
Computational physics

Heiko Rieger and Adam Wysocki

Theoretical Physics
Saarland University

SS2017

Contents

I Ordinary differential equations (ODEs)

I Partial differential equations (PDEs)

Examples of ordinary differential equations (ODEs)
I Newton’s law:

m
d2r

dt2
= f(r(t), t) (1)

with mass m, position r, time t and force f.
I Predator-prey (or Lotka-Volterra) equations:

dx

dt
= αx − βxy (2)

dy

dt
= δxy − γy (3)

with number of prey x , number of predator y and interaction
parameters of the two species α, β, δ, γ.

I Static beam (or Euler-Bernoulli) equation:

d2

dx2

(
E (x)I (x)

d2w

dx2

)
= q(x) (4)

with deflection of the beam w(x), load q(x), elastic modulus
E and area moment of inertia I .

Reduction of nth-order ODE to 1st-order ODEs

Explicit ODE of order n

f
(

t, y , y ′, y ′′, · · · , y (n−1)
)

= y (n) (5)

can be reduced to a system of n first-order ODEs

y′ = f(t, y) = f(t, y1, · · · , yn) (6)

(y ′1, · · · , y ′n) = (y2, · · · , yn, f (t, y1, · · · , yn)) (7)

defining new functions yi = y (i−1).

Initial value problem: y(t = 0) = y0

Notation: y ′ = dy
dt , y ′′ = d2y

dt2 , . . . or ẏ = dy
dt , ÿ = d2y

dt2 , . . .

Example

Newton’s law:

m
d2x(t)

dt2
= f (x(t), t) (8)

Harmonic oscillator:

mx ′′ = −kx ⇒ x ′′ = − k

m
x (9)

Define new functions: y1 := x and y2 := x ′

y ′1 = x ′ = y2 (10)

y ′2 = x ′′ = − k

m
y1 (11)

Euler method

Grid points ti and yi = y (ti).

dy

dt
(ti) ≈

yi+1 − yi
ti+1 − ti

≈ f (yi , ti) (12)

⇒ yi+1 ≈ yi + (ti+1 − ti) · fi (13)

For equidistant spacing ti+1 − ti = τ � 1:

yi+1 = yi + τ fi +O
(
τ2
)

(14)

Integrate from t0 till tN = t0 + Nτ = t0 + T .
Global truncation error is N · O

(
τ2
)
≈ T

τ τ
2 = T τ

⇒ Euler method is very inaccurate.

Remark: Euler method is an explicit method: yi+1 = F (yi).

Picard method

Formal solution of y ′ = f (y , t) is yi+j = yi +
∫ ti+j

ti
dt f (y , t).

Using trapezoid rule we obtain:

yi+1 = yi +
τ

2
(fi + fi+1) +O

(
τ3
)

(15)

with fi+1 = f (yi+1, ti+1).
Can be solved via fixed point iteration

y
(k+1)
i+1 = yi +

τ

2

(
fi + f

(k)
i+1

)
(16)

until y
(k+1)
i+1 = y

(k)
i+1 using an initial guess y

(0)
i+1 = y1 obtained with

Euler method. Convergence can be slow.

Remark: The Picard method is an implicit method:
G (yi , yi+1) = 0. Implicit methods are usually more stable for
solving stiff ODEs, e.g.: y ′ = λy with large |Re(λ)|.

Predictor corrector methods: Part 1

Use Euler method to predict yi+1:

y
(predict)
i+1 = yi + τ fi (yi , ti) (17)

and next Picard method to improve yi+1:

y
(correct)
i+1 = yi +

τ

2

{
f (yi , ti) + f

(
y

(predict)
i+1 , ti+1

)}
(18)

yi+1 = y
(correct)
i+1 (19)

Predictor corrector methods: Part 2

Increase the number of grid points: yi+2 = yi +
∫ ti+2

ti
dt f (y , t)

Use linear extrapolation: fi+2 = fi + ti+2−ti
ti+1−ti (fi+1 − fi) = 2fi+1 − fi

and trapezoid rule:

⇒
∫ ti+2

ti
dt f (y , t) ≈ 2τ

2 (2fi+1 − fi + fi) = 2τ fi+1 (20)

⇒ yi+2 = yi + 2τ fi+1 +O
(
τ3
)

(21)

Initial values are y0 and y1 for f1 = f (y1, t1), use Taylor expansion

y1 = y0 + τ f0 + τ2

2

(
∂f0
∂t + f0

∂f0
∂y

)
+O

(
τ3
)
.

Remark: Is an example for a multistep method, i.e., it uses the
information from the past. Higher order methods can be obtained
with a better quadrature, for example, Simpson’s rule.

Derivation of Runge Kutta methods
Taylor series of y (t + τ) around y (t):

y (t + τ) = y (t) + τy ′ (t) +
τ2

2
y ′′ (t) +

τ3

3!
y (3) (t) + . . . (22)

y ′ = f (y , t) (23)

y ′′ = y ′fy + ft (24)

= ffy + ft (25)

y (3) =
(
y ′fy + ft

)
fy + f

(
y ′fyy + fyt

)
+ y ′fty + ftt (26)

= ff 2
y + ft fy + f 2fyy + 2ffyt + ftt (27)

⇒ y (t + τ) = y + τ f +
τ2

2
(ft + ffy) (28)

+
τ3

6

(
ftt + 2ffty + f 2fyy + ff 2

y + ft fy
)

(29)

+ O
(
τ4
)

(30)

Derivation of Runge Kutta methods

In general a Runge Kutta method of order s can be written as:

y (t + τ) = y (t) + τ

s∑
i=1

biki +O(τ s+1) (31)

with

ki = f

y + τ

i−1∑
j=1

aijkj , t + τ

i−1∑
j=1

aij

 (32)

Comparison with the Taylor series yields an under-determined
system of constraints on bi and aij .

Classical Runge Kutta method (RK4)

y(t + τ) = y(t) +
τ

6
(k1 + 2k2 + 2k3 + k4) +O(τ5) (33)

with

k1 = f (t, y), (34)

k2 = f (t +
τ

2
, y +

τ

2
k1), (35)

k3 = f (t +
τ

2
, y +

τ

2
k2), (36)

k4 = f (t + τ, y + τk3). (37)

Boundary value problem
Consider, for example, a second-order ODE:

y ′′ = f (t, y , y ′), y(t0) = y0, y(t1) = y1 (38)

Solution via shooting method:

I Reformulate boundary to initial value problem:

y ′′ = f (t, y , y ′), y(t0) = y0, y ′(t0) = a (39)

with a unknown variable a.

I Denote the solution of Eq.(39) for fixed a as y(t; a). If
F (a) = y(t1; a)− y1 = 0 ⇒ y(t; a) is a solution of the
boundary value problem Eq.(38).

I In practice, integrate Eq.(39) with RK4 for different a and use
Newton’s method to find F (a) = 0.

I Newton’s method: an+1 = an − F (an)
F ′(an) with forward difference

formula F ′(an) = F (an+δa)−F (an)
δa where δa is small.

Remark: Method fails near a local extremum F ′(a) ≈ 0.

Literature

I Josef Stoer and Roland Bulirsch: Introduction to Numerical
Analysis

I William H. Press, Saul Teukolsky, William T. Vetterling und
Brian P. Flannery: Numerical Recipes in C. The Art of
Scientific Computing

Partial differential equations (PDEs)

Linear PDEs:

I Poisson’s equation: ∆φ (r) = −ρ(r)
ε0

I Diffusion equation: ∂n(r,t)
∂t −∇ · (D (r)∇n (r, t)) = S (r, t)

I Wave equation: 1
c2
∂2u(r,t)
∂t2 −∆u (r, t) = R (r, t)

I Schrödinger equation: −~
ı
∂ψ(r,t)
∂t = Ĥψ (r, t)

Nonlinear PDEs:

I Continuity equation: ∂ρ
∂t +∇ · (ρv) = 0

I Navier Stokes equations: ∂v
∂t + v · ∇v + 1

ρ∇p − η∆v = 0

Again linear PDEs:

I Navier Stokes equations becomes linear for negligible inertia
and large viscosity (swimming of microorganisms).
Stokes equations: 1

ρ∇p − η∆v = 0

Finite differences

Using Taylor series expansion one obtains 1st order forward time
difference:

∂A (r, tk)

∂t
≈ A (r, tk+1)− A (r, tk)

τ
, (40)

with τ = tk+1 − tk , or 1th order central difference:

∂A (r, tk)

∂t
≈ A (r, tk+1)− A (r, tk−1)

2τ
(41)

Applying central difference to ∂A(r,t+τ/2)
∂t and ∂A(r,t−τ/2)

∂t results in
2nd order central difference:

∂2A (r, tk)

∂t2
≈ A (r, tk+1)− 2A (r, tk) + A (r, tk−1)

τ2
. (42)

Similar expessions can be obtained for space derivatives: ∂A(x ,tk)
∂x ,

∂2A(x ,tk)
∂x2 , ∂2A(x ,tk)

∂x∂y , etc.

Boundary conditions
PDE plus a boundary condition defines the physical problem.

Ω indicates the solution domain and ∂Ω the boundary of Ω.

I Dirichlet boundary condition:

A (r) |r∈∂Ω = g (r) (43)

Examples: fluid velocity vanishes at the boundary, surface is
held at a fixed temperature, etc.

I Neumann boundary condition:

∂

∂n
A (r) |r∈∂Ω = h (r) , (44)

with normal derivative ∂
∂nA(r) = ∇A(r) · n(r).

Examples: prescribed heat flux from a surface, etc.

I Combinations of Dirichlet and Neumann boundary conditions.

I Periodic boundary conditions.

Nonstandard discretization
Different discretization for inhomogeneous grids or non-constant
variables, e.g., ∇ · (D (r)∇n (r, t))

I Consider 1D Poisson’s equation with permittivity ε (x):

d

dx

(
ε (x)

dφ

dx

)
= −ρ for x ∈ [0, L] (45)

I Approximate dφ
dx with a central difference at xk+1/2 and

xk−1/2, followed by a central difference between this points:

d

dx

(
ε

dφ

dx

)
≈
εk+1/2(φk+1 − φk)− εk−1/2(φk − φk−1)

h2

(46)

I Using interpolation to estimate εk+1/2 and εk−1/2 one obtains
a discretized form of Eq.(45):

(εk+1 + εk)φk+1 − 4εkφk + (εk−1 + εk)φk−1 = −2h2ρk (47)

Finite difference method

Discretized linear PDE, Lu (r, t) = f (r, t), where L is a differential
operator, transforms into a system of linear equations Au = b,
which can be solved with methods of numerical linear algebra.

Consider, for example, Eq.(45) with Dirichlet boundary condition
φ(0) = 0 and φ(L) = 0. The discretized version is

(εk−1 + εk)φk−1 − 4εkφk + (εk+1 + εk)φk+1 = −2h2ρk , (48)

for k = 1, . . . , n with boundary conditions φ0 = φn+1 = 0.
Eq.(48) can be written in a matrix form Au = b with, see next slide

Finite difference method

A = −


−4ε1 ε2 + ε1

ε1 + ε2 −4ε2 ε3 + ε2

. . .
. . .

. . .

εn−2 + εn−1 −4εn−1 εn + εn−1

εn−1 + εn −4εn


(49)

and

u =


φ1

φ2
...

φn−1

φn

 and b = 2h2


ρ1

ρ2
...

ρn−1

ρn

 (50)

The matrix A is tridiagonal and symmetric positive definite ⇒
invertible

Relaxation methods

I Search for a stationary solution (∂n(r)
∂t = 0) of the diffusion

equation: − d
dx

(
D (x) dn(x)

dx

)
= S (x).

I Discretized form

ni =
Di+1/2ni+1 + Di−1/2ni−1 + h2Si

Di+1/2 + Di−1/2
(51)

I Make an initial guess n
(0)
i (i = 0, . . . , n + 1) which fulfills the

boundary conditions.

I Calculate ni =
Di+1/2n

(0)
i+1+Di−1/2n

(0)
i−1+h2S1

Di+1/2+Di−1/2
.

I Mix the solution ni with the guess n
(k)
i according to

n
(k+1)
i = (1− p) n

(k)
i + pni and iterate till convergence.

Mixing parameter p ∈ [0, 2] controls convergence.

I Check if boundary conditions are fulfilled.

Initial value problems

Higer order PDEs can be reduced to a system of first-order PDEs.

Example: Wave equation 1
c2
∂2u(r,t)
∂t2 −∆u (r, t) = R (r, t):

∂u (r, t)

∂t
= v (r, t) (52)

1

c2

∂v (r, t)

∂t
= ∆u (r, t) + R (r, t) (53)

Has now a structure of a diffusion equation:

∂n (r, t)

∂t
= D∆n (r, t) + S (r, t) (54)

Explicit method: Forward-Time Central-Space

Discretized form of the diffusion equation in 1D using a forward
difference at time tk and a second-order central difference at
position xi is

nk+1
i − nk

i

τ
= D

nk
i+1 − 2nk

i + nk
i−1

h2
+ Sk

i (55)

with n(xi , tk) = nk
i .

Truncation error is O
(
h2
)

+O (τ).
Caution: Method is numerically stable and convergent whenever
Dτ
h2 < 1

2 or τ < h2

2D (Courant–Friedrichs–Lewy condition), i.e., the
maximum allowed τ is the diffusion time across a cell of width h.

Implicit method: Crank–Nicolson method

Combine the forward time difference at position xi and the average
of the central space difference at time tk and tk+1.

nk+1
i − nk

i

τ
=

D

2h2

[(
nk+1
i+1 − 2nk+1

i + nk+1
i−1

)
+
(

nk
i+1 − 2nk

i + nk
i−1

)]
+

1

2

(
Sk+1
i + Sk

i

)
(56)

or

− rnk+1
i−1 + (1 + 2r)nk+1

i − rnk+1
i+1 =

rnk
i−1 + (1− 2r)nk

i + rnk
i+1 +

τ

2

(
Sk+1
i + Sk

i

)
= dk

i (57)

with r = Dτ
2h2

Crank–Nicolson method: matrix form

For example with Dirichlet boundary condition nk
0 = nk

n+1 = 0
1 + 2r −r
−r 1 + 2r −r

. . .
. . .

. . .

−r 1 + 2r −r
−r 1 + 2r




nk+1

1

nk+1
2
...

nk+1
n−1

nk+1
n

 =


dk

1

dk
2
...

dk
n−1

dk
n


(58)

The scheme is always numerically stable and convergent.
Truncation error is O

(
h2
)

+O
(
τ2
)
.

The algebraic problem is tridiagonal and may be efficiently solved
with the tridiagonal matrix algorithm.

Lax–Friedrichs method

Method for the solution of hyperbolic PDEs, e.g., wave equation.
Consider, for example, the advective equation ∂u

∂t + a∂u∂x = 0.
Simple Forward Time Centered Space scheme

uk+1
i − uk

i

τ
+ a

uk
i+1 − uk

i−1

2h
= 0 (59)

is unconditionally unstable.
Substitution of uk

i by 1
2 (uk

i+1 + uk
i−1) leads to Lax–Friedrichs

method

uk+1
i − 1

2 (uk
i+1 + uk

i−1)

τ
+ a

uk
i+1 − uk

i−1

2h
,= 0 (60)

which is stable for |a|τh < 1 (Courant condition).

Back from discrete to continuous: ∂u
∂t + a∂u∂x = h2

2τ
∂2u
∂x2

⇒ Lax scheme has a numerical dissipation or viscosity, i.e., short
wavelengths are damped out.

Literature

I William F. Ames: Numerical methods for partial differential
equations

I James William Thomas: Numerical partial differential
equations: finite difference methods

I William H. Press, Saul Teukolsky, William T. Vetterling und
Brian P. Flannery: Numerical Recipes in C. The Art of
Scientific Computing

