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Introduction
I When quantum effects become important?
I Near absolute zero temperature, where quantum fluctuations,

arising from Heisenberg’s uncertainty principle, dominate the
systems behavior, i.e., if

~ω > kBT , (1)

where ω is the characteristic frequency of quantum
oscillations, ~ is the Plank constant and kBT is the thermal
energy.

I When the interparticle distance (N particles in volume V ) is
less than the thermal de Broglie wavelength, i.e.,(

V

N

)1/3

≤ λth =
~√

2πmkBT
(2)

in the case of a nonrelativistic free particles with mass m. In
this case the gas will obey Bose-Einstein statistics or
Fermi-Dirac statistics, whichever is appropriate.



Introduction

I Connection between statistical mechanics and quantum
mechanics.

I Boltzmann weight: ρ = exp (−βH)

I Formal solution of the Schrödinger equation
i~ ∂
∂t |ψ(t)〉 = Ĥ |ψ(t)〉 is time evolution operator, or

propagator, Û(t) = exp
(
−iĤt
~

)
.

I Isomorphism:

ρ ↔ Û

β ↔ it

~
(3)



Introduction
I In quantum statistical mechanics the the partition function is

Z = Tr
[
e−βĤ

]
(4)

with inverse temperature β = 1/kBT .
I Trace can be computed using a complete orthonormal set of

basis states {|χi 〉} such that

〈χi |χj〉 = δij and
∑

i

|χi 〉 〈χi | = 1̂ (5)

and partition function becomes

Z =
∑

i

〈
χi

∣∣∣ e−βĤ ∣∣∣χi

〉
(6)

I If |χi 〉 is are also the eigenstates of Ĥ, i.e., Ĥ |χi 〉 = Ei |χi 〉, it
follows that

Z =
∑

i

e−βEi (7)



Introduction

I The thermal expectation value of an observable X is

〈X 〉 =
1

Z
Tr
[
X̂ e−βĤ

]
(8)

I If {|χi 〉} are orthonormal eigenstates of Ĥ

〈X 〉 =
1

Z
∑

i

〈
χi

∣∣∣ X̂ ∣∣∣χi

〉
e−βEi , (9)

which is reminiscent of an classical expectation value.

I If the eigenenergies and eigenstates of Ĥ are known the
problem of sampling the partition function Z is identical to
the classical problem.

I In most cases, Ĥ is not explicitly diagonalizable and the
challenge is to construct a numerical method to calculate
e−βĤ.



Trotter-Suzuki approximation
I If Ĥ is not explicitly diagonalizable it is yet often possible to

break Ĥ in to a sum of two trivaly diagonalizable pieces, for

example, kinetic p̂2

2m and potential energy V (x̂).
I Trotter-Suzuki method is based on this assumption and uses

the following identity

eλ(A+B) = lim
m→∞

(
eλ

A
m eλ

B
m

)m
, (10)

where A and B are operators.
I Eq.(10) can be verified using Taylor expansion:

eλ
(A+B)

m = 1 +
λ

m
(A + B) +

1

2

λ2

m2

(
A2 + AB + BA + B2

)
+O

(
λ3

m3

)
and

eλ
A
m eλ

B
m = 1+

λ

m
(A + B)+

1

2

λ2

m2

(
A2 + 2AB + B2

)
+O

(
λ3

m3

)
.



Trotter-Suzuki approximation
I Both expressions match up to terms of order O

(
λ2

m2 ‖[A,B]‖
)

and for large m

eλ(A+B) ≈
(
eλ

A
m eλ

B
m

)m
(11)

I More precisely,∥∥∥eλ(A+B) −
(
eλ

A
m eλ

B
m

)m∥∥∥ ≤ λ2

2m
‖[A,B]‖ exp [|λ| (‖A‖+ ‖B‖)]

(12)
and for commuting A and B, i.e., [A,B] = 0, Eq.(11)
becomes exact.

I More generally holds∥∥∥∥∥exp

[
λ

p∑
i=1

Ai

]
−

(
p∏

i=1

eλ
Ai
m

)m∥∥∥∥∥
≤ λ2

2m

∑
i>j

‖[Ai ,Aj ]‖

 exp

[
|λ|

p∑
i=1

‖Ai‖

]
. (13)



Trotter-Suzuki approximation
I Any additive decomposition of the H can be used as a

candidate for the Trotter-Suzuki method
I Consider a mth approximation of the partition function

Zm = Tr
[(

e−β
A
m e−β

B
m

)m]
such that Z = lim

m→∞
Zm (14)

I Using the definition ∆τ = β/m the mth approximation of Zm

can be written as

Zm = Tr
[(

e−∆τAe−∆τB
)m]

= Tr

[
e−∆τAe−∆τB︸ ︷︷ ︸

1

· . . . · e−∆τAe−∆τB︸ ︷︷ ︸
m

]
=

∑
χ

〈χ| e−∆τAe−∆τB︸ ︷︷ ︸
1

· . . . · e−∆τAe−∆τB︸ ︷︷ ︸
m

|χ〉 ,

where the sum runs over an d-dimensional orthonormal basis
set of the Hibert space (the dimension of e−βĤ is the number
of energy eigenstates of the system).



Trotter-Suzuki approximation

I We insert 2m − 1 unity operators

Zm =
∑
χ(1)

〈χ(1)|e−∆τA

∑
χ(2)

|χ(2)〉 〈χ(2)|

 e−∆τB · . . . |χ(1)〉

=
∑
{χ(i)}

〈χ(1)|e−∆τA|χ(2)〉 〈χ(2)|e−∆τB |χ(3)〉 · . . .

. . . · 〈χ(2m)|e−∆τB |χ(1)〉 ,

where
∑
{χ(i)} . . . =

∑
{χ(1),...,χ(2m)} . . . is a sum over 2m

different d-dimensional states.

I Formally, the above procedure can be considered as an
expansion of the system by an extra dimension (τ -direction),
which is called Trotter dimension.



Trotter-Suzuki approximation
I From the path-integral representation, it follows that the
τ -direction is actually an imaginary-time direction. The trace
contains the required periodicity.

I The expectation value is given by

〈X 〉 =
1

Z
∑
χ

〈
χ
∣∣∣ X̂ e−βĤ

∣∣∣χ〉 (15)

and if X̂ is diagonal in the basis {|χ〉}, i.e.,
〈χ|X̂ |χ′〉 = X (χ)δ(χ, χ′), then

〈X 〉 =
∑
{χ(i)}

X (χ(1))P(χ(1), . . . , χ(2m)) (16)

with weights

P(χ(1), . . . , χ(2m)) =
1

Zm
〈χ(1)|e−∆τA|χ(2)〉

· 〈χ(2)|e−∆τB |χ(3)〉 · . . . · 〈χ(2m)|e−∆τB |χ(1)〉 (17)



Trotter-Suzuki approximation

I In numerical simulations we do not calculate the exact sum
over all configurations, rather we sum over states, which we
generate according to the distribution P({χ(i)}).

I This method correspond to classical Monte-Carlo simulation,
if P({χ(i)}) is nonnegative. Note that, only in the diagonal

representation the matrix corresponding to e−βĤ is
nonnegative.



Example: single quantum spin in external fields

I In the following we exemplify the path integral formulation of
quantum models.

I We consider a single spin 1
2 particle exposed to a longitudinal

hz and transverse field hx . The Hamiltonoan is given by

Ĥ = −hzσz − hxσx = A + B, (18)

with Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(19)

I Since [σz , σx ] = 2iσy , the Trotter-Suzuki approximation is not
trivial.

I For the representation we choose the eigenstates of σz and
label them by Ising spin variables S = ±1, i.e., σz |S〉 = S |S〉.



Example: single quantum spin in external fields
I Using σ2

x = 1, we obtain

〈S |e∆τhzσz |S ′〉 = δSS ′e
∆τhz S ′ (20)

and

〈S |e∆τhxσx |S ′〉 =

{
cosh (∆τhx ) for S = S ′

sinh (∆τhx ) for S 6= S ′
(21)

=

√
1

2
sinh (2∆τhx )ekSS ′ , (22)

where k = −1
2 ln (tanh [∆τhx ]).

I The mth approximation of the partition function reads as

Zm =

(
1

2
sinh (2∆τhx )

)m/2

·∑
S1,...,S2m

e∆τhz S2δS1S2e
kS2S3e∆τhz S4δS3S4e

kS4S5 · . . .

. . . · e∆τhz S2mδS2m−1S2me
kS2mS1 (23)



Example: single quantum spin in external fields
I Or in a more familiar form

Zm =

(
1

2
sinh (2∆τhx )

)m/2

·

∑
S1,...,Sm

exp

(
∆τhz

m∑
n=1

Sn + k
m∑

n=1

SnSn+1

)
, (24)

with periodic boundary condition Sm+1 = S1.
I The mth approximation of the partition function of a single

quantum spin in a longitudinal and transverse field is similar
to a partition function of a classical one-dimensional chain of
m coupled Ising spin in an external field b at temperature Tcl .

H = −J
m∑

n=1

SnSn+1 − b
m∑

n=1

Sn, (25)

with
J

kBTcl
= k and

b

kBTcl
= ∆τhz (26)



Example: single quantum spin in external fields

I The general feature of the Trotter-Suzuki method is that in
addition to physical dimensions an imaginary dimension, called
Trotter dimension, appear as a consequence of the
discretization of the trace.

I Analog: A one-dimensional spin- 1
2 chain in transverse field

with Hamiltonian

Ĥ = −Jz

N∑
i=1

σz,iσz,i+1 − hx

N∑
i=1

σx ,i (27)

is equivalent to a classical, two-dimensional, Ising-model with
anisotropic coupling

H = −
N∑

i=1

m∑
n=1

(JxSi ,nSi+1,n + JτSi ,nSi ,n+1) (28)



Off-lattice path integral formulation

I Next we consider as an example an off-lattice model of N
interacting particles with a Hamiltonian

H =
1

2

N∑
i=1

p̂2
i

m
+ V (r̂1, . . . , r̂N) = H1 +H2, (29)

where p̂ = (p̂x , p̂y , p̂z ) and r̂ = (r̂x , r̂y , r̂z ).

I H1 and H2 do not commutate because

[r̂α, p̂β] = i~δαβ for α, β ∈ {x , y , z} (30)

I In the following we set ~ = 1 and mass m = 1.

I In oder to calculate the partition function we use again the
Trotter-Suzuki formula and alternately the eigenbasis of
P̂ = (p̂1, . . . , p̂N) and R̂ = (r̂1, . . . , r̂N).



Off-lattice path integral formulation
I The Mth approximation of the partition function reads as

ZM =
∑

{P(s)},{R(s)}

〈P(1)|e−∆τH1 |R(1)〉 〈R(1)|e−∆τH2 |P(2)〉·. . .

. . . · 〈P(M)|e−∆τH1 |R(M)〉 〈R(M)|e−∆τH2 |P(1)〉 ,

with ∆τ = β/M and where {P(s)} = {P(1), . . . ,P(M)}
I The individual terms in ZM can be calculated as

〈P(s)|e−∆τH1 |R(s)〉 = exp

(
−∆τ

2
(P(s))2

)
〈P(s)|R(s)〉

= exp

(
−∆τ

2
(P(s))2

)
e i(P(s)·R(s))

(2π)3N/2
,

〈R(s)|e−∆τH2 |P(s+1)〉 = exp
(
−∆τV (R(s))

)
〈R(s)|P(s+1)〉

= exp
(
−∆τV (R(s))

)e−i(P(s+1)·R(s))

(2π)3N/2



Off-lattice path integral formulation

I For a continuous spectrum the sum becomes an integral over
the phase space and

ZM = (2π)−3NM
∫ M∏

s=1

dR(s)dP(s)

exp

[
−∆τ

M∑
s=1

{
(P(s))2

2
− iP(s) · R

(s+1) − R(s)

∆τ
+ V (R(s))

}]
,

with periodic boundary condition R(M+1) = R(1).

I The integral over the momentum space is reminiscent of the
propagator of N free particles if τ → it

~ .

I The integral over the momentum space can be solved
analytically completing the square in the exponent, which
results in Gaussian-like integrals.



Off-lattice path integral formulation
I The result is a discrete version of Feynman’s path integral in

imaginary time, i.e., after Wick rotation τ → it
~ ,

ZM = (2π∆τ)−3NM/2
∫ M∏

s=1

dR(s)

exp

− M∑
s=1

1

2

(
R(s+1) − R(s)

∆τ

)2

+ V (R(s))

∆τ

 (31)

I An alternative interpretation is that the effective Hamiltonian

Heff =
κ

2

N∑
i=1

M∑
s=1

(
r

(s+1)
i − r

(s)
i

)2
+

1

M

∑
i<j

M∑
s=1

V (|r(s)
i − r

(s)
j |)

(32)
in Eq.(31) describes a ’melt’ of ring polymers with effective
spring constant κ = mM

β2~2 . The melt has unusual properties,
since monomer-monomer interactions occur only if the
’Trotter-index’ is the same.



Off-lattice path integral formulation

Figure 1: Schematic representation of two interacting quantum particles i , j in 2D:
each particle is represented by a ’ring polymer’ composed of M = 10 effective

monomers r
(s)
i , with s = 1, . . . ,M. Harmonic springs (of strength κ) only connect

’monomers’ in the same ’polymer’, while interatomic forces join different monomers
with the same Trotter index s, indicated by the thin straight lines. In the absence of
such interactions, the size of such a ring polymer coil would be given by the thermal
de Broglie wavelength λT .



Off-lattice path integral formulation
I If potential V could be neglected, the equipartition theorem

implies, that the potential energy carried by each spring is

d

2
kBT =

κ

2

〈(
r

(s+1)
i − r

(s)
i

)2
〉

(33)

and the mean-square distance of two neighboring particles is

l2 =

〈(
r

(s+1)
i − r

(s)
i

)2
〉

=
d~2

mkBTM
. (34)

I The radius of gyration R2
g = 1

2M2

∑
s,q

(
r(s) − r(q)

)2
of a

polymer with M monomers is
〈
R2

g

〉
= l2M

12 = d~2

12mkbT .
I The diameter of the polymer

2
√〈

R2
g

〉
=

√
d~√

3mkBT
(35)

is of the same order as the thermal de Broglie wavelength

λT =
~√

3πmkBT
. (36)

Integrating out the momenta leaves the particle delocalized.



Further example

∆τ=β/m

β

L

β

L

kontinuierlich diskret (m=10)
}

Figure 2: Path integrals along the Trotter dimension for 3 bosons with Coulomb
interaction. Starting from world-lines {xi (τ)}τ=1,...,m

i=1,...,N one tries to move the nodes

along the spatial direction. The MC moves are accepted with probability e−∆E .



Boson Hubbard model

I The Hamiltonian of the boson Hubbard model, which
describes bosons on a 1D lattice with N sites, reads as

H = −t
N∑

i=1

(
b†i bi+1 + b†i+1bi

)
+ V

N∑
i=1

ni (ni − 1) , (37)

where b†i and bi are creation and annihilation operators for

bosons at ith lattice site and ni = b†i bi is the corresponding
particle number operator.

I For bosons the occupation number is ni ∈ {0, 1, 2, . . .}.
I The first term describes hopping of particles between

neighboring lattice sites.

I The second term ’penalize’ or ’reward’ occupation of ith
lattice site by multiple particles depending on the sign of V .

I The ratio of the hopping parameter t to the interaction
parameter V determines the phase behaviour of the system.



Spinless Fermion model with nearest-neighbor interactions
I The Hamiltonian of the spinless Fermion model with

nearest-neighbor interactions:

H = −t
∑N

i=1

(
c†i ci+1 + c†i+1ci

)
+ V

∑N
i=1

(
ni − 1

2

) (
ni+1 − 1

2

)
, (38)

where c†i and ci are creation and annihilation operators for

fermions and ni = c†i ci is the particle number operator.
I For fermions the occupation number is ni ∈ {0, 1}.
I In the following, we assume an even number of lattice sites N.
I The Hamiltonian can be written as

H =
N∑

i=1

Hi ,i+1 (39)

and we choose the following splitting of H = H1 +H2 with

H1 =
∑
i odd

Hi ,i+1 and H2 =
∑

i even

Hi ,i+1. (40)



Spinless Fermion model
I [H1,H2] 6= 0, however, H1 and H2 are each composed of a

sum of N/2 mutually commuting terms, due to fermionic
anticommutator relations

{ci , c
†
j } = δij and {ci , cj} = {c†i , c

†
j } = 0. (41)

I Because of that it exact factorization is possible:

U1 = e−∆τH1 =
∏

i odd

e−∆τHi,i+1 (42)

U2 = e−∆τH2 =
∏

i even

e−∆τHi,i+1 (43)

H1

2H

1 2 3 4 5 6 7i=

. . .



Spinless Fermion model
I Use Trotter-Suzuki approximation and occupation number

basis |n〉 = |n1, n2, . . . , nN〉 with ni ∈ {0, 1}.
I The mth approximation of the partition function reads as

Zm =
∑
{nj}

〈n1|U1|n2〉 〈n2|U2|n3〉 · . . .

. . . · 〈n2m−1|U1|n2m〉 〈n2m|U2|n1〉 , (44)

I For further calculation we write the basis vectors as

|n〉 = |n1, n2〉 ⊗ |n3, n4〉 ⊗ . . .⊗ |nN−1, nN〉 (45)

|n〉 = |n2, n3〉 ⊗ |n4, n5〉 ⊗ . . .⊗ |nN , n1〉 (46)

such that

e−∆τH1 |n〉 = e−∆τH1,2 |n1, n2〉 ⊗ e−∆τH3,4 |n3, n4〉 ⊗ . . .
⊗ e−∆τHN−1,N |nN−1, nN〉 (47)

and in analogous way e−∆τH2 |n〉 using basis vectors (46).



Spinless Fermion model
I Thus the calculation of matrices 〈nj |U1|nj+1〉 and
〈nj+1|U2|nj+2〉 reduced to an effective problem of two lattice
sites.

I The basis matrix elements we need to evaluate are

w

(
ni ,j+1 ni+1,j+1

ni ,j ni+1,j

)
=

〈ni ,j , ni+1,j |e−∆τHi,i+1 |ni ,j+1, ni+1,j+1〉 =

〈ni ,j , ni+1,j |e
∆τ t

(
c†i ci+1+c†i+1ci

)
−∆τV (ni− 1

2 )(ni+1− 1
2 )|ni ,j+1, ni+1,j+1〉

(48)

I We obtain

e−∆τHi,i+1 |0, 0〉 = |0, 0〉 e−∆τ V
4

e−∆τHi,i+1 |1, 1〉 = |1, 1〉 e−∆τ V
4

e−∆τHi,i+1 |1, 0〉 = [cosh (∆τ t) |1, 0〉+ sinh (∆τ t) |0, 1〉] e∆τ V
4

e−∆τHi,i+1 |0, 1〉 = [cosh (∆τ t) |0, 1〉+ sinh (∆τ t) |1, 0〉] e∆τ V
4



Spinless Fermion model

I The explizit form of possible matrix elements is

w

(
0 0
0 0

)
w

(
0 1
0 0

)
w

(
1 0
0 0

)
w

(
1 1
0 0

)
w

(
0 0
0 1

)
w

(
0 1
0 1

)
w

(
1 0
0 1

)
w

(
1 1
0 1

)
w

(
0 0
1 0

)
w

(
0 1
1 0

)
w

(
1 0
1 0

)
w

(
1 1
1 0

)
w

(
0 0
1 1

)
w

(
0 1
1 1

)
w

(
1 0
1 1

)
w

(
1 1
1 1

)


=


e−∆τ V

2 0 0 0
0 cosh (∆τ t) sinh (∆τ t) 0
0 sinh (∆τ t) cosh (∆τ t) 0

0 0 0 e−∆τ V
2

 e∆τ V
4 (49)



Spinless Fermion model

I The odd-even site breakup of H and the Trotter
decomposition created a structure of 2m layers in the
imaginary-time direction.

I Thus, single fermion hops one site to the left or right with
matrix element sinh (∆τ t) and moves forward along the
Trotter dimension with matrix element cosh (∆τ t).

I Pairs of creation and annihilation operators starting at odd
sites, U1, act on layers j = 2, 4, . . . , while pairs of operators
starting at even sites, U2, act on layers j = 1, 3, . . .

I Within each Trotter time interval ∆τ there is one application
of the operator U1 and one of the operator U2.

I The transition matrix depends on the state of four sites,
namely, ni ,j , ni+1,j , ni ,j+1, ni+1,j+1, which define a plaquette.

I Plaquettes naturally decompose space-time into a
checkerboard pattern, see Fig.(3), and the shaded plaquettes
correspond to the areas in which fermions can hop and
interact.



Spinless Fermion model

U1

U2

1 2 3 4 5 6 7 8 1
0

∆τ

2∆τ

β

i

|001101010>

Figure 3: Breakup of the time-evolution into U1 and U2 leads to the checkerboard
pattern. Here the periodic spatial lattice of sites is labeled by i and the imaginary-time
axis τ has been sliced into 2β/∆τ = 2m segments. Fermions can hop and interact in
the shaded square but not in the unshaded ones. Heavy lines are examples of allowed
fermion world lines. The occupation on each τ slice corresponds to one of the states
|n〉 = |n1, n2, . . . , nN〉 in the sum for Zm.



Spinless Fermion model

I The lattice is periodic in space and imaginary-time.

I To each plaquette correspond 16 possible occupation
configuration, however, only 6 are allowed and the nonzero
matrix element express a conservation law:

ni ,j + ni+1,j = ni ,j+1 + ni+1,j+1 (50)

I Number of fermions is conserved at every imaginary-time step.

I If we connect the occupied sites at each τ slice by lines we
obtain continuous paths looping in the Trotter direction and
we call them world lines of the fermions.

I The sum over intermediate states that satisfy fermion-number
conservation is equivalent to the sum over all allowed
configurations of the world lines.

I Notice that world lines can be drawn along the vertical edge
of a shaded box or diagonally across a shaded box, but they
cannot be drawn diagonally across an unshaded box.



Spinless Fermion model
I Monte Carlo sampling becomes a matter of deforming the

world lines.
I Deformations are accepted according to a probability which

satisfies detailed-balance. This is possible because matrix
elements needed to construct the transition probability are
nonnegative.

I A single fermion move is not allowed due to the conservation
law.

I The minimum change we can make is to move two fermions
from one vertical edge of an unshaded box to the other.

Falsch! Richtig!

Figure 4: (1) An example of an illegal move. (2-4) Basic world line updates. World
lines may move from the heavy solid line to the dashed one and vice versa.



Monte Carlo algorithm

I We designate each lattice point by (i , j) with i = 1, . . . ,N
(space) and j = 1, . . . , 2m (time).

I At each lattice site, we define an occupation number
ni ,j ∈ {0, 1}.

I In sweeping through the lattice, we must check whether it is
possible to move a world line across each unshaded square.

I Focus on the unshaded square whose lower left-hand corner is
at the site (i , j).

I A move from left to right is possible if s = +2, from right to
left if s = −2 and otherwise no move is possible, where

s = ni ,j + ni ,j+1 − ni+1,j − ni+1,j+1 (51)

I If a move is possible, we must calculate the ratio R of the
product of matrix elements in Eq.(44) after and before the
move.



Monte Carlo algorithm

I R depends on ni+1,j−1 and
ni+1,j+2, because they determine
whether the world line we are
moving is vertical or diagonal in
the shaded boxes above and below
our unshaded one.

I R depends on ni−1,j and ni+2,j ,
because they determine whether
there is an additional world line
running through the shaded boxes
to the left and right of our
unshaded one.

(i,j)
j

j+2

i
j−1

j+1

i−1 i+1 i+2

s=+2

Figure 5: Move across the
unshaded plaquette. The
acceptance probability is governed
by the weights of the north, south,
east and west plaquettes.



Monte Carlo algorithm

I Using matrix in Eq.(49) one obtains

R = tanh (∆τ t)su cosh (∆τ t)sv e∆τ V
2

sv , (52)

with

u = 1− ni+1,j−1 − ni+1,j+2, (53)

v = ni−1,j − ni+2,j . (54)

s = ni ,k + ni ,k+1 − ni+1,k − ni+1,k+1 (55)

I We accept the proposed new configuration with probability

Paccept =
R

1− R
(56)



Monte Carlo algorithm

I For the move shown in Fig.(6) it is s = 2,
u = −1, v = 1 and
R = sinh (∆τ t)−2 cosh (∆τ t)4 e∆τV

(i,j)

Figure 6: Example
world-line update.

I Exact calculation gives:

R =
〈X01X |U2|1010〉 〈1010|U1|1010〉 〈1010|U2|X01X 〉
〈X01X |U2|1100〉 〈1100|U1|1100〉 〈1100|U2|X01X 〉

=
cosh (∆τ t) e∆τ V

4 · cosh (∆τ t)2 e∆τ V
2 · cosh (∆τ t) e∆τ V

4

sinh (∆τ t) e∆τ V
4 · e−∆τ V

2 · sinh (∆τ t) e∆τ V
4

= sinh (∆τ t)−2 cosh (∆τ t)4 e∆τV



Monte Carlo algorithm

I Alternative formulation of the Monte Carlo algorithm.

I Visit every unshaded plaquette, which is located at(
ni ,j+1 ni+1,j+1

ni ,j ni+1,j

)
. (57)

I If ni ,j = ni ,j+1 and ni+1,j = ni+1,j+1 and ni ,j = 1− ni+1,j , we
attempt to move the segment from one edge to the other.

I The move is accepted via a Metropolis algorithm

Paccept = min [1,RnorthRsouthReastRwest ], (58)

with ratios of the local weights before and after the proposed
move.

I Ratio for north plaquette

Rnorth = w

(
ni ,j+2 ni+1,j+2

1− ni ,j+1 1− ni+1,j+1

)/
w

(
ni ,j+2 ni+1,j+2

ni ,j+1 ni+1,j+1

)



Monte Carlo algorithm

I Ratio for south plaquette

Rsouth = w

(
1− ni ,j 1− ni+1,j

ni ,j−1 ni+1,j−1

)/
w

(
ni ,j ni+1,j

ni ,j−1 ni+1,j−1

)
I Ratio for east plaquette

Reast = w

(
1− ni+1,j+1 ni+2,j+1

1− ni+1,j ni+2,j

)/
w

(
ni+1,j+1 ni+2,j+1

ni+1,j ni+2,j

)
I Ratio for west plaquette

Rwest = w

(
ni−1,j+1 1− ni ,j+1

ni−1,j 1− ni ,j

)/
w

(
ni−1,j+1 ni ,j+1

ni−1,j ni ,j

)



Jordan–Wigner transformation
I Using the Jordan–Wigner transformation it is possible to map

the spinless Fermion model with nearest-neighbor interactions
onto the one-dimensional quantum Heisenberg model.

I The spin creation and annihilation operators acting on a site i
anti-commute

{S+
i , S

−
i } = 1, {S+

i , S
+
i } = {S−i , S

−
i } = 0 (59)

as fermions do.
I However, on different sites i and j , we have the relation

[S+
i , S

−
j ] = 0, [S+

i , S
+
j ] = [S−i ,S

−
j ] = 0, (60)

so spins on different sites commute unlike fermions which
anti-commute.

I Introduction of a phase operator (kink operator)

Ki = e iπ
∑i−1

j=1 S+
j S−j , which counts the number of down-to-up

spin flips that appear to the left of i , restores the
anticommutator relation of fermions.



Jordan–Wigner transformation
I The operators ci = KiS

+
i and c†i = S−i K †i satisfy

anticommutator relation

{ci , c
†
j } = δij , {c†i , c

†
j } = {ci , cj} = 0 (61)

I Thus, the Hamiltonian of the 1D Heisenberg model can be
writen as

HHeisenberg = −J
N∑

i=1

Si · Si+1

= −J
N∑

i=1

[
1

2
(S+

i S−i+1 + S−i S+
i+1) + Sz

i S
z
i+1

]

= −J

2

N∑
i=1

(
c†i ci+1 + c†i+1ci

)
−J

N∑
i=1

(
c†i ci −

1

2

)(
c†i+1ci+1 −

1

2

)



Measurements

I Measurements

I Phase behaviour

I Winding number

I Negative sign problem



Introduction to exact diagonalization

I A common challenge in quantum mechanics is to identify the
eigenstates |φn〉 and eigenenergies En of the Hamiltonian Ĥ,
i.e., we have to solve the stationary Schrödinger equation

Ĥ |φn〉 = En |φn〉 , (62)

where E0 < E1 < E2 < . . . with ground state energy E0.

I Consider, for example, an anharmonic oscillator with
Hamiltonian (m = 1 and ~ = 1):

Ĥ = Ĥ0 + Ĥ1, Ĥ0 =
1

2

(
p̂2 + x̂2

)
, Ĥ1 = λx̂4, (63)

where x̂ is the position and p̂ = −i ∂∂x the momentum
operator.



Introduction to exact diagonalization

I We introduce a creation â† = (x̂ − i p̂) /
√

2 and annihilation
operator â = (x̂ + i p̂) /

√
2 with commutator [â, â†] = 1 and

obtain the eigenenergies of Ĥ0 =
(
n̂ + 1

2

)
, where n̂ = â†â is

the number operator, as Ĥ0 |n〉 = En |n〉 with En = n + 1
2 .

I Using the ladder operator representation of x̂ = 1√
2

(
â† + â

)
and â† |n〉 =

√
n + 1 |n + 1〉 and â |n〉 =

√
n |n − 1〉 we are

able to calculate the matrix〈
n
∣∣∣ Ĥ ∣∣∣m〉 = Enδnm + λ

〈
n
∣∣ x̂4

∣∣m〉 . (64)

I Only for |n −m| ≤ 4 we get nonzero matrix elements, i.e.,

〈
n
∣∣ x̂4

∣∣m〉 =
1

4

〈
n

∣∣∣∣ (â† + â
)4
∣∣∣∣m〉 6= 0. (65)



Introduction to exact diagonalization

I For example,

〈n|(â† + â)4|n + 4〉 = 〈n|â4|n + 4〉
= 〈n + 4|(â† + â)4|n〉 = 〈n + 4|â†4|n〉

=
√

(n + 1)(n + 2)(n + 3)(n + 4) (66)

I The introduction of the occupation number representation
with basis |n〉 converted the task to estimate the stationary
states of the Schrödinger equation to an eigenvalue problem
of linear algebra.

I A very common approximation is to truncate Hilbert space H
to finite dimension, for example, consider only n < N states,
such that the infinite dimensional matrix reduced to a
N × N-matrix.



Introduction to exact diagonalization

I In order to diagonalize the resulting matrix it is necessary to
consider Ĥ on a subspace U of the full Hilbert space H. Let
be {|ϕ1〉 , . . . , |ϕN〉} an orthonormal basis of the
N-dimensional subspace U ⊂ H. The projection of Ĥ on U is
given by the hermitian matrix

Hnm = 〈ϕn|Ĥ|ϕm〉 . (67)

The matrix can be diagonalized numerically and we obtain N
real eigenvalues ε0 < ε0 < . . . < εN−1.

I Hylleraas-Undheim-Theorem:
I εi ≥ Ei for i = 0, . . . ,N − 1, i.e., εi is an upper limit.
I If U ⊂ U ′ ⊂ H it is εi ≥ ε′i ≥ εi−1, i.e., εi decrease with

increasing subspace U .

I The larger the dimension of U the better εi approximates Ei .



Introduction to exact diagonalization

I The full spectrum of not to large matrices (N ≈ 103 − 104)
can be estimated using common iterative methods, which are
based on unitary transformations H → U†HU that makes the
Hamiltonian diagonal, here we have assumed that H = H† is
Hermitian and thus U†U = 1 is an unitary matrix.

I If all matrix elements of the Hamiltonian are real an
orthogonal transformations H → UTHU diagonalize H, where
H = HT is a symmetric and thus UTU = 1 is an orthogonal
matrix.

I The iteration H → U†1HU1 → U†2U
†
1HU1U2 → . . . is carried

out until H becomes diagonal. The diagonal of H contains its
eigenvalues and the columns of U1U2 . . . contains the
corresponding eigenvectors.



Introduction to exact diagonalization

I Examples are: Jacobi-rotation of a symmetric matrix,
Householder reduction of a symmetric matrix to a tridiagonal
matrix combined with QR or QL algorithm, etc.

I For large matrices (large N) only the ground state (largest
eigenvalue and the corresponding eigenvector) can be
calculated and fast methods, like, power iteration or Lanczos
method, must be used.



Ground state

I Once the eigenstates are known, the density operator, which
represents the canonical ensamble in quantum mechanics, can
be obtained as

ρ̂ =
e−βĤ

Tr{e−βĤ}
=

∑
n e
−βEn |φn〉 〈φn|∑

n e
−βEn

, (68)

with β = 1/kBT

I Close to zero temperature, T → 0 (or β →∞), only the
ground state |φ0〉 of Ĥ with energy E0 = minn{En} will
provide the dominant contribution to ρ̂.

I Nevertheless, the system can still undergo phase transitions if
the ground state energy E0 itself exhibits non-analytic
behavior.



Example: Single quantum spin in external fields

I



Power iteration

I Power iteration will produce the greatest eigenvalue together
with the corresponding eigenvector of matrix Hmn.

I However, in quantum mechanical problems the smallest
eigenvalue is of interest. The solution is to consider the
largest eigenvalue of Ĥ ′ = −Ĥ + c with some constant c .

I Since Ĥ ′ is a Hermitian operator there is an orthonormal basis
|ψ1〉 , . . . , |ψN〉, such that

Ĥ ′ |ψn〉 = En |ψn〉 with E1 > E2 > . . . > EN . (69)

I For simplicity, we assume that the ground state of Ĥ is not
degenerate.

I Without loss of generality EN > 0, otherwise
Hmn → Hmn + (|EN |+ ε)δmn with ε > 0.



Power iteration

I Pick at random an initial state |φ0〉 =
∑N

n=1 an |ψn〉.
I Repeatedly apply Ĥ ′ on |φ0〉:

|φ1〉 = Ĥ ′ |φ0〉 =
N∑

n=1

anEn |ψn〉

|φ2〉 = Ĥ ′ |φ1〉 = Ĥ ′2 |φ0〉 =
N∑

n=1

anE
2
n |ψn〉

. . .

|φk〉 = Ĥ ′k |φ0〉 = E k
1

{
a1 |ψ1〉+

N∑
n=2

an

(
En

E1

)k

|ψn〉

}

I Beacuse E1 > En for n > 1 ⇒ limk→∞

(
En
E1

)k
= 0 and

⇒ lim
k→∞

|φk〉 = a1E
k
1 |ψ1〉 (70)



Power iteration

I Successive application of Ĥ ′ on |φ0〉 amplifies the component
|ψ1〉, which is the eigenvector corresponding to the largest
eigenvalue E1.

I Normalize |φk〉 after each iteration |φk〉 → |φk〉 /
√
〈φk |φk〉,

such that limk→∞ |φk〉 = |ψ1〉 and limk→∞ 〈φk |Ĥ ′φk〉 = E1

I Once we found E1 it is possible to obtain E2 if we apply the
power method on

Ĥ ′ − E1 |ψ1〉 〈ψ1| . (71)

Because
(
Ĥ ′ − E1 |ψ1〉 〈ψ1|

)
|ψ1〉 = 0 the eigenvalue

corresponding to |ψ1〉 is E1 = 0 and the largest eigenvalue of
the new Hamiltonian is E2.



Power iteration

I How to estimate |ψ2〉 and E2.
I Estimate |ψ1〉.
I Pick at random an initial state |φ0〉, orthogonalize with respect

to |ψ1〉: |φ0〉 → |φ0〉 − 〈φ0|ψ1〉 |ψ1〉 and normalize:
|φ0〉 → |φ0〉 /

√
〈φ0|φ0〉.

I Iterate |φk+1〉 = Ĥ ′ |φk〉, orthogonalize:
|φk+1〉 → |φk+1〉 − 〈φk+1|ψ1〉 |ψ1〉 and normalize:
|φk+1〉 → |φk+1〉 /

√
〈φk+1|φk+1〉.

I Comments:
I Convergence of the method is slow if E2

E1
≈ 1.

I If the largest energy is degenerated, E1 = E2, still
limk→∞ 〈φk |Ĥ ′φk〉 = E1 = E2, however,

limk→∞ |φk〉 = a1|ψ1〉+a2|ψ2〉
‖a1|ψ1〉+a2|ψ2〉‖



Excursus: Google PageRank

I PageRank is an algorithm used by Google Search to rank
websites in their search engine results.

I PageRank is a way of measuring the importance of website
pages.

I The PageRank algorithm assign to every web pages i an
relative importance ri , called PageRank, and the dimension of
r = (ri , . . . , rN) is the number of World Wide Web pages
N ≈ 47 · 109.

I The PageRank algorithm interprets WWW as a directed
graph: web pages (vertices) are connected by links (edges),
which point from one to another page.

I Every page is characterized by the number of incoming Ii and
outgoing links Oi .



Excursus: Google PageRank

Figure 7: Cartoon illustrating the basic
principle of PageRank. The size of each
face is proportional to the total size of
the other faces which are pointing to it.

Figure 8: Google matrix of Wikipedia
articles network, written in the bases of
PageRank index; fragment of top
200× 200 matrix elements is shown,
total size N = 3282257.



Excursus: Google PageRank

I The equation for the PageRank is based on two assumptions:
I Every page i evenly distribute its PageRank ri on all Oi

outgoing links.
I The PageRank of page i is the sum of all incoming

PageRank’s.

I So, the equation is as follows:

ri =
∑
j∈Mi

rj
Oj
, (72)

where Mi is the set of pages that points to i .

I The adjacency matrix (or connection matrix) is defined as

Cij =

{
1 if j points to i

0 else
(73)

and the number of outgoing links is Oj =
∑N

i=1 Cij .



Excursus: Google PageRank

I The equation for the PageRank can be rewritten as

ri =
N∑

j=1

Cij

Oj
rj =

N∑
j=1

Cij∑N
k=1 Ckj

rj =
N∑

j=1

Gij rj (74)

I It means that PageRank vector r is the eigenvector of the
Google matrix G corresponding to the eigenvalue 1:

G · r = 1 · r. (75)

I Google matrix G is high-dimensional (N2 ≈ 2.2 · 1021) and r
can be found effectively with the power method, i.e., we
iterate

rn+1 =
G · rn

‖G · rn‖
(76)

till convergence.



Excursus: Google PageRank

I The Perron–Frobenius theorem resolves the issue of
convergence (or existence of a solution):

I If all Gij > 0, then the largest eigenvalue λ1 is real, positive
and not degenerated. The entries of the corresponding
eigenvector r are all positiv, i.e., ri > 0.

I If G is a stochastic matrix (Gij > 0 and
∑N

i=1 Gij = 1), then
λ1 = 1.

I If G is a stochastic matrix:
I Power method converges to the eigenvector r corresponding to

eigenvalue λ = 1.
I The entries of r are all positiv and r can be normalized such

that
∑

i ri = 1.
I ri can be viewed as a probability distribution that a random

surfer arrives at page i .
I r can be interpreted as a stationary probability distribution of a

Markov chain with transition probabilities Gij from state i to
state j .



Excursus: Google PageRank

I It is
∑N

i=1 Gij = 1, however, G is not a stochastic matrix so
far, because Gij > 0 is not fulfilled, which means that every
page is linked to every other page in the web.

I Power iteration may not converge if dangling nodes (Oi = 0)
and loops exists.

I The problem can be fixed if we allow the surfer to jump
randomly on any page with probability 1− p and to follow the

transition matix
Cij∑N

k=1 Ckj
with probability p.

I The modified Google matrix

Gij = p
Cij∑N

k=1 Ckj

+
(1− p)

N
(77)

is a stochastic matrix, because Gij > 0 for all links (i , j).
Google uses p = 0.85.



Lanczos algorithm

I The Lanczos method is an iterative algorithm that transforms
the eigendecomposition problem for a symmetric matrix
H ∈ RN×N into the eigendecomposition problem for a smaller
tridiagonal symmetric matrix T ∈ Rm×m, where m� N.

I Lanczos method is based on invariant subspace.

I Consider a subspace Q = span {q1, . . . ,qm} spanned by
m ≤ N linearly independent vectors qi ∈ RN .

I Assume that {q1, . . . ,qm} is an orthonormal basis of Q and
define a matrix

Q = (q1, . . . ,qm) ∈ Rm×N . (78)

I Assume that the subspace Q is invariant under H, i.e.,

∀q ∈ Q : Hq ∈ Q. (79)



Lanczos algorithm

I Because Q is an invariant subspace, Hqi can be writen as a
linear combination of {q1, . . . ,qm} or in other words, for
i = 1, . . . ,m it is

Hqi =
m∑

j=1

qjTji (80)

I Or in matrix form: for matrix HQ ∈ Rm×N there is a matrix
T ∈ Rm×m such that

HQ = QT or T = Q−1HQ, (81)

I Because Q is a matrix with orthonormal columns, i.e.,
QTQ = 1, it is

T = QTHQ, (82)



Lanczos algorithm

I H is a symmetric matrix, hence T is symmetric, too, and
there exist eigenpairs, λ1, . . . , λm and y1, . . . , ym, such that

λiyi = Tyi (83)

I If λi is an eigenvalue of T then it is also an eigenvalue of H,
because

λi (Qyi ) = QTyi = H (Qyi ) , (84)

and Qyi is the corresponding eigenvector of H.

Résumé: Eigenpairs of large matrix H can be estimated from
a smaller matrix T, if the space spanned by Q is invariant
under H.



Lanczos algorithm

I The Lanczos method generates an invariant subspace
approximately. It uses the Krylov subspace defined as

Km(b,H) = span {b,Hb, . . . ,Hm−1b}
= span {b1,b2, . . . ,bm},

where b is some random vector.

I The subspace Km consists of a sequence of vectors generated
by the power method.

I Hib converge to the direction of the eigenvector
corresponding to the largest eigenvalue of H.

I The vectors Hb1,Hb2, . . . ,Hbm−1,Hbm are in Km, except for
the last vector Hbm = Hmb.

I For sufficiently large m, Hmb is approximately proportional to
Hm−1b and Hmb is almost in Km.

I The Krylov space Km for m < N is almost an invariant
subspace of H, which contains the ground-state of H.



Lanczos algorithm

I Ground-state of H can be estimated from the diagonalisation
of the smaller matrix T.

I It follows from the selection of Km that:
I The matrix T = QTHQ is symmetric tridiagonal (easy to

diagonalize).
I A three term recursion relation exists for the calculation of Q.
I H is needed only to compute matrix-vector multiplication.
I The convergence is fast. Typically, we need only m = 102 even

for a matrix with N ≈ 107.

I How does this properties lead to a practical algorithm?
I Consider a symmetric tridiagonal matrix

T =


a1 b1 · · · 0

b1
. . .

. . .
...

...
. . .

. . . bm−1

0 · · · bm−1 am

 , (85)

with entries ai and bi .



Lanczos algorithm
I If we equate the columns of HQ = QT, we obtain a three

term recursion relation

Hqj = bj−1qj−1 + ajqj + bjqj+1 (86)

for j = 1, . . . ,m − 1, where qj is the jth column of Q.
I It is convenient to rearrange the recursion relation as

rj := bjqj+1 = Hqj − bj−1qj−1 − ajqj , (87)

and to define a new unknown vector rj .
I The aim of Lanczos algorithm is to generate orthonormal

basis {q1, . . . ,qm} of Km.
I We postulate orthogonality of qj+1 ⊥ qj ,qj−1, as a results we

obtain that
aj = qT

j Hqj (88)

and
bj−1 = qT

j−1Hqj = qT
j Hqj−1, (89)

where the last identity follows from the fact that H = HT .



Lanczos algorithm

I From the normalization condition ‖qj+1‖ = 1 it follows that

bj = ‖rj‖ = ‖Hqj − bj−1qj−1 − ajqj‖ (90)

I Proof of qj+1 ⊥ qj ,qj−1:
I Assume {q1, . . .qj} is an orthonormal basis.
I It is qj+1 ⊥ qj due to

bjq
T
j qj+1 = qT

j Hqj − bj−1q
T
j qj−1 − ajq

T
j qj

= aj − 0− aj = 0

I It is qj+1 ⊥ qj−1 due to

bjq
T
j−1qj+1 = qT

j−1Hqj − bj−1q
T
j−1qj−1 − ajq

T
j−1qj

= bj−1 − bj−1 − 0 = 0

I Proof of ‖qj+1‖ = 1:
I It is ‖qj+1‖ = 1 due to

qj+1 =
Hqj − bj−1qj−1 − ajqj

‖Hqj − bj−1qj−1 − ajqj‖
(91)



Lanczos algorithm

I Lanczos algorithm is based on successive Gram-Schmidt
orthogonalization of Hqj against qj and qj−1.

I Choose a random vector q1 such that ‖q1‖ = 1.

I r1 = Hq1 − (qT
1 Hq1)q1 = Hq1 − a1q1

and q2 = r1/‖r1‖ = r1/b1

⇒ q2 ⊥ q1

I r2 = Hq2 − (qT
2 Hq2)q2 − (qT

1 Hq2)q1 = Hq2 − a2q2 − b1q1

and q3 = r2/‖r2‖ = r2/b2

⇒ q3 ⊥ q2,q1

I
...

I rj = Hqj−(qT
j Hqj )qj−(qT

j−1Hqj )qj−1 = Hqj−ajqj−bj−1qj−1

and qj+1 = rj/‖rj‖ = rj/bj

⇒ qj+1 ⊥ qj ,qj−1



Lanczos algorithm

I Furthermore, qj+1 ⊥ qi for i < j − 1, because

qiqj+1 = qT
i Hqj − ajq

T
i qj − bj−1q

T
i qj−1

= qT
i Hqj − 0− 0

= qT
j Hqi = 0,

where in the last step we used H = HT and

Hqi ∈ span {q, . . . ,Hj−2q} = span {q1, . . . ,qj−1} (92)

for i < j − 1, such that qj ⊥ span {q1, . . . ,qj−1}.
I It is T = QTHQ or Tij = qT

i Hqj . Since H is symmetic, T is
symmetic. From the above argumentation it follows that
Tij = 0 for i < j − 1, and similar arguments lead to Tij = 0
for i > j + 1. Therefore, T is tridiagonal.



Lanczos algorithm

I Basic Lanczos algorithm for the computation of an
orthonormal basis for of the Krylov space Km.

I Let H ∈ RN×N be a symmetic (or Hermitan) matrix. This
algorithm computes the tridiagonal matrix T and an
orthonormal basis Qm = (q1, . . . ,qm) for Km, where m is the
smallest index such that Km = Km+1.

I Pseudocode:
I Pick a random q such that ‖q‖ = 1;
I Q1 = (q);
I r = Hq; a1 = qT r; r = r − a1q; b1 = ‖r‖;
I for j = 2, 3, . . . do
I w = q; q = r/bj−1; Qj = (Qj−1,q);
I r = Hq− bj−1w; aj = qT r;
I r = r − ajq; bj = ‖r‖;
I if bj = 0 then
I return Qj ; a1, . . . , aj ; b1, . . . , bj−1;
I end if
I end for



Lanczos algorithm

I The termination condition bj = 0 (or rj = 0) for some j < N
implies that,

Hqj = (qT
j Hqj )qj + (qT

j−1Hqj )qj−1 = ajqj + bj−1qj−1, (93)

thus Hqj is a linear combination of {q1, . . . ,qj} and Hqj is
within an invariant subspace

Kj = span {q1,Hq1, . . . ,H
j−1q1} (94)

= span {q1,q2, . . . ,qj}. (95)

I The termination condition bj = 0 for some j implies the loss
of orthogonality, i.e., it is not possible to orthogonalize Hqj

against {q1,q2, . . . ,qj}.
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