Computational physics

Heiko Rieger and Adam Wysocki

Theoretical Physics
Saarland University
SS2017

Contents

- Random numbers

Random number

What are random numbers?
It is a sequence of numbers that cannot be reasonably predicted better than by a random chance, i.e., lack of pattern or predictability in events.

Kolmogorov randomness: a string of bits is random if and only if it is shorter than any computer program (without input) that can produce that string, i.e., a random string is "incompressible".

DILBERT ${ }_{\text {By Scort ADMM }}$

Random number generator (RNG)

- Physical methods (non-deterministic):
- Dice, coin flipping and roulette wheels.
- Thermal noise from a resistor.
- Atmospheric noise, detected by a radio receiver.
- A nuclear decay radiation source, detected by a Geiger counter.
- Computational methods (deterministic):
- Maybe some irrational numbers, like $\pi, \sqrt{2}, \ldots$, are good RNG. For example, π passed tests for statistical randomness, including tests for normality.
- Recursive arithmetic RNG, will be presented in the following

Pseudorandom number generator (PRNG)

- PRNG is an deterministic algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.
- PRNG-generated sequence is not truly random, because it is completely determined by the initial seed.
- The same seed leads to the same sequence and only different seeds lead to different sequences.
- Mostly PRNG generate integer values rand $\in\{0,1, \ldots, m-1\}$ and division by m leads to rand $\in[0,1]$.

Pseudorandom number generator (PRNG)

- Simplest method is an iterated function

$$
\begin{equation*}
f:\{0, \ldots, m-1\}^{\prime} \rightarrow\{0, \ldots, m-1\} \tag{1}
\end{equation*}
$$

with arithmetic operations $(+,-, \times, /)$.
It generates successive numbers

$$
\begin{equation*}
i_{n}=f\left(i_{n-1}, i_{n-2}, \ldots, i_{n-1}\right) \tag{2}
\end{equation*}
$$

using an initial seed i_{0}, \ldots, i_{l-1}.

- The function f should be highly nonlinear and chaotic in order to generate good random numbers.
- For PRNG of the type Eq.(2) there is n_{0} and p such that $i_{n+p}=i_{n}$ for all $n \geq n_{0}$, the smallest p denotes the period of the PRNG.
- If a PRNG's internal state contains n bits its period p can be no longer than $m^{\prime}=2^{n \prime}$. The aim is to construct a PRNG with $p=m^{\prime}$ in order to produce the maximum possible number of random numbers.

Linear congruential generator (LCG)

The method represents one of the oldest and best-known PRNG.

$$
\begin{equation*}
i_{n+1}=\left(a i_{n}+c\right) \bmod m \tag{3}
\end{equation*}
$$

with modulo operation

$$
\begin{equation*}
x \bmod m:=x-\left\lfloor\frac{x}{m}\right\rfloor \cdot m \tag{4}
\end{equation*}
$$

where $\lfloor\ldots\rfloor$ is the floor functions.

- modulus $m, 0<m$
- multiplier $a, 0<a<m$
- increment $c, 0 \leq c<m$

Linear congruential generator

Hull-Dobell Theorem: the period is $p=m$ for all seed values if and only if:

- m and c are relatively prime (if the only positive integer that divides m and c is 1)
- $a-1$ is divisible by all prime factors of m
- $a-1$ is divisible by 4 if m is divisible by 4 .

Choice of a, c, m :

- a, c, m even number $\Rightarrow p<\frac{m}{2}$
- Do not use $a=1$, because $i_{n}=\left(i_{0}+n c\right)$ mod m is not very random!
- $m=2^{n}$: the i th least significant digit repeats with at most period $2^{i} \Rightarrow$ alternately odd and even results
- Park and Miller propose: $m=2^{31}-1=2147483647$, $a=16807, c=0$

Linear congruential generator (LCG)

Linear congruential generator is not free of sequential correlation.

Marsaglia's Theorem:
Let be $u_{n}=\frac{i_{n}}{m} \in[0,1]$ a number generated by $i_{n+1}=\left(a i_{n}+c\right) \bmod m$ and $\left\{u_{n}\right\}_{n \geq 0}$ a sequence of numbers.
Then points
$\left(u_{0}, \ldots, u_{k-1}\right),\left(u_{1}, \ldots, u_{k}\right), \ldots$ will NOT tend to "fill up" homogeneously the k-dimensional space, but will lie on maximal $\sqrt[k]{m \cdot k!}$ parallel ($k-1$)-dimensional hyperplanes.
\Rightarrow find a, c and m, which maximize the number of hyperplanes.

Figure 1: Histogram and spectral test of LCG: $i_{n+1}=\left(24298 i_{n}+99991\right) \bmod 199017$. Maximal number of hyperplanes $\sqrt[3]{199017 \cdot 3!} \approx 106$

Shuffling procedure

Apply shuffling procedure in order to increase the period p and to break up sequential correlations.

Generate an array $i[0], \ldots, i[N-1]$ filled with random numbers, i.e., $i[k]=\operatorname{rand}() \in\{0,1, \ldots, m-1\}$.

$$
\begin{align*}
\text { Initially: } \quad y & =\operatorname{rand}() \in\{0,1, \ldots, m-1\} \tag{5}\\
k & =\left\lfloor\frac{y N}{m}\right\rfloor \in\{0, \ldots, N-1\} \tag{6}\\
\text { output } & =i[k] \tag{7}\\
y & =i[k] \tag{8}\\
i[k] & =\operatorname{rand}() \tag{9}\\
\text { GOTO } & \rightarrow(6) \tag{10}
\end{align*}
$$

\Longrightarrow period $p=m^{N}$

Schrage's algorithm

Calculation of $i_{n}=\left(a \cdot i_{n-1}\right) \bmod m$ without overflow.
Calculate $m=a \cdot q+r$, i.e., $q=\left\lfloor\frac{m}{a}\right\rfloor$ and $r=m \bmod a$.

$$
\begin{align*}
\left(a \cdot i_{n}\right) \bmod m & =\left(a \cdot i_{n}-\left\lfloor i_{n} / q\right\rfloor \cdot m\right) \bmod m \tag{11}\\
& =\left[a \cdot i_{n}-\left\lfloor i_{n} / q\right\rfloor(a \cdot q+r)\right] \bmod m \tag{12}\\
& =\left[a\left(i_{n}-\left\lfloor i_{n} / q\right\rfloor q\right)-r\left\lfloor i_{n} / q\right\rfloor\right] \bmod m \tag{13}\\
& =\left[a\left(i_{n} \bmod q\right)-r\left\lfloor i_{n} / q\right\rfloor\right] \bmod m \tag{14}
\end{align*}
$$

$\Rightarrow a\left(i_{n} \bmod q\right)<a q<m$ and $r\left\lfloor i_{n} / q\right\rfloor<i_{n} \frac{r}{q}<i_{n}<m$ if $r<q$
$\Rightarrow\left[a\left(i_{n} \bmod q\right)-r\left\lfloor i_{n} / q\right\rfloor\right] \in[-m+1, m-1]$
$\Rightarrow\left(a \cdot i_{n}\right) \bmod m= \begin{cases}a\left(i_{n} \bmod q\right)-r\left\lfloor i_{n} / q\right\rfloor & \text { if it is } \geq 0 \\ a\left(i_{n} \bmod q\right)-r\left\lfloor i_{n} / q\right\rfloor+m & \text { else }\end{cases}$
One needs signed integer (for example: maximal $m=2^{31}-1$ instead of $m=2^{32}-1$) but avoids overflow.

Shift-Register-RNG

Works with Bit-Shift operations. L^{t} shifts by t bits to the left and R^{s} shifts by s bits to the right.

$$
\begin{align*}
j_{n-1} & =i_{n-1} \oplus R^{s} i_{n-1} \tag{15}\\
i_{n} & =j_{n-1} \oplus L^{t} j_{n-1} \tag{16}
\end{align*}
$$

where \oplus is the bitwise exclusive or (XOR). The truth table of XOR is

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Shift-Register-RNG: Example

1	0	1	1	1	0	0	1	i_{n-1}
					s	\longrightarrow	\longrightarrow	
0	0	0	1	0	1	1	1	$R^{3} i_{n-1}$
\oplus								
1	0	1	0	1	1	1	0	j_{n-1}
\longleftarrow	\longleftarrow	\longleftarrow	\longleftarrow	t				
1	1	1	0	0	0	0	0	$L^{4} j_{n-1}$
\oplus								
0	1	0	0	1	1	1	0	i_{n}

Xorshift PRNG

Xorshift is state-of-the-art PRNG, it is simple and fast. Period $p=2^{m}-1$.
uint32_t x32 = 314159265;
uint32_t xorshift32()
\{
x32 ^= x32 << 13;
x32 ^= x32 >> 17;
x32 ^= x32 << 5;
return x32;
\}

More PRNG

- Lagged Fibonacci generator
- Mersenne twister

Non-uniform random numbers: Inverse transform sampling

So far PRNG generate uniform random numbers in $[0,1]$.
How to generate random numbers from a given distribution $p(x)$?
One possibility is the inverse transform sampling.
Cumulative distribution function,

$$
\begin{equation*}
F_{X}(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} d t p(t) \tag{17}
\end{equation*}
$$

is the probability that the random variable X takes on a value less than or equal to x.

Claim: If U is a uniform random variable on $[0,1]$ then $F_{X}^{-1}(U)$ follows the distribution F_{X}.

Inverse transform sampling:

Proof: Consider random variable $Y=F_{X}^{-1}(U)$.

$$
\begin{align*}
F_{Y}(y) & =\operatorname{Pr}(Y \leq y)=\operatorname{Pr}\left(F_{X}^{-1}(U) \leq y\right) \tag{18}\\
& =\operatorname{Pr}\left(U \leq F_{X}(y)\right)=F_{U}\left(F_{X}(y)\right) \tag{19}\\
& =F_{X}(y), \tag{20}
\end{align*}
$$

using $F_{U}(x)=\operatorname{Pr}(U \leq x)=x$ for all $x \in[0,1]$.
$\Rightarrow Y$ and X have the same distribution.
Examples:

- Exponential distribution: $p(x)=\lambda e^{-\lambda x}$ $\Rightarrow F(x)=1-e^{-\lambda x}$
\Rightarrow generate $U \in[0,1]$ and calculate $X=\frac{-\ln (1-U)}{\lambda}$
- Lorentz distribution: $p(x)=\frac{1}{\pi} \frac{\Gamma}{\Gamma^{2}+x^{2}}$
$\Rightarrow F(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{\Gamma}\right)$
\Rightarrow generate $U \in[0,1]$ and calculate $X=\Gamma \cdot \tan \left(\pi\left(U-\frac{1}{2}\right)\right)$

Rejection sampling

Inverse transform sampling works only if $F_{X}(x)$ is invertible. An alternative is rejection sampling. Works if the distribution $p(x)$ fulfills: $p(x)=0$ for $x \notin\left[x_{0}, x_{1}\right]$ and $p(x) \leq p_{\max } \forall x$.
rand () is uniform in $[0,1]$
Pseudo code:

```
true=1;
while (true==1)
    {x=x0+(x1-x0)*rand();
        y=pmax*rand();
        if (y<=p(x)) {true=0;}
    }
return(x);
```


Figure 2: Only samples in the region under the graph are accepted.
x is distributed according to $p(x)$

Rejection sampling

It works, because $p_{g e n}$ (the distribution corresponding to rand()), $p_{\text {accept }}$ (probability of acceptance a random number at x) and $p(x)$ obey

$$
\begin{equation*}
p_{g e n}(x)=\frac{1}{x_{1}-x_{0}} \quad \text { and } \quad p_{\text {accept }}(x)=\frac{p(x)}{p_{\max }} \tag{21}
\end{equation*}
$$

and, therefore, generated distribution is

$$
\begin{equation*}
\tilde{p}(x)=p_{g e n}(x) \cdot p_{\text {accept }}(x)=\frac{p(x)}{p_{\max }\left(x_{1}-x_{0}\right)} \tag{22}
\end{equation*}
$$

equal to $p(x)$ up to a normalization constant.
The method is not very efficient due to a large number of rejected random numbers. The average number of calls of rand() can be estimated as

$$
\begin{equation*}
N_{\text {calls }}=\frac{2 \cdot p_{\max }\left(x_{1}-x_{0}\right)}{\int_{x_{0}}^{x_{1}} p(x) d x} \tag{23}
\end{equation*}
$$

Gaussian distribution

$$
\begin{equation*}
P_{\sigma}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-m)^{2}}{2 \sigma^{2}}\right] \tag{24}
\end{equation*}
$$

Central limit theorem: $u_{1}, u_{2}, \ldots, u_{N}$ are N independent and identically distributed random numbers with mean m and variance $\sigma^{2} . \Rightarrow P\left(x=\sum_{i=1}^{N} u_{i}\right) \xrightarrow{N \rightarrow \infty} P_{\tilde{\sigma}}(x)$ with mean $\tilde{m}=N m$ and variance $\tilde{\sigma}^{2}=N \sigma^{2}$.
Example: choose $N=12$ uniform random numbers $u_{i} \in[0,1] \Rightarrow$ $\tilde{m}=12 \cdot 0.5=6$ and $\tilde{\sigma}^{2}=\frac{12}{12}=1 \Rightarrow x=\sum_{i=1}^{12} u_{i}-6$ is normally distributed.
Disadvantage: 12 random number must be generated and x have a limited range of $[-6,6]$.
Note: A Gaussian random number x^{\prime} with m and σ^{2} can be generated form a Gaussian random number x with $m=0$ and $\sigma^{2}=1$ via

$$
\begin{equation*}
x^{\prime}=m+\sigma x \tag{25}
\end{equation*}
$$

Gaussian distribution

Box-Muller method: generate two random numbers $u_{1}, u_{2} \in[0,1]$, then the two random variables

$$
\begin{align*}
& x_{1}=r \cos (\varphi)=\sqrt{-2 \log \left(u_{1}\right)} \cos \left(2 \pi u_{2}\right) \tag{26}\\
& x_{2}=r \sin (\varphi)=\sqrt{-2 \log \left(u_{1}\right)} \sin \left(2 \pi u_{2}\right) \tag{27}
\end{align*}
$$

will both have the normal distribution ($m=0$ and $\sigma^{2}=1$), and will be independent.
Using inversion sampling to transform u_{1} and u_{2} into polar coordinates r and φ leads to

$$
\begin{equation*}
\frac{1}{2} e^{-\frac{1}{2} r^{2}} \mathrm{~d}\left(r^{2}\right) \frac{1}{2 \pi} \mathrm{~d} \varphi=\frac{1}{2 \pi} e^{-\frac{1}{2} r^{2}} r \mathrm{~d} r \mathrm{~d} \varphi=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)} \mathrm{d} x_{1} \mathrm{~d} x_{2} \tag{28}
\end{equation*}
$$

Discrete probability distribution

Finite number of states with probabilities $p_{1}, p_{2}, \ldots, p_{N}$ and $\sum_{i=1}^{N} p_{i}=1$.
Production of random number via naive modification of rejection sampling.

```
rand() is uniform in [0, 1].
Pseudo code:
pmax = max(p[1],\ldots., [N]);
true=1;
while (true==1)
    {i=1+(int) N*rand();
        y=pmax*rand();
        if (y<=p[i]) {true = 0;}
    }
return(i);
```


Figure 3: Discrete probability distribution.

Tower sampling

Naive rejection sampling is not efficient. Better is tower sampling, calculate cumulative sum of $p_{1}, p_{2}, \ldots, p_{N}$ as $q_{j}=\sum_{i=1}^{j} p_{i}$ ("Tower").

```
Pseudo code:
input p[1],...,p[N]
q[0]=0;
for (i=1,i<N+1,i++)
    {q[i]=q[i-1]+p[i];}
x=rand();
find j with q[j-1]<x<q[j]
return(j);
```


Figure 4: The "Tower".

Tower sampling: bisection method

Tower sampling needs only one random number, however, the search for index j, which fulfills the condition $q[j-1]<x<q[j]$, can be expensive (no free lunch theorem). An efficient search can be performed with bisection method (terminates after $\log _{2}(N)$ steps).

```
input x,q[0],q[1],...,q[N]
```

nmin=0;
nmax $=\mathrm{N}+1$;
true=1;
while (true==1)
\{n=(int) (nmin+nmax)/2;
if(q[n]<x) \{nmin=n;\}
else if (q[n-1]>x) \{nmax=n;\}
else
\{true=0;\}
\}
return(n);

Simplest stochastic process: random walk

Consider a random walk on a line, which starts at 0 and at each step moves $+\delta x$ or $-\delta x$ with equal probability.

Figure 5: Independent realisations fo a random walk. Vertical axis: position x. Horizontal axis: time t

Random walk

$P(x, t)$ is the probability to find the walker at position x at time t steps and the transition probability is

$$
w\left(x^{\prime} \rightarrow x\right)= \begin{cases}\frac{1}{2} & , \text { if } x^{\prime}=x \pm \delta x \tag{29}\\ 0 & , \text { else }\end{cases}
$$

Master equation

$$
\begin{aligned}
P(x, t+\delta t)= & P(x, t)-\sum_{x^{\prime}} w\left(x \rightarrow x^{\prime}\right) P(x, t) \\
& +\sum_{x^{\prime}} w\left(x^{\prime} \rightarrow x\right) P\left(x^{\prime}, t\right) \\
= & P(x, t)-P(x, t)+\frac{1}{2}[P(x-\delta x, t)+P(x+\delta x, t)]
\end{aligned}
$$

Random walk

- The position of a walker $x(t=n \delta t)$ after n steps is a stochastic variable.
- $x(t=n \delta t)=\sum_{i=1}^{n} S_{i}$ is a sum of n independent steps $S_{i} \in\{-\delta x,+\delta x\}$ with probability $\operatorname{Pr}\left(S_{i}= \pm \delta x\right)=\frac{1}{2}$.
- It is $\left\langle S_{i}\right\rangle=0$ and $\left\langle S_{i}^{2}\right\rangle=\delta x^{2}$.
- This leads to binomial distribution

$$
\begin{equation*}
P(x=k \delta x, t=n \delta t)=\frac{1}{2^{n}}\binom{n}{[n-k] / 2}, \tag{31}
\end{equation*}
$$

where $(n-k) / 2$ is the number of steps to the left.

- Eq.(31) converges to a normal distribution for large n

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P(x, t)=\frac{1}{\sqrt{2 \pi D t}} \exp \left(-\frac{x^{2}}{2 D t}\right) \tag{32}
\end{equation*}
$$

using the central limit theorem and taking the limit $\delta x, \delta t \rightarrow 0$ such that $\delta x^{2} / \delta t=2 D$, where D is called diffusion coefficient.

Random walk

Random walk is a diffusion process (Brownian motion): $\left\langle x^{2}\right\rangle=2 D t$
The master equation

$$
\begin{align*}
\frac{P(x, t+\delta t)}{\delta t} & -P(x, t) \\
& =\frac{\delta x^{2}}{2 \delta t} \frac{P(x+\delta x, t)-2 P(x, t)+P(x-\delta x, t)}{\delta x^{2}} \tag{33}
\end{align*}
$$

becomes in the limit $\delta t, \delta x \rightarrow 0$

$$
\begin{equation*}
\frac{\partial P(x, t)}{\partial t}=D \frac{\partial^{2} P(x, t)}{\partial x^{2}} \tag{34}
\end{equation*}
$$

the well known diffusion equation and Eq.(32) is its fundamental solution.

Literature

- Pierre L'Ecuyer: "Random Number Generation" In Handbook of Computational Statistics (pp. 35-71)
- William H. Press, Saul Teukolsky, William T. Vetterling und Brian P. Flannery: Numerical Recipes in C. The Art of Scientific Computing
- Edward A. Codling et al.: Random walk models in biology, J. R. Soc. Interface (2008) 5, 813-834

