive cell of an infinite lattice of identical cells.

Figure 3: 2D periodic system. Particles can enter or leave each box across each of the 4 edges.

Figure 4: Minimum image convention. Dashed box is centered around particle 1. Dashed circle represents potential cutoff.

Truncation of the interaction

- Total energy in periodic system is $\mathcal{U}=\frac{1}{2} \sum_{i, j, \mathbf{n}}^{\prime} U\left(\left|\mathbf{r}_{i j}+\mathbf{n} L\right|\right)$, where the sum over \mathbf{n} indicates a sum over the whole lattice and the prime indicates that $i=j$ is excluded for $\mathbf{n}=0$.
- In practice, we consider only nearest periodic images, i.e.,

$$
\begin{equation*}
r_{i j}=\min _{\mathbf{n}}\left\{\left|\mathbf{r}_{i j}+\mathbf{n} L\right|\right\} \tag{8}
\end{equation*}
$$

and truncate the interaction at some $r_{c}<L / 2$.

- Total energy is a sum of truncated interactions and a tail contribution:

$$
\begin{equation*}
\mathcal{U} \approx \sum_{i<j} U_{\text {trunc }}\left(r_{i j}\right)+\frac{N \rho}{2} \int_{r_{c}}^{\infty} d r 4 \pi r^{2} U(r) \tag{9}
\end{equation*}
$$

assuming homogeneous system for $r \geq r_{c}$ with an average number density $\rho=N / L^{d}$.

- Tail contribution is infinite for $U(r) \propto r^{-\nu}$ with $\nu \leq 3$, which is a criterion for a long-range interaction.

Truncation of the interaction

- In order to remove discontinuities in the energy (impulsive forces) and problems with energy conservation use a truncated and shifted potential:

$$
U_{\text {shift }}(r)= \begin{cases}U(r)-U\left(r_{c}\right) & \left(r \leq r_{c}\right) \tag{10}\\ 0 & \left(r>r_{c}\right)\end{cases}
$$

- Even better is a shift-force potential, where force goes smoothly to zero at r_{c} and which removes problems in energy conservation and numerical instability in the equation of motion,

$$
U_{\text {shift-force }}(r)= \begin{cases}U(r)-U\left(r_{c}\right)-\left(\frac{d U(r)}{d r}\right)_{r=r_{c}}\left(r-r_{c}\right) & \left(r \leq r_{c}\right) \tag{11}\\ 0 & \left(r>r_{c}\right)\end{cases}
$$

- Caution: Shifted potentials change thermodynamic properties of the system (a correction is possible).

Verlet neighbor list

- Verlet neighbor list avoids an naive force evaluation with $N(N-1) / 2$ operations.
- Store initially all neighbors of each particle within $r_{l}>r_{c}$ in a list with dimension $\frac{4}{6} \pi r_{l}^{3} \rho N$.
- Use neighbor list to calculate the forces until

$$
\sum_{\text {steps }} \max _{i}\left|\mathbf{v}_{i}\right|>\frac{r_{I}-r_{c}}{2 \Delta t}
$$

otherwise refresh the list.

- With increasing $r_{l}-r_{c}$ the frequency

Figure 5: Particle 1 interacts with particles within r_{c}. Verlet list contains all particles $r_{l}>r_{c}$. hand, the stored number of noninteracting particles increases.

Cell-linked list

- Verlet list becomes inefficient for large N due to huge memory demand and expensive list update.
- Divide the simulation box into a regular lattice of M^{d} cells of size r_{c}^{d} with approximately $N_{c}=N / M^{d}$ particles per cell.
- A particle interacts with particles within the same cell and with particles from 4 (or 13) neighboring cells in 2D (or 3D).

21	22	23	24	25
16	17	18	19	20
11	12	13	14	15
6	7	8	9	10
1	2	3	4	5

Figure 6: Simulation box is divided into $M \times M$ cells of size $r_{c} \times r_{c}$. For example, particles in cell 13 interact
 with cells $9,14,18,19$.

Figure 7: A close-up of cells 1 and 2, showing particles and the link-list structure. Particle 8 (or 10) is the head of chain in cell 1 (or 2).

Cell-linked list

POsition: | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 8: Illustration of the method for the cells 1 and 2, see Figure 7. Consider cell 2: start at $\operatorname{HEAD}(2)=10$ and iterate $\operatorname{LIST}(10)=9$,
$\operatorname{LIST}(9)=6, \ldots$, until $\operatorname{LIST}(3)=0$. Last

```
DO 100 ICELL = 1, NCELL
    HEAD(ICELL)}=
continue
CELLI = REAL (M)
DO 200 I = 1,N
    ICELL = 1 + INT (( RX(I) + 0.5 ) * CELLI )
        + INT (( RY(I) + 0.5 ) * CELLI ) * M
        + INT ( ( RZ(I) + 0.5) * CELLI ) *M*M
    HIT(I) = HEAD(ICELL)
    HEAD(ICELL) = I
```

200 CONTINUE

Figure 9: Construction of the linked-list array LIST and the head-of-chain array HEAD. Here simulation box is a unit cube $[-0.5,0.5]^{3}$ and cell size is $1 / M$.

- Only $5 N N_{c}$ (or $14 N N_{c}$) pairs in 2D (or 3D) need to be examined.
- Construction of Verlet list using the cell-linked list is possible (now size of the cell is r_{l}).

Force calculation with cell-linked list

```
for (icell=1;icell<=ncell;icell++) // go over all cells
{i=head[icell]; // head of icell
    while (i!=0) // last particle in cell if list[i]=0
    {j=list[i]; // next particle in icell
    while (j!=0) // go over all particles in icell
        {dx=Rx[i]-Rx[j]; // apply PBC
        if (dx*dx+dy*dy<r_c*r_c)
            {...;} // force calculation
        j=list[j]; // next particle in icell
        }
        jcello=4*(icell-1);
        for (nabor=1;nabor<=4;nabor++) // neighbors of icell
        {jcell=map[jcello+nabor]; // index of neighbor cell
        j=head[jcell]; // head of neighbor cell
        while (j!=0) // go over all particles in jcell
            {...; j=list[j];} // force calculation
        }
    i=list[i]; // next particle in icell
    }
}
```


Integration of the equation of motion

What are properties of a good integrator?

- Should be accurate at large time steps.
- Should duplicate the classical trajectory as closely as possible.
- Like Newtons equation of motion, the integrator must be time-reversal invariant, i.e., under time-reversal $t \rightarrow-t$ $(\mathbf{r} \rightarrow \mathbf{r}$ and $\mathbf{p} \rightarrow-\mathbf{p}$) particles follow the forward trajectory in reverse order.
- Long-time energy and momentum conservation.
- The integrator should be symplectic, i.e., should preserve the phase space area as predicted by Liouville's theorem.
- Single force evaluation per time step.

Verlet algorithm

- Verlet integration approximates 2nd order derivative with a 2nd order central difference:

$$
\begin{align*}
\ddot{\mathbf{r}}(t) & \approx \frac{\frac{\mathbf{r}(t+\delta t)-\mathbf{r}(t)}{\delta t}-\frac{\mathbf{r}(t)-\mathbf{r}(t-\delta t)}{\delta t}}{\delta t} \tag{12}\\
& =\frac{\mathbf{r}(t+\delta t)-2 \mathbf{r}(t)+\mathbf{r}(t-\delta t)}{\delta t^{2}}=\frac{\mathbf{f}(t)}{m} \tag{13}
\end{align*}
$$

- Basic Verlet algorithm

$$
\begin{equation*}
\mathbf{r}(t+\delta t)=2 \mathbf{r}(t)-\mathbf{r}(t-\delta t)+\frac{\mathbf{f}(t)}{m} \delta t^{2} \tag{14}
\end{equation*}
$$

- Discretization error via Taylor expansion of the position \mathbf{r} around t

$$
\begin{align*}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}(t) \delta t+\frac{\mathbf{f}(t)}{2 m} \delta t^{2}+\mathcal{O}\left(\delta t^{3}\right) \tag{15}\\
\mathbf{r}(t-\delta t) & =\mathbf{r}(t)-\mathbf{v}(t) \delta t+\frac{\mathbf{f}(t)}{2 m} \delta t^{2}-\mathcal{O}\left(\delta t^{3}\right) \tag{16}
\end{align*}
$$

Verlet algorithm

- Summing these two equations gives

$$
\begin{equation*}
\mathbf{r}(t+\delta t)=2 \mathbf{r}(t)-\mathbf{r}(t-\delta t)+\frac{\mathbf{f}(t)}{m} \delta t^{2}+\mathcal{O}\left(\delta t^{4}\right) \tag{17}
\end{equation*}
$$

- Is time-reversible due to symmetrical roles of $\mathbf{r}(t+\delta t)$ and $\mathbf{r}(t-\delta t)$.
- Local error is of order δt^{4}, because terms of order δt^{3} (jerk or \dddot{r}) cancel out.
- Note that Verlet algorithm does not use \mathbf{v} to compute new positions, however, $\mathbf{v}(t)$ may be obtained via

$$
\begin{equation*}
\mathbf{v}(t)=\frac{\mathbf{r}(t+\delta t)-\mathbf{r}(t-\delta t)}{2 \delta t}+\mathcal{O}\left(\delta t^{2}\right) \tag{18}
\end{equation*}
$$

Leap Frog algorithm

- Write Taylor expansion of the position \mathbf{r} in a different form

$$
\begin{align*}
& \mathbf{r}(t+\delta t)=\mathbf{r}(t)+\left(\mathbf{v}(t)+\frac{\mathbf{f}(t)}{m} \frac{\delta t}{2}\right) \delta t+\mathcal{O}\left(\delta t^{3}\right) \tag{19}\\
& \quad \Rightarrow \mathbf{r}(t+\delta t)=\mathbf{r}(t)+\mathbf{v}(t+\delta t / 2) \delta t+\mathcal{O}\left(\delta t^{3}\right) \tag{20}
\end{align*}
$$

- Taylor expansion of the velocity \mathbf{v} around t

$$
\begin{align*}
& \mathbf{v}(t+\delta t / 2)=\mathbf{v}(t)+\frac{\mathbf{f}(t)}{m} \frac{\delta t}{2}+\mathcal{O}\left(\delta t^{2}\right) \tag{21}\\
& \mathbf{v}(t-\delta t / 2)=\mathbf{v}(t)-\frac{\mathbf{f}(t)}{m} \frac{\delta t}{2}+\mathcal{O}\left(\delta t^{2}\right) \tag{22}
\end{align*}
$$

Subtracting these two equations gives

$$
\begin{equation*}
\mathbf{v}(t+\delta t / 2)=\mathbf{v}(t-\delta t / 2)+\frac{\mathbf{f}(t)}{m} \delta t+\mathcal{O}\left(\delta t^{3}\right) \tag{23}
\end{equation*}
$$

- Note that, velocities are given at mid-step.
- Leap Frog algorithm is also time-reversible.

The great integrator (Velocity Verlet algorithm)

- Velocity Verlet algorithm stores positions, velocities and forces at the same time.

$$
\begin{align*}
\mathbf{r}(t+\delta t) & =\mathbf{r}(t)+\mathbf{v}(t) \delta t+\frac{\mathbf{f}(t)}{2 m} \delta t^{2} \tag{24}\\
\mathbf{v}(t+\delta t) & =\mathbf{v}(t)+\frac{\mathbf{f}(t+\delta t)+\mathbf{f}(t)}{2 m} \delta t \tag{25}
\end{align*}
$$

- Velocity Verlet algorithm involves two stages:
- Calculate $\mathbf{r}(t+\delta t)$ and $\mathbf{v}(t+\delta t / 2)=\mathbf{v}(t)+\frac{\mathbf{f}(t)}{2 m} \delta t$
- Calculate $\mathbf{f}(t+\delta t)$ and $\mathbf{v}(t+\delta t)=\mathbf{v}(t+\delta t / 2)+\frac{\mathbf{f}(t+\delta t)}{2 m} \delta t$.
- Velocity Verlet algorithm is equivalent to the original Verlet algorithm.
- Note that, the Taylor expansion of \mathbf{r} up to δt^{2}, see Eq.(24), is the simple Euler integrator. Although it is similar to Verlet method it is not time-reversible and area preserving and exhibits catastrophic energy drift.

Schema of the Verlet family

(b)

(c)

Figure 10: (a) Verlet method. (b) Leap-frog form. (c) Velocity-Verlet algorithm. Acceleration is denoted as $\mathbf{a}=\mathbf{f} / \mathrm{m}$.

- Absence of long-term energy drift, phase area preservation and time reversibility of the Verlet algorithm can be proofed using discretized version of the Liouville equations.
- Verlet algorithm can be derived from variational principle, as a consequence a Verlet trajectory can still be close to some true trajectory of the system over a time that is longer than the time it takes the Lyapunov instability to develop.

Reduced units

- It is convenient to express quantities in reduced units due to:
- Law of corresponding states, i.e., many combinations of ρ, T, ϵ and σ correspond to the same state in reduced units.
- Avoidance of numerical over- or underflow, i.e., all quantities are of order $\mathcal{O}(1)$.
- For a pair potential of the form $U(r)=\epsilon f(r / \sigma)$ the natural choice of basic units is
- σ as length scale
- ϵ as energy scale
- mass m
- Some quantities in reduced units
- Number density $\rho^{*}=\rho \sigma^{3}$
- Temperature $T^{*}=k_{B} T / \epsilon$
- Time $t^{*}=\sqrt{\epsilon / m \sigma^{2}} t$
- Energy $E^{*}=E / \epsilon$
- Pressure $P^{*}=P \sigma^{3} / \epsilon$
- Alternatively, use $k_{B} T$ as energy scale.

Starting up the simulation

- Initial positions
- Face-centered cubic lattice will melt rapidly.
- Start with an ideal gas and slowly increase the interaction (via σ or ϵ) to the desired value.
- Initial velocities
- Chose randomly velocities form $P\left(v_{x}\right)=\sqrt{\frac{m}{2 \pi k_{B} T}} \exp \left(-\frac{m v_{x}^{2}}{k_{B} T}\right)$ and analogously for v_{y} and v_{z}.
- Alternatively, chose uniformly distributed velocities from [$-v_{\max }, v_{\max }$] (system rapidly relaxes to Maxwell-Boltzmann distribution)
- Ensure that the overall momentum vanishes: $\sum_{i=1}^{N} m_{i} \boldsymbol{v}_{i}=0$
- Adjust velocities to the desired mean kinetic energy.
- In thermal equilibrium: $\left\langle\frac{1}{2} m v^{2}\right\rangle=\frac{3}{2} k_{B} T$ in 3D.
- The instantaneous kinetic temperature is $k_{B} T_{\mathcal{K}}=\sum_{i=1}^{N} \frac{m v_{i}^{2}}{N_{f}}$ with $N_{f}(=3 N-3$ for a system with fixed total momentum) degrees of freedom.
- Rescale velocities $\mathbf{v}_{\text {new }}=\mathbf{v}_{\text {old }} \sqrt{T / T_{\mathcal{K}}}$ in order to enforce the target tempature T.

Typical observables

- Kinetic energy: $\langle\mathcal{K}\rangle=\left\langle\sum_{i=1}^{N} \frac{1}{2} m v_{i}^{2}\right\rangle$
- Potential energy: $\langle\mathcal{U}\rangle=\left\langle\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} U\left(r_{i j}\right)\right\rangle$
- Specific heat $C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}$ via

$$
\begin{aligned}
\left\langle\mathcal{U}^{2}\right\rangle_{N V E}-\langle\mathcal{U}\rangle_{N V E}^{2}=\left\langle\mathcal{K}^{2}\right\rangle_{N V E} & -\langle\mathcal{K}\rangle_{N V E}^{2} \\
& =\frac{3}{2} N k_{B}^{2} T^{2}\left(1-\frac{3 N k_{B}}{2 C_{V}}\right)
\end{aligned}
$$

- Virial pressure: $P=\rho k_{B} T+\frac{1}{3 V}\left\langle\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathbf{r}_{i j} \mathbf{f}_{i j}\right\rangle$

Equation of state $P(\rho)$ of the Lennard-Jones fluid

Figure 11: Equation of state $P(\rho)$ of the Lennard-Jones fluid $P(\rho)$. Left: Isotherm at $T^{*}=2$. Right: Isotherm below the critical temperature $T^{*}=0.9<T_{c}^{*} \approx 1.32$. Filled circles indicate the coexisting vapor and liquid phases. Circles are simulation results ($N=500$).

Structural observable

Pair correlation function for isotropic and translation symmetric systems

$$
g(r)=\frac{V}{N^{2}}\left\langle\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta\left(r-r_{i j}\right)\right\rangle,
$$

is the probability to find a pair of particles at distance r, relative to the probability of an corresponding ideal gas.

Figure 12: $g(r)$ of a Lenard-Jones fluid close to triple point: $T^{*} \approx 1.504$ and $\rho^{*} \approx 0.844$
$\rho g(r) 4 \pi r^{2} d r \equiv$ average number of particles with interparticle distance in $[r, r+d r]$

Time correlation functions and transport coefficients

- Time correlation functions $\langle\delta A(t) \delta B(0)\rangle$ provide information about the dynamics of the system.
- Their integrals are often related to macroscopic transport coefficients.
- Transport coefficients relate a response of a system to a external perturbation.
- For example: a particle drifts with a constant velocity $v_{\text {drift }}=\mu f_{\text {ext }}$ when dragged through a viscous environment by an external force $f_{\text {ext }}$, where μ is called mobility.
- In equilibrium the system is thermally perturbed and the transport coefficients can be obtained:
- via velocity autocorrelation function (VACF):

$$
\begin{equation*}
D=\mu k_{B} T=\frac{1}{d} \int_{0}^{\infty} d t\left\langle\mathbf{v}_{i}(t) \mathbf{v}_{i}(0)\right\rangle, \tag{26}
\end{equation*}
$$

which is called Green-Kubo relation and where D is the diffusion constant.

- or via mean-square displacement (MSD):

$$
\begin{equation*}
2 d D t=\left\langle\left[\mathbf{r}_{i}(t)-\mathbf{r}_{i}(0)\right]^{2}\right\rangle \tag{27}
\end{equation*}
$$

Velocity autocorrelation function

Figure 13: Left: $\operatorname{MSD}\left\langle\left[\mathbf{r}_{i}(t)-\mathbf{r}_{i}(0)\right]^{2}\right\rangle$ as a function of t. Note that for long times $\left\langle\left[\mathbf{r}_{i}(t)-\mathbf{r}_{i}(0)\right]^{2}\right\rangle=2 d D t$. Right: VACF $\langle\mathbf{v}(t) \mathbf{v}(0)\rangle$ as a function of t.

- Short-time behaviour of VACF:

$$
\begin{equation*}
\left\langle\mathbf{v}_{i}(t) \mathbf{v}_{i}(0)\right\rangle \approx\left\langle\mathbf{v}_{i}^{2}\right\rangle-\frac{1}{2}\left\langle\dot{\mathbf{v}}_{i}^{2}\right\rangle t^{2}=\left\langle\mathbf{v}_{i}^{2}\right\rangle\left(1-\frac{1}{2} \omega_{E} t^{2}\right) \tag{28}
\end{equation*}
$$

with Einstein frequency $\omega_{E}=\frac{\left\langle\nabla_{r_{i}}^{2} \mathcal{U}\right\rangle}{3 m}$ of a vibrating particle in the mean force of its neighbors.

Long-time tail of VACF

Figure 14: Velocity field of a 2D fluid surrounding a central particle (a) at short and (b) at long times.

- VACF does not decay exponentially at long times, but rather, algebraically

$$
\begin{equation*}
\left\langle\mathbf{v}_{i}(t) \mathbf{v}_{i}(0)\right\rangle \propto t^{-d / 2} \tag{29}
\end{equation*}
$$

where d is the dimension of the system.

- Simple explanation: a moving particle compresses the liquid in front of it and causes a vortex flow to circulate around it, due to momentum conservation.

Further transport coefficient: shear viscosity

- The viscosity of a fluid η expresses its resistance to shearing flows.
- Newtonian fluid: shear stress $-P_{y x}$ is linearly proportional to the velocity gradient $\frac{\partial v_{x}}{\partial y}$:

$$
\begin{equation*}
\left\langle P_{y x}(t \rightarrow \infty)\right\rangle_{n e}=-\eta \frac{\partial v_{x}}{\partial y} \tag{30}
\end{equation*}
$$

- Shear viscosity from Green-Kubo relation:

$$
\begin{equation*}
\eta=\frac{V}{k_{B} T} \int_{0}^{\infty} d t\left\langle P_{\alpha \beta}(t) P_{\alpha \beta}(0)\right\rangle \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\alpha \beta}=\frac{1}{V}\left(\sum_{i=1}^{N} m v_{i \alpha} v_{i \beta}+\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} r_{i j \alpha} f_{i j \beta}\right) \tag{32}
\end{equation*}
$$

are the off-diagonal elements of the pressure tensor.

Calculation of ACF

Figure 15: Calculation of ACF in asingle sweep. Here $\tau_{\text {cor }}=10$. The data A is correlated with itself to give the ACF. The latest imported data is shaded.

Canonical MD

- In the canonical (or NVT) ensemble the system is in thermal contact with a large heat bath.
- In NVT ensemble states are distributed according to $P\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right) \propto e^{-\beta \mathcal{H}\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)}$ resulting in Maxwell-Boltzmann distribution of momenta $P(\mathbf{p})=\left(\frac{\beta}{2 \pi m}\right)^{3 / 2} e^{-\frac{\beta p^{2}}{2 m}}$
- The relative variance of the kinetic energy per particle is

$$
\begin{equation*}
\frac{\left\langle\left(\frac{\mathcal{K}}{N}\right)^{2}\right\rangle_{N V T}-\left\langle\frac{\mathcal{K}}{N}\right\rangle_{N V T}^{2}}{\left\langle\frac{\mathcal{K}}{N}\right\rangle_{N V T}^{2}}=\frac{2}{3 N} \tag{33}
\end{equation*}
$$

- Thus, the kinetic energy per particle fluctuates in the canonical ensemble of a finite system.
- Note, the definition of the instantaneous kinetic temperature:

$$
\begin{equation*}
k_{B} T_{\mathcal{K}}=\frac{\langle 2 \mathcal{K}\rangle}{N_{f}} \tag{34}
\end{equation*}
$$

where N_{f} is the number of degrees of freedom.

Problematic method: Berendsen thermostat

- At each time step rescale velocities by a factor

$$
\begin{equation*}
\mathbf{v}_{\text {new }}=\mathbf{v}_{\text {old }} \sqrt{1+\frac{\delta t}{\tau}\left(\frac{T}{T_{\mathcal{K}}}-1\right)} \tag{35}
\end{equation*}
$$

where τ is the relaxation time of the thermostat.

- For $\tau=\delta t$ the thermostat keeps $\langle\mathcal{K}\rangle$ constant and $\left\langle\mathcal{K}^{2}\right\rangle=0$, which is not the property of the canonical ensemble.
- Berendsen thermostat is an isokinetic scheme, which does not generate a canonical distritution.
- The equation of motion are not the Newtonian ones:

$$
\begin{equation*}
m \ddot{\mathbf{r}}=\mathbf{f}-\xi m \mathbf{v} \tag{36}
\end{equation*}
$$

with friction coefficient $\xi=\frac{k_{B} T_{\mathcal{K}}-k_{B} T}{2 \tau k_{B} T_{\mathcal{K}}}$.

- Berendsen thermostat dissipate energy uniformly in the system, it is a global thermostat.

Problematic method: Andersen thermostat

- Coupling to the heat bath via stochastic collisions.
- Each particle has a probability $\nu \delta t$ per time step δt of undergoing a bath collision, where ν is the collision frequency.
- A bath collision involves assigning the particle a new velocity taken from the Maxwellian distribution with the desired temperature T.

$$
\mathbf{v}_{\text {new }}=\left\{\begin{array}{lll}
\mathbf{v}_{\text {old }} & \text { if } & \nu \delta t<\zeta^{\prime} \tag{37}\\
\boldsymbol{\eta} & \text { if } & \nu \delta t \geq \zeta^{\prime}
\end{array}\right.
$$

with uniform random number $\zeta^{\prime} \in[0,1]$ and $\boldsymbol{\eta}=\sqrt{\frac{k_{b} T}{m}}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ where ζ_{i} are sampled from normal distribution with zero mean and unit variance.

- High ν leads to a totally stochastic dynamics, at low ν the dynamics is rather deterministic.
- This method satisfies detailed balance and generates canonical distribution.

Problematic method: Andersen thermostat

- Andersen thermostat dissipate energy on a spatially localized scale, it is a local thermostat.
- Momentum is not conserved (dynamics is unphysical).
- Method disturbs the dynamics substantially for high ν.
- Enhanced exponential decay of the VACF with increasing ν.
- Decreasing diffusion with increasing ν.

Figure 16: MSD versus time for various values of the collision frequency ν of the Andersen thermostat.

Less problematic method: Langevin thermostat

- The original Langevin equation describes Brownian motion, i.e., every particle is coupled to viscous background and a stochastic heat bath.
- Langevin equation reads as

$$
\begin{equation*}
m \ddot{\mathbf{r}}_{i}=\mathbf{f}_{i}-\xi m \mathbf{v}_{i}+\sqrt{2 m \xi k_{B} T} \boldsymbol{\eta}_{i} \tag{38}
\end{equation*}
$$

where ξ is the friction constant. The stochastic variable $\boldsymbol{\eta}$ is assumed to be Gaussian white noise with zero mean and

$$
\begin{equation*}
\left\langle\eta_{i \alpha}(t) \eta_{j \beta}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta_{\alpha \beta} \delta\left(t-t^{\prime}\right) \tag{39}
\end{equation*}
$$

where $\alpha, \beta \in\{x, y, z\}$, such that equipartition is fulfilled.

- We assume that the random force is memoryless (or delta-correlated) and independent for different particles.
- The dynamics becomes diffusive in the long-time limit with diffusion constant $D=\frac{k_{B} T}{m \xi}$.

Numerical solution of overdamped Langevin equation

- For negligible inertia the 1D version of Eq.(38) becomes

$$
\begin{equation*}
\dot{x}=\frac{f}{\xi m}+\sqrt{\frac{2 k_{B} T}{\xi m}} \eta=\frac{f}{\xi m}+\sqrt{2 D} \eta \tag{40}
\end{equation*}
$$

- Introducing a Wiener process $\eta(t)=\frac{d W}{d t}$ and using first order discretisation of the derivatives:

$$
\begin{equation*}
x(t+\delta t)=x(t)+\frac{f}{\xi m} \delta t+\sqrt{2 D}[W(t+\delta t)-W(t)] \tag{41}
\end{equation*}
$$

- Increments of the Wiener process $W(t+\delta t)-W(t)$ are normally distributed with mean 0 and variance δt.
- Hence $W(t+\delta t)-W(t)=\sqrt{\delta t} \zeta$, where ζ are a Gaussian random numbers with $\langle\zeta\rangle=0$ and $\left\langle\zeta^{2}\right\rangle=1$.
- First order integrator of the overdamped Langevin equation

$$
\begin{equation*}
x(t+\delta t)=x(t)+\frac{f}{\xi m} \delta t+\sqrt{2 D \delta t} \zeta \tag{42}
\end{equation*}
$$

Numerical solution of Langevin equation

- Define $\sigma=\sqrt{\frac{2 \xi k_{B} T}{m}}$ and $a=\frac{f}{m}$, and integrate Eq.(38) over a time step δt :

$$
\begin{align*}
v(t+\delta t)=v(t)+\int_{t}^{t+\delta t} & {[a(x(s))-\xi v(s)] d s } \\
& +\sigma[W(t+\delta t)-W(t)] \tag{43}
\end{align*}
$$

- Approximate $v(s)$ in $s \in[t, t+\delta t]$ with

$$
v(s)=v(t)+(s-t)[a(x(t))-\xi v(t)]+\sigma[W(s)-W(t)]
$$

and hence

$$
\begin{align*}
\int_{t}^{t+\delta t} v(s) d s=v(t) \delta t & +\frac{\delta t^{2}}{2}[a(x(t))-\xi v(t)] \\
& +\sigma \int_{t}^{t+\delta t}[W(s)-W(t)] d s \tag{44}
\end{align*}
$$

Numerical solution of Langevin equation

- Proceed in the same way with $a(x(s))$ using $\frac{d a(x(t))}{d t}=\dot{r} \frac{\partial a}{\partial x}$, which yields

$$
\begin{equation*}
\int_{t}^{t+\delta t} a(x(s)) d s=\frac{\delta t}{2}[a(x(t+\delta t))+a(x(t))] \tag{45}
\end{equation*}
$$

- The integral of the Wiener increment in Eq.(44), $\int_{t}^{t+\delta t}[W(s)-W(t)] d s$, is a Gaussian variable with

$$
\left\langle\left(\int_{t}^{t+\delta t}[W(s)-W(t)] d s\right)^{2}\right\rangle=\frac{\delta t^{3}}{3}
$$

$\left\langle[W(t+\delta t)-W(t)]\left(\int_{t}^{t+\delta t}[W(s)-W(t)] d s\right)\right\rangle=\frac{\delta t^{2}}{2}$,
using $\left\langle W(s) W\left(s^{\prime}\right)\right\rangle=\min \left(s, s^{\prime}\right)$.

- The last relation means that the stochastic variables $W(t+\delta t)-W(t)$ and $\int_{t}^{t+\delta t}[W(s)-W(t)] d s$ are correlated.

Numerical solution of Langevin equation

- As above, see Eq.(42), $W(t+\delta t)-W(t)$ is Gaussian with mean 0 and variance δt, thus

$$
\begin{align*}
W(t+\delta t)-W(t) & =\sqrt{\delta t} \zeta \tag{46}\\
\int_{t}^{t+\delta t}[W(s)-W(t)] d s & =\delta t^{3 / 2}\left(\frac{\zeta}{2}+\frac{\zeta^{\prime}}{2 \sqrt{3}}\right) \tag{47}
\end{align*}
$$

where ζ and ζ^{\prime} are independent Gaussian variables with mean zero and variance $\left\langle\zeta^{2}\right\rangle=\left\langle\zeta^{\prime 2}\right\rangle=1$ and $\left\langle\zeta \zeta^{\prime}\right\rangle=0$.

- Second order integrator of Langevin equation

$$
\begin{aligned}
x(t+\delta t) & =x(t)+v(t) \delta t+A(t) \\
v(t+\delta t) & =v(t)+[a(x(t+\delta t))+a(x(t))] \frac{\delta t}{2} \\
& -\xi v(t) \delta t+\sigma \sqrt{\delta t} \zeta-\xi A(t) \\
A(t) & =[a(x(t))-\xi v(t)] \frac{\delta t^{2}}{2}+\sigma \delta t^{3 / 2}\left(\frac{\zeta}{2}+\frac{\zeta^{\prime}}{2 \sqrt{3}}\right)
\end{aligned}
$$

Comments on the Langevin thermostat

- Langevin thermostat generates Maxwellian velocity distribution.
- VACF decays exponentially as

$$
\begin{equation*}
\langle\mathbf{v}(t) \mathbf{v}(0)\rangle=\left\langle\mathbf{v}^{2}\right\rangle e^{-\xi t}=\frac{3 k_{B} T}{m} e^{-\xi t} \tag{48}
\end{equation*}
$$

- The equation of motion does not conserve momentum, i.e., center of mass of the overall system diffuses.
- Hydrodynamic correlations are damped on length scales larger then $\sqrt{\frac{\eta}{m \xi \rho}}$, where ρ is the number density and η the shear viscosity of the molecular fluid.
- Langevin thermostat is local.

Up-to-date method: dissipative particle dynamics (DPD)

- DPD is similar to Langevin dynamics, there is also local friction and noise.
- However, in DPD the dissipative and the random force are pairwise and velocity differences of nearby particles are damped.
- DPD thermostat is local, Galilean invariant and conserves linear and angular momentum, which are the basic requirements for recovering the hydrodynamics on large length and time scales.
- The equation of motion is $m \ddot{\mathbf{r}}_{i}=\mathbf{f}_{i}$ with total forces

$$
\begin{equation*}
\mathbf{f}_{i}=\sum_{j(\neq i)}\left[\mathbf{f}^{C}\left(\mathbf{r}_{i j}\right)+\mathbf{f}^{D}\left(\mathbf{r}_{i j}, \mathbf{v}_{i j}\right)+\mathbf{f}^{R}\left(\mathbf{r}_{i j}\right)\right], \tag{49}
\end{equation*}
$$

where $\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}$ and $\mathbf{v}_{i j}=\mathbf{v}_{i}-\mathbf{v}_{j}$.

- $\mathbf{f}^{C}\left(\mathbf{r}_{i j}\right)$ denotes a conservative force, for example, due to Lennard-Jones interaction.

Dissipative particle dynamics

- The dissipative force reads as

$$
\begin{equation*}
\mathbf{f}^{D}\left(\mathbf{r}_{i j}, \mathbf{v}_{i j}\right)=-\xi \omega^{D}\left(r_{i j}\right)\left(\hat{\mathbf{r}}_{i j} \cdot \mathbf{v}_{i j}\right) \hat{\mathbf{r}}_{i j} \tag{50}
\end{equation*}
$$

with friction constant ξ, weight function $\omega^{D}\left(r_{i j}\right)$ and $\hat{\mathbf{r}}_{i j}=\frac{\mathbf{r}_{i j}}{\mid \mathbf{r}_{i j}}$.

- The random force reads as

$$
\begin{equation*}
\mathbf{f}^{R}\left(\mathbf{r}_{i j}\right)=\sigma \omega^{R}\left(r_{i j}\right) \zeta_{i j} \hat{\mathbf{r}}_{i j} \tag{51}
\end{equation*}
$$

with noise strength σ, weight function $\omega^{R}\left(r_{i j}\right)$ and Gaussian white noise $\zeta_{i j}=\zeta_{i j}$ with,

$$
\begin{equation*}
\left\langle\zeta_{i j}\right\rangle=0 \quad \text { and } \quad\left\langle\zeta_{i j}(t) \xi_{k l}\left(t^{\prime}\right)\right\rangle=\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \delta\left(t-t^{\prime}\right) \tag{52}
\end{equation*}
$$

- DPD generates states according to canonical distribution if

$$
\begin{equation*}
\sigma^{2}=2 k_{B} T \xi \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\omega^{R}\left(r_{i j}\right)\right]^{2}=\omega^{D}\left(r_{i j}\right) \tag{54}
\end{equation*}
$$

which is the fluctuation-dissipation theorem for the DPD method.

Dissipative particle dynamics

- One can rewrite DPD into a Langevin-type equations and thus into a Fokker-Planck equation, which describes the time evolution of the probability density function of \mathbf{r}^{N} and \mathbf{v}^{N}.
- The canonical distribution is the solution of the Fokker-Planck equation in the steady-state if both conditions Eq.(53) and Eq.(54) are satisfied.
- A simple choice of the weight functions

$$
\omega^{D}(r)=\omega^{R}(r)= \begin{cases}1 & \text { if } r<r_{c} \tag{55}\\ 0 & \text { else }\end{cases}
$$

with cut-off distance r_{c}, i.e., the thermostat operates only if the interparticle distance is smaller then r_{c}.

Lowe-Andersen thermostat: DPD plus Andersen

- Bath collision between a pair of particles takes place with probability $\nu \delta t$ provided that their distance is smaller then r_{c}.
- A bath collision then takes the form

$$
\begin{align*}
& m_{i} \mathbf{v}_{i}^{\prime}=\left\{\begin{array}{lll}
m_{i} \mathbf{v}_{i} & \text { if } \quad \nu \delta t<\zeta \\
m_{i} \mathbf{v}_{i}+\Delta \mathbf{p}_{i j} & \text { if } \quad \nu \delta t \geq \zeta
\end{array}\right. \tag{56}\\
& m_{j} \mathbf{v}_{j}^{\prime}=\left\{\begin{array}{lll}
m_{j} \mathbf{v}_{j} & \text { if } & \nu \delta t<\zeta \\
m_{j} \mathbf{v}_{j}-\Delta \mathbf{p}_{i j} & \text { if } & \nu \delta t \geq \zeta
\end{array}\right. \tag{57}
\end{align*}
$$

where $\zeta \in[0,1]$ is a uniform random number and

$$
\begin{equation*}
\Delta \mathbf{p}_{i j}=\mu_{i j}\left(\zeta_{i j}-\frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \cdot\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right) \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \tag{58}
\end{equation*}
$$

is the momentum change.

Lowe-Andersen thermostat

- The stochastic variable with a dimension of a velocity is given by

$$
\begin{equation*}
\zeta_{i j}=\sqrt{\frac{k_{B} T}{\mu_{i j}}} \zeta^{\prime} \tag{59}
\end{equation*}
$$

where ζ^{\prime} is sampled from normal distribution with zero mean and unit variance, and $\mu_{i j}=\frac{m_{i} m_{j}}{m_{i}+m_{j}}$ is the reduced mass.

- The procedure is carried out sequentially for each pair.
- Lowe-Andersen thermostat is local, Galilean invariant, and conserves linear and angular momentum.
- Further, it is straightforward to implement, e.g., mix velocity-Verlet integrator with bath collision scheme.

Non-equilibrium MD: shear flow

- Green-Kubo relation allows the estimation of the shear viscosity η in the limit of vanishing velocity gradients $\dot{\gamma}=\frac{\partial v_{x}}{\partial y}$.
- Non-equilibrium simulation method allows to investigate nonlinear regimes of fluids, for example:
- Non-Newtonian character of the fluids at high shear rates, where

$$
\begin{equation*}
\left\langle P_{y x}(t \rightarrow \infty)\right\rangle_{n e}=-\eta(\dot{\gamma}) \dot{\gamma} \tag{60}
\end{equation*}
$$

- Shear banding, where the translational symmetry in y-direction is spontaneously broken as a result of a hydrodynamic instability.
- In order to simulate shear flows without introducion of walls the periodic boundary conditions must be modified.
- Such a modification was proposed by Lees and Edwards.

Non-Newtonian viscosity of suspensions

Figure 17: Representation of relative viscosity η_{r} versus shear rate $\dot{\gamma}$ for a fluid suspension. ϕ denotes the packing fraction.

- For $\dot{\gamma} \rightarrow 0$, the suspension is Newtonian except for the yield stress behavior of very dense suspensions.
- All suspensions generally shear-thin at low to intermediate $\dot{\gamma}$.
- With increasing shear rate, there is a Newtonian plateau and finally a steep shear-thickening region.

Lees-Edwards boundary condition

- Boxes in the top layer (B,C,D) move with velocity $L \dot{\gamma}$ to the right, boxes in the bottom layer ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) move with velocity $L \dot{\gamma}$ to the left.
- A particle that leaves the box in y direction at the top and reenters at the bottom is displaced appropriately both in position and velocity space.

Figure 18: Homogeneous shear boundary conditions.

Lees-Edwards boundary condition

- Displacement of the upper box relative to the cental box:

$$
\begin{aligned}
& \text { STRAIN+=shear_rate*ly*dt; } \\
& \text { STRAIN-=lx*floor(STRAIN/lx); }
\end{aligned}
$$

shear_rate refers to $\dot{\gamma}$.

- Periodic minimum image convention (force calculation):

$$
\begin{aligned}
& d x=R x[i]-R x[j] ; \\
& d y=R y[i]-R y[j] ; \\
& d x==S T R A I N * f l o o r(0.5+d y / l y) ; \\
& d x==l x * f l o o r(0.5+d x / l y) ; \\
& d y-=l y * f l o o r(0.5+d y / l y) ;
\end{aligned}
$$

- Periodic boundary crossing:

$$
\begin{aligned}
& \operatorname{Rx}[i]-=S T R A I N * f l o o r(\operatorname{Ry}[i] / l y) ; \\
& \operatorname{Vx}[i]-=s h e a r _r a t e * l y * f l o o r(\operatorname{Ry}[i] / l y) ; \\
& \operatorname{Rx}[i]-=l x * f l \operatorname{loor}(\operatorname{Rx}[i] / l x) ; \\
& \operatorname{Ry}[i]-=l y * f l o o r(\operatorname{Ry}[i] / l y) ;
\end{aligned}
$$

- Note that a sheared system heats (viscous heating) up and a thermostat is needed.
- Viscous heating is the transfer of coherent motion into non-coherent molecular fluctuations. Neighboring fluid layers move at different velocities relative to each other. This leads to collisions between the particles and to redistribution of kinetic energy.
- We favor profile-unbiased thermostat, which does not perturb the velocity profile.
- A DPD or Lowe-Andersen thermostat is by construction unbiased, because it act on relative velocities.

Hard sphere event-driven MD

- Calculate the time of the next collision $t+t_{i j}$ between a pair of particles with positions \mathbf{r}_{i} and \mathbf{r}_{j} and velocities \mathbf{v}_{i} and \mathbf{v}_{j} at time t.
- The overlap condition is

$$
\begin{equation*}
\left|\mathbf{r}_{i j}\left(t+t_{i j}\right)\right|=\left|\mathbf{r}_{i j}+\mathbf{v}_{i j} t_{i j}\right|=\sigma, \tag{61}
\end{equation*}
$$

where σ is the diameter, $\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}$ and $\mathbf{v}_{i j}=\mathbf{v}_{i}-\mathbf{v}_{j}$.

- If $\mathbf{r}_{i j} \cdot \mathbf{v}_{i j}=b_{i j}>0$ particles are going away from each other.
- For $b_{i j}^{2}-v_{i j}^{2}\left(r_{i j}^{2}-\sigma^{2}\right)>0$ there are to real solutions and the smaller corresponds to impact:

$$
\begin{equation*}
t_{i j}=\frac{-b_{i j}-\sqrt{b_{i j}^{2}-v_{i j}^{2}\left(r_{i j}^{2}-\sigma^{2}\right)}}{v_{i j}^{2}} \tag{62}
\end{equation*}
$$

Hard sphere event-driven MD

- Using linear momentum and kinetic energy energy conservation we obtain the collision dynamics:

$$
\begin{align*}
m_{i} \mathbf{v}_{i}^{\prime} & =m_{i} \mathbf{v}_{i}+\Delta \mathbf{p}_{i j} \tag{63}\\
m_{j} \mathbf{v}_{j}^{\prime} & =m_{j} \mathbf{v}_{j}-\Delta \mathbf{p}_{i j} \tag{64}
\end{align*}
$$

with momentum change

$$
\begin{equation*}
\Delta \mathbf{p}_{i j}=-\mu_{i j}\left(\hat{\mathbf{r}}_{i j} \cdot \mathbf{v}_{i j}\right) \hat{\mathbf{r}}_{i j}=-\frac{\mu_{i j}}{\sigma^{2}}\left(\mathbf{r}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{r}_{i j} \tag{65}
\end{equation*}
$$

where $\mu_{i j}=\frac{m_{i} m_{j}}{m_{i}+m_{j}}$ is the reduced mass and $\hat{\mathbf{r}}_{i j}=\frac{\mathbf{r}_{i j}}{\left|r_{i j}\right|}$ is the unit vector along the line connecting the centers of i and j. At impact $\left|\mathbf{r}_{i j}\right|=\sigma$.

Rough hard sphere

- Rough hard spheres are characterized by a diameter σ, mass m and a moment of inertia I (or $\kappa=4 I / m \sigma^{2}$).
- They have a translational \mathbf{v} and a angular velocity $\boldsymbol{\omega}$.
- Conservation laws are total kinetic energy (rotational plus translational), linear momentum and total angular momentum

$$
\begin{equation*}
\sum_{i} m \mathbf{r}_{i} \times \mathbf{v}_{i}+\sum_{i} I \boldsymbol{\omega}_{i} \tag{66}
\end{equation*}
$$

- The relative velocity at impact point (just before collision) is

$$
\begin{equation*}
\mathbf{V}_{i j}=\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)-\frac{1}{2}\left(\omega_{i}+\omega_{j}\right) \times \mathbf{r}_{i j} \tag{67}
\end{equation*}
$$

- During impact the relative velocity is reversed and the change in relative velocity is

$$
\begin{equation*}
\Delta \mathbf{V}_{i j}=\mathbf{V}_{i j}^{\prime}-\mathbf{V}_{i j}=-2 \mathbf{V}_{i j} \tag{68}
\end{equation*}
$$

Rough hard sphere

- Using conservation laws the change in momentum is

$$
\begin{equation*}
\Delta \mathbf{p}_{i j}=\frac{1}{2} m\left(\Delta \mathbf{V}_{i j}^{\|}+\frac{\kappa}{1+\kappa} \Delta \mathbf{V}_{i j}^{\perp}\right) \tag{69}
\end{equation*}
$$

where $\Delta \mathbf{V}_{i j}^{\|}=\left(\hat{\mathbf{r}}_{i j} \cdot \Delta \mathbf{V}_{i j}\right) \hat{\mathbf{r}}_{i j}$ is the parallel component of the relative velocity change and $\Delta \mathbf{V}_{i j}^{\perp}=\Delta \mathbf{V}_{i j}-\Delta \mathbf{V}_{i j}^{\|}$is the corresponding perpendicular component.

- Collision dynamics:

$$
\begin{align*}
m \mathbf{v}_{i}^{\prime} & =m \mathbf{v}_{i}+\Delta \mathbf{p}_{i j} \tag{70}\\
m \mathbf{v}_{j}^{\prime} & =m \mathbf{v}_{j}-\Delta \mathbf{p}_{i j} \tag{71}\\
I \boldsymbol{\omega}_{i}^{\prime} & =I \boldsymbol{\omega}_{i}-\frac{1}{2} \mathbf{r}_{i j} \times \Delta \mathbf{p}_{i j} \tag{72}\\
I \boldsymbol{\omega}_{j}^{\prime} & =I \boldsymbol{\omega}_{j}-\frac{1}{2} \mathbf{r}_{i j} \times \Delta \mathbf{p}_{i j} \tag{73}
\end{align*}
$$

Note that, the spin angular momentum is not conserved.

Literature

- M. P. Allen, D. J. Tildesley: Computer Simulation of Liquids
- D. Frenkel, B. Smit: Understanding molecular simulation: from algorithms to applications
- D. C. Rapaport: The Art of Molecular Dynamics Simulation
- P. E. Kloeden, E. Platen: Numerical Solution of Stochastic Differential Equations
- E. Vanden-Eijnden, G. Ciccotti: Second-order integrators for Langevin equations with holonomic constraints, Chem. Phys. Lett. 429, 310316 (2006)

