Computational physics

Heiko Rieger and Adam Wysocki

Theoretical Physics
Saarland University
SS2017

Contents

- Ordinary differential equations (ODEs)
- Partial differential equations (PDEs)

Examples of ordinary differential equations (ODEs)

- Newton's law:

$$
\begin{equation*}
m \frac{d^{2} \mathbf{r}}{d t^{2}}=\mathbf{f}(\mathbf{r}(t), t) \tag{1}
\end{equation*}
$$

with mass m, position \mathbf{r}, time t and force \mathbf{f}.

- Predator-prey (or Lotka-Volterra) equations:

$$
\begin{align*}
& \frac{d x}{d t}=\alpha x-\beta x y \tag{2}\\
& \frac{d y}{d t}=\delta x y-\gamma y \tag{3}
\end{align*}
$$

with number of prey x, number of predator y and interaction parameters of the two species $\alpha, \beta, \delta, \gamma$.

- Static beam (or Euler-Bernoulli) equation:

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(E(x) I(x) \frac{d^{2} w}{d x^{2}}\right)=q(x) \tag{4}
\end{equation*}
$$

with deflection of the beam $w(x)$, load $q(x)$, elastic modulus
E and area moment of inertia l.

Reduction of n th-order ODE to 1 st-order ODEs

Explicit ODE of order n

$$
\begin{equation*}
f\left(t, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n-1)}\right)=y^{(n)} \tag{5}
\end{equation*}
$$

can be reduced to a system of n first-order ODEs

$$
\begin{align*}
\mathbf{y}^{\prime} & =\mathbf{f}(t, \mathbf{y})=\mathbf{f}\left(t, y_{1}, \cdots, y_{n}\right) \tag{6}\\
\left(y_{1}^{\prime}, \cdots, y_{n}^{\prime}\right) & =\left(y_{2}, \cdots, y_{n}, f\left(t, y_{1}, \cdots, y_{n}\right)\right) \tag{7}
\end{align*}
$$

defining new functions $y_{i}=y^{(i-1)}$.
Initial value problem: $\mathbf{y}(t=0)=\mathbf{y}_{0}$
Notation: $y^{\prime}=\frac{d y}{d t}, y^{\prime \prime}=\frac{d^{2} y}{d t^{2}}, \ldots$ or $\dot{y}=\frac{d y}{d t}, \ddot{y}=\frac{d^{2} y}{d t^{2}}, \ldots$

Example

Newton's law:

$$
\begin{equation*}
m \frac{d^{2} x(t)}{d t^{2}}=f(x(t), t) \tag{8}
\end{equation*}
$$

Harmonic oscillator:

$$
\begin{equation*}
m x^{\prime \prime}=-k x \Rightarrow x^{\prime \prime}=-\frac{k}{m} x \tag{9}
\end{equation*}
$$

Define new functions: $y_{1}:=x$ and $y_{2}:=x^{\prime}$

$$
\begin{align*}
y_{1}^{\prime} & =x^{\prime}=y_{2} \tag{10}\\
y_{2}^{\prime} & =x^{\prime \prime}=-\frac{k}{m} y_{1} \tag{11}
\end{align*}
$$

Euler method

Grid points t_{i} and $y_{i}=y\left(t_{i}\right)$.

$$
\begin{align*}
& \frac{d y}{d t}\left(t_{i}\right) \approx \frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}} \approx f\left(y_{i}, t_{i}\right) \tag{12}\\
& \Rightarrow y_{i+1} \approx y_{i}+\left(t_{i+1}-t_{i}\right) \cdot f_{i} \tag{13}
\end{align*}
$$

For equidistant spacing $t_{i+1}-t_{i}=\tau \ll 1$:

$$
\begin{equation*}
y_{i+1}=y_{i}+\tau f_{i}+\mathcal{O}\left(\tau^{2}\right) \tag{14}
\end{equation*}
$$

Integrate from t_{0} till $t_{N}=t_{0}+N \tau=t_{0}+T$. Global truncation error is $N \cdot \mathcal{O}\left(\tau^{2}\right) \approx \frac{T}{\tau} \tau^{2}=T \tau$ \Rightarrow Euler method is very inaccurate.

Remark: Euler method is an explicit method: $y_{i+1}=F\left(y_{i}\right)$.

Picard method

Formal solution of $y^{\prime}=f(y, t)$ is $y_{i+j}=y_{i}+\int_{t_{i}}^{t_{i+j}} d t f(y, t)$.
Using trapezoid rule we obtain:

$$
\begin{equation*}
y_{i+1}=y_{i}+\frac{\tau}{2}\left(f_{i}+f_{i+1}\right)+\mathcal{O}\left(\tau^{3}\right) \tag{15}
\end{equation*}
$$

with $f_{i+1}=f\left(y_{i+1}, t_{i+1}\right)$.
Can be solved via fixed point iteration

$$
\begin{equation*}
y_{i+1}^{(k+1)}=y_{i}+\frac{\tau}{2}\left(f_{i}+f_{i+1}^{(k)}\right) \tag{16}
\end{equation*}
$$

until $y_{i+1}^{(k+1)}=y_{i+1}^{(k)}$ using an initial guess $y_{i+1}^{(0)}=y_{1}$ obtained with Euler method. Convergence can be slow.

Remark: The Picard method is an implicit method: $G\left(y_{i}, y_{i+1}\right)=0$. Implicit methods are usually more stable for solving stiff ODEs, e.g.: $y^{\prime}=\lambda y$ with large $|\operatorname{Re}(\lambda)|$.

Predictor corrector methods: Part 1

Use Euler method to predict y_{i+1} :

$$
\begin{equation*}
y_{i+1}^{(\text {predict })}=y_{i}+\tau f_{i}\left(y_{i}, t_{i}\right) \tag{17}
\end{equation*}
$$

and next Picard method to improve y_{i+1} :

$$
\begin{align*}
y_{i+1}^{(\text {correct })} & =y_{i}+\frac{\tau}{2}\left\{f\left(y_{i}, t_{i}\right)+f\left(y_{i+1}^{(\text {predict })}, t_{i+1}\right)\right\} \tag{18}\\
y_{i+1} & =y_{i+1}^{(\text {correct })} \tag{19}
\end{align*}
$$

Predictor corrector methods: Part 2

Increase the number of grid points: $y_{i+2}=y_{i}+\int_{t_{i}}^{t_{i+2}} d t f(y, t)$
Use linear extrapolation: $f_{i+2}=f_{i}+\frac{t_{i+2}-t_{i}}{t_{i+1}-t_{i}}\left(f_{i+1}-f_{i}\right)=2 f_{i+1}-f_{i}$ and trapezoid rule:

$$
\begin{array}{cc}
\Rightarrow & \int_{t_{i}}^{t_{i+2}} d t f(y, t) \approx \frac{2 \tau}{2}\left(2 f_{i+1}-f_{i}+f_{i}\right)=2 \tau f_{i+1} \\
\Rightarrow & y_{i+2}=y_{i}+2 \tau f_{i+1}+\mathcal{O}\left(\tau^{3}\right) \tag{21}
\end{array}
$$

Initial values are y_{0} and y_{1} for $f_{1}=f\left(y_{1}, t_{1}\right)$, use Taylor expansion $y_{1}=y_{0}+\tau f_{0}+\frac{\tau^{2}}{2}\left(\frac{\partial f_{0}}{\partial t}+f_{0} \frac{\partial f_{0}}{\partial y}\right)+\mathcal{O}\left(\tau^{3}\right)$.

Remark: Is an example for a multistep method, i.e., it uses the information from the past. Higher order methods can be obtained with a better quadrature, for example, Simpson's rule.

Derivation of Runge Kutta methods

Taylor series of $y(t+\tau)$ around $y(t)$:

$$
\begin{align*}
& y(t+\tau)= y(t)+\tau y^{\prime}(t)+\frac{\tau^{2}}{2} y^{\prime \prime}(t)+\frac{\tau^{3}}{3!} y^{(3)}(t)+\ldots \tag{22}\\
& y^{\prime}= f(y, t) \tag{23}\\
& y^{\prime \prime}= y^{\prime} f_{y}+f_{t} \tag{24}\\
&= f f_{y}+f_{t} \tag{25}\\
& y^{(3)}=\left(y^{\prime} f_{y}+f_{t}\right) f_{y}+f\left(y^{\prime} f_{y y}+f_{y t}\right)+y^{\prime} f_{t y}+f_{t t} \tag{26}\\
&= f f_{y}^{2}+f_{t} f_{y}+f^{2} f_{y y}+2 f f_{y t}+f_{t t} \tag{27}\\
& \Rightarrow y(t+\tau)=y+\tau f+\frac{\tau^{2}}{2}\left(f_{t}+f f_{y}\right) \tag{28}\\
& \quad+\frac{\tau^{3}}{6}\left(f_{t t}+2 f f_{t y}+f^{2} f_{y y}+f f_{y}^{2}+f_{t} f_{y}\right) \tag{29}\\
& \quad+\mathcal{O}\left(\tau^{4}\right) \tag{30}
\end{align*}
$$

Derivation of Runge Kutta methods

In general a Runge Kutta method of order s can be written as:

$$
\begin{equation*}
y(t+\tau)=y(t)+\tau \sum_{i=1}^{s} b_{i} k_{i}+\mathcal{O}\left(\tau^{s+1}\right) \tag{31}
\end{equation*}
$$

with

$$
\begin{equation*}
k_{i}=f\left(y+\tau \sum_{j=1}^{i-1} a_{i j} k_{j}, t+\tau \sum_{j=1}^{i-1} a_{i j}\right) \tag{32}
\end{equation*}
$$

Comparison with the Taylor series yields an under-determined system of constraints on b_{i} and $a_{i j}$.

Classical Runge Kutta method (RK4)

$$
\begin{equation*}
y(t+\tau)=y(t)+\frac{\tau}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)+\mathcal{O}\left(\tau^{5}\right) \tag{33}
\end{equation*}
$$

with

$$
\begin{align*}
& k_{1}=f(t, y) \tag{34}\\
& k_{2}=f\left(t+\frac{\tau}{2}, y+\frac{\tau}{2} k_{1}\right), \tag{35}\\
& k_{3}=f\left(t+\frac{\tau}{2}, y+\frac{\tau}{2} k_{2}\right), \tag{36}\\
& k_{4}=f\left(t+\tau, y+\tau k_{3}\right) . \tag{37}
\end{align*}
$$

Boundary value problem

Consider, for example, a second-order ODE:

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad y\left(t_{0}\right)=y_{0}, \quad y\left(t_{1}\right)=y_{1} \tag{38}
\end{equation*}
$$

Solution via shooting method:

- Reformulate boundary to initial value problem:

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=a \tag{39}
\end{equation*}
$$

with a unknown variable a.

- Denote the solution of Eq.(39) for fixed a as $y(t ; a)$. If $F(a)=y\left(t_{1} ; a\right)-y_{1}=0 \Rightarrow y(t ; a)$ is a solution of the boundary value problem Eq.(38).
- In practice, integrate Eq.(39) with RK4 for different a and use Newton's method to find $F(a)=0$.
- Newton's method: $a_{n+1}=a_{n}-\frac{F\left(a_{n}\right)}{F^{\prime}\left(a_{n}\right)}$ with forward difference formula $F^{\prime}\left(a_{n}\right)=\frac{F\left(a_{n}+\delta a\right)-F\left(a_{n}\right)}{\delta a}$ where δa is small.
Remark: Method fails near a local extremum $F^{\prime}(a) \approx 0$.

Literature

- Josef Stoer and Roland Bulirsch: Introduction to Numerical Analysis
- William H. Press, Saul Teukolsky, William T. Vetterling und Brian P. Flannery: Numerical Recipes in C. The Art of Scientific Computing

Partial differential equations (PDEs)

Linear PDEs:

- Poisson's equation: $\Delta \phi(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\varepsilon_{0}}$
- Diffusion equation: $\frac{\partial n(\mathbf{r}, t)}{\partial t}-\nabla \cdot(D(\mathbf{r}) \nabla n(\mathbf{r}, t))=S(\mathbf{r}, t)$
- Wave equation: $\frac{1}{c^{2}} \frac{\partial^{2} u(r, t)}{\partial t^{2}}-\Delta u(\mathbf{r}, t)=R(\mathbf{r}, t)$
- Schrödinger equation: $-\frac{\hbar}{2} \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\hat{H} \psi(\mathbf{r}, t)$

Nonlinear PDEs:

- Continuity equation: $\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0$
- Navier Stokes equations: $\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}+\frac{1}{\rho} \nabla p-\eta \Delta \mathbf{v}=0$

Again linear PDEs:

- Navier Stokes equations becomes linear for negligible inertia and large viscosity (swimming of microorganisms). Stokes equations: $\frac{1}{\rho} \nabla p-\eta \Delta \mathbf{v}=0$

Finite differences

Using Taylor series expansion one obtains 1st order forward time difference:

$$
\begin{equation*}
\frac{\partial A\left(\mathbf{r}, t_{k}\right)}{\partial t} \approx \frac{A\left(\mathbf{r}, t_{k+1}\right)-A\left(\mathbf{r}, t_{k}\right)}{\tau} \tag{40}
\end{equation*}
$$

with $\tau=t_{k+1}-t_{k}$, or 1 th order central difference:

$$
\begin{equation*}
\frac{\partial A\left(\mathbf{r}, t_{k}\right)}{\partial t} \approx \frac{A\left(\mathbf{r}, t_{k+1}\right)-A\left(\mathbf{r}, t_{k-1}\right)}{2 \tau} \tag{41}
\end{equation*}
$$

Applying central difference to $\frac{\partial A(\mathbf{r}, t+\tau / 2)}{\partial t}$ and $\frac{\partial A(\mathbf{r}, t-\tau / 2)}{\partial t}$ results in 2nd order central difference:

$$
\begin{equation*}
\frac{\partial^{2} A\left(\mathbf{r}, t_{k}\right)}{\partial t^{2}} \approx \frac{A\left(\mathbf{r}, t_{k+1}\right)-2 A\left(\mathbf{r}, t_{k}\right)+A\left(\mathbf{r}, t_{k-1}\right)}{\tau^{2}} \tag{42}
\end{equation*}
$$

Similar expessions can be obtained for space derivatives: $\frac{\partial A\left(x, t_{k}\right)}{\partial x}$, $\frac{\partial^{2} A\left(x, t_{k}\right)}{\partial x^{2}}, \frac{\partial^{2} A\left(x, t_{k}\right)}{\partial x \partial y}$, etc.

Boundary conditions

PDE plus a boundary condition defines the physical problem.
Ω indicates the solution domain and $\partial \Omega$ the boundary of Ω.

- Dirichlet boundary condition:

$$
\begin{equation*}
\left.A(\mathbf{r})\right|_{r \in \partial \Omega}=g(\mathbf{r}) \tag{43}
\end{equation*}
$$

Examples: fluid velocity vanishes at the boundary, surface is held at a fixed temperature, etc.

- Neumann boundary condition:

$$
\begin{equation*}
\left.\frac{\partial}{\partial \mathbf{n}} A(\mathbf{r})\right|_{r \in \partial \Omega}=h(\mathbf{r}), \tag{44}
\end{equation*}
$$

with normal derivative $\frac{\partial}{\partial \mathbf{n}} A(\mathbf{r})=\nabla A(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r})$.
Examples: prescribed heat flux from a surface, etc.

- Combinations of Dirichlet and Neumann boundary conditions.
- Periodic boundary conditions.

Nonstandard discretization

Different discretization for inhomogeneous grids or non-constant variables, e.g., $\nabla \cdot(D(\mathbf{r}) \nabla n(\mathbf{r}, t))$

- Consider 1D Poisson's equation with permittivity $\varepsilon(x)$:

$$
\begin{equation*}
\frac{d}{d x}\left(\varepsilon(x) \frac{d \phi}{d x}\right)=-\rho \text { for } x \in[0, L] \tag{45}
\end{equation*}
$$

- Approximate $\frac{d \phi}{d x}$ with a central difference at $x_{k+1 / 2}$ and $x_{k-1 / 2}$, followed by a central difference between this points:

$$
\begin{equation*}
\frac{d}{d x}\left(\varepsilon \frac{d \phi}{d x}\right) \approx \frac{\varepsilon_{k+1 / 2}\left(\phi_{k+1}-\phi_{k}\right)-\varepsilon_{k-1 / 2}\left(\phi_{k}-\phi_{k-1}\right)}{h^{2}} \tag{46}
\end{equation*}
$$

- Using interpolation to estimate $\varepsilon_{k+1 / 2}$ and $\varepsilon_{k-1 / 2}$ one obtains a discretized form of Eq.(45):

$$
\begin{equation*}
\left(\varepsilon_{k+1}+\varepsilon_{k}\right) \phi_{k+1}-4 \varepsilon_{k} \phi_{k}+\left(\varepsilon_{k-1}+\varepsilon_{k}\right) \phi_{k-1}=-2 h^{2} \rho_{k} \tag{47}
\end{equation*}
$$

Finite difference method

Discretized linear PDE, $L u(\mathbf{r}, t)=f(\mathbf{r}, t)$, where L is a differential operator, transforms into a system of linear equations $\mathbf{A u}=\mathbf{b}$, which can be solved with methods of numerical linear algebra.

Consider, for example, Eq.(45) with Dirichlet boundary condition $\phi(0)=0$ and $\phi(L)=0$. The discretized version is

$$
\begin{equation*}
\left(\varepsilon_{k-1}+\varepsilon_{k}\right) \phi_{k-1}-4 \varepsilon_{k} \phi_{k}+\left(\varepsilon_{k+1}+\varepsilon_{k}\right) \phi_{k+1}=-2 h^{2} \rho_{k} \tag{48}
\end{equation*}
$$

for $k=1, \ldots, n$ with boundary conditions $\phi_{0}=\phi_{n+1}=0$.
Eq.(48) can be written in a matrix form $\mathbf{A u}=\mathbf{b}$ with, see next slide

Finite difference method

$$
\begin{align*}
& \mathbf{A}=-\left(\begin{array}{cccc}
-4 \varepsilon_{1} & \varepsilon_{2}+\varepsilon_{1} \\
\varepsilon_{1}+\varepsilon_{2} & -4 \varepsilon_{2} & \varepsilon_{3}+\varepsilon_{2} \\
& \ddots & \ddots & \ddots \\
\text { and } \\
& & \varepsilon_{n-2}+\varepsilon_{n-1} & \begin{array}{c}
-4 \varepsilon_{n-1} \\
\varepsilon_{n-1}+\varepsilon_{n}
\end{array} \\
\varepsilon_{n}+\varepsilon_{n-1} \\
-4 \varepsilon_{n}
\end{array}\right) \\
& \mathbf{u}=\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{n-1} \\
\phi_{n}
\end{array}\right)
\end{align*}
$$

The matrix \mathbf{A} is tridiagonal and symmetric positive definite \Rightarrow invertible

Relaxation methods

- Search for a stationary solution $\left(\frac{\partial n(r)}{\partial t}=0\right)$ of the diffusion equation: $-\frac{d}{d x}\left(D(x) \frac{d n(x)}{d x}\right)=S(x)$.
- Discretized form

$$
\begin{equation*}
n_{i}=\frac{D_{i+1 / 2} n_{i+1}+D_{i-1 / 2} n_{i-1}+h^{2} S_{i}}{D_{i+1 / 2}+D_{i-1 / 2}} \tag{51}
\end{equation*}
$$

- Make an initial guess $n_{i}^{(0)}(i=0, \ldots, n+1)$ which fulfills the boundary conditions.
- Calculate $n_{i}=\frac{D_{i+1 / 2} n_{i+1}^{(0)}+D_{i-1 / 2} n_{i-1}^{(0)}+h^{2} S_{1}}{D_{i+1 / 2}+D_{i-1 / 2}}$.
- Mix the solution n_{i} with the guess $n_{i}^{(k)}$ according to $n_{i}^{(k+1)}=(1-p) n_{i}^{(k)}+p n_{i}$ and iterate till convergence. Mixing parameter $p \in[0,2]$ controls convergence.
- Check if boundary conditions are fulfilled.

Initial value problems

Higer order PDEs can be reduced to a system of first-order PDEs.
Example: Wave equation $\frac{1}{c^{2}} \frac{\partial^{2} u(\mathbf{r}, t)}{\partial t^{2}}-\Delta u(\mathbf{r}, t)=R(\mathbf{r}, t)$:

$$
\begin{align*}
\frac{\partial u(\mathbf{r}, t)}{\partial t} & =v(\mathbf{r}, t) \tag{52}\\
\frac{1}{c^{2}} \frac{\partial v(\mathbf{r}, t)}{\partial t} & =\Delta u(\mathbf{r}, t)+R(\mathbf{r}, t) \tag{53}
\end{align*}
$$

Has now a structure of a diffusion equation:

$$
\begin{equation*}
\frac{\partial n(\mathbf{r}, t)}{\partial t}=D \Delta n(\mathbf{r}, t)+S(\mathbf{r}, t) \tag{54}
\end{equation*}
$$

Explicit method: Forward-Time Central-Space

Discretized form of the diffusion equation in 1D using a forward difference at time t_{k} and a second-order central difference at position x_{i} is

$$
\begin{equation*}
\frac{n_{i}^{k+1}-n_{i}^{k}}{\tau}=D \frac{n_{i+1}^{k}-2 n_{i}^{k}+n_{i-1}^{k}}{h^{2}}+S_{i}^{k} \tag{55}
\end{equation*}
$$

with $n\left(x_{i}, t_{k}\right)=n_{i}^{k}$.
Truncation error is $\mathcal{O}\left(h^{2}\right)+\mathcal{O}(\tau)$.
Caution: Method is numerically stable and convergent whenever $\frac{D \tau}{h^{2}}<\frac{1}{2}$ or $\tau<\frac{h^{2}}{2 D}$ (Courant-Friedrichs-Lewy condition), i.e., the maximum allowed τ is the diffusion time across a cell of width h.

Implicit method: Crank-Nicolson method

Combine the forward time difference at position x_{i} and the average of the central space difference at time t_{k} and t_{k+1}.

$$
\begin{align*}
\frac{n_{i}^{k+1}-n_{i}^{k}}{\tau}= & \frac{D}{2 h^{2}}\left[\left(n_{i+1}^{k+1}-2 n_{i}^{k+1}+n_{i-1}^{k+1}\right)\right. \\
& \left.+\left(n_{i+1}^{k}-2 n_{i}^{k}+n_{i-1}^{k}\right)\right]+\frac{1}{2}\left(S_{i}^{k+1}+S_{i}^{k}\right) \tag{56}
\end{align*}
$$

or

$$
\begin{align*}
& -r n_{i-1}^{k+1}+(1+2 r) n_{i}^{k+1}-r n_{i+1}^{k+1}= \\
& \quad r n_{i-1}^{k}+(1-2 r) n_{i}^{k}+r n_{i+1}^{k}+\frac{\tau}{2}\left(S_{i}^{k+1}+S_{i}^{k}\right)=d_{i}^{k} \tag{57}
\end{align*}
$$

with $r=\frac{D \tau}{2 h^{2}}$

Crank-Nicolson method: matrix form

For example with Dirichlet boundary condition $n_{0}^{k}=n_{n+1}^{k}=0$

$$
\left(\begin{array}{ccccc}
1+2 r & -r & & & \tag{58}\\
-r & 1+2 r & -r & & \\
& \ddots & \ddots & \ddots & \\
& & -r & 1+2 r & -r \\
& & & -r & 1+2 r
\end{array}\right)\left(\begin{array}{c}
n_{1}^{k+1} \\
n_{2}^{k+1} \\
\vdots \\
n_{n-1}^{k+1} \\
n_{n}^{k+1}
\end{array}\right)=\left(\begin{array}{c}
d_{1}^{k} \\
d_{2}^{k} \\
\vdots \\
d_{n-1}^{k} \\
d_{n}^{k}
\end{array}\right)
$$

The scheme is always numerically stable and convergent.
Truncation error is $\mathcal{O}\left(h^{2}\right)+\mathcal{O}\left(\tau^{2}\right)$.
The algebraic problem is tridiagonal and may be efficiently solved with the tridiagonal matrix algorithm.

Lax-Friedrichs method

Method for the solution of hyperbolic PDEs, e.g., wave equation.
Consider, for example, the advective equation $\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0$.
Simple Forward Time Centered Space scheme

$$
\begin{equation*}
\frac{u_{i}^{k+1}-u_{i}^{k}}{\tau}+a \frac{u_{i+1}^{k}-u_{i-1}^{k}}{2 h}=0 \tag{59}
\end{equation*}
$$

is unconditionally unstable.
Substitution of u_{i}^{k} by $\frac{1}{2}\left(u_{i+1}^{k}+u_{i-1}^{k}\right)$ leads to Lax-Friedrichs method

$$
\begin{equation*}
\frac{u_{i}^{k+1}-\frac{1}{2}\left(u_{i+1}^{k}+u_{i-1}^{k}\right)}{\tau}+a \frac{u_{i+1}^{k}-u_{i-1}^{k}}{2 h},=0 \tag{60}
\end{equation*}
$$

which is stable for $\frac{|a| \tau}{h}<1$ (Courant condition).
Back from discrete to continuous: $\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=\frac{h^{2}}{2 \tau} \frac{\partial^{2} u}{\partial x^{2}}$
\Rightarrow Lax scheme has a numerical dissipation or viscosity, i.e., short wavelengths are damped out.

Literature

- William F. Ames: Numerical methods for partial differential equations
- James William Thomas: Numerical partial differential equations: finite difference methods
- William H. Press, Saul Teukolsky, William T. Vetterling und Brian P. Flannery: Numerical Recipes in C. The Art of Scientific Computing

