Computational physics

Heiko Rieger and Adam Wysocki

Theoretical Physics
Saarland University

552017

Contents

» Random numbers

Random number

What are random numbers?

It is a sequence of numbers that cannot be reasonably predicted
better than by a random chance, i.e., lack of pattern or
predictability in events.

Kolmogorov randomness: a string of bits is random if and only if it
is shorter than any computer program (without input) that can
produce that string, i.e., a random string is "incompressible”.

DILBERT &y Scors Anaus
TOUR OF ACCOUNTING |§ < ape
H NINE NINE i vou THAT'S THE
OVER HERE H NINE NINE i sure PROBLEM
WE HAVE OUR NINE NINE H hiiee WITH RAN-
RANDOM NUMBER DOMNESS
vy GENERATOR YOU CAN
_'('4" § NEVER BE
f b) E SURE. 4
BRIl i
e vfﬂ/}'-.' - D57
“JJ'& WA E A Ar

Random number generator (RNG)

» Physical methods (non-deterministic):
» Dice, coin flipping and roulette wheels.
Thermal noise from a resistor.
Atmospheric noise, detected by a radio receiver.
A nuclear decay radiation source, detected by a Geiger counter.

vV vy

» Computational methods (deterministic):

» Maybe some irrational numbers, like T, V2, ... are good
RNG. For example, 7 passed tests for statistical randomness,
including tests for normality.

» Recursive arithmetic RNG, will be presented in the following

Pseudorandom number generator (PRNG)

» PRNG is an deterministic algorithm for generating a sequence
of numbers whose properties approximate the properties of
sequences of random numbers.

» PRNG-generated sequence is not truly random, because it is
completely determined by the initial seed.

» The same seed leads to the same sequence and only different
seeds lead to different sequences.

» Mostly PRNG generate integer values rand € {0,1,....,m — 1}
and division by m leads to rand € [0, 1].

Pseudorandom number generator (PRNG)

» Simplest method is an iterated function

f:40,...,m—1} - {0,...,m—1} (1)
with arithmetic operations (4, —, x, /).
It generates successive numbers
in - f(in—lvin—Zv--winfl) (2)

using an initial seed fy, ..., ij_1.

» The function f should be highly nonlinear and chaotic in order
to generate good random numbers.

» For PRNG of the type Eq.(2) there is ng and p such that
Intp = in for all n > ng, the smallest p denotes the period of
the PRNG.

» If a PRNG's internal state contains n bits its period p can be
no longer than m’ = 2", The aim is to construct a PRNG
with p = m' in order to produce the maximum possible
number of random numbers.

Linear congruential generator (LCG)

The method represents one of the oldest and best-known PRNG.
int1 = (aip + ¢) mod m (3)
with modulo operation

xmodm::X—L%J-m (4)

where |... | is the floor functions.
» modulus m, 0 < m
» multiplier a, 0 <a<m

> increment ¢, 0 < c<m

Linear congruential generator

Hull-Dobell Theorem: the period is p = m for all seed values if and
only if:

» m and c are relatively prime (if the only positive integer that

divides m and c is 1)

» a— 1 is divisible by all prime factors of m

» a— 1 is divisible by 4 if m is divisible by 4.
Choice of a, ¢, m:

> a, ¢, meven number = p < &

» Do not use a = 1, because i, = (ip + nc) mod m is not very
random!

» m = 2" the ith least significant digit repeats with at most
period 2/ = alternately odd and even results

» Park and Miller propose: m = 23! — 1 = 2147483647,
a=16807,c=0

Linear congruential generator (LCG)
Linear congruential generator is not free of sequential correlation.

Marsaglia's Theorem:

Let be u, = = € [0,1] a number
generated by i,+1 = (ai, + ¢) mod m
and {up}n>0 a sequence of numbers.
Then points

(uoy .-y uk—1), (U1, ...y uk), ... will
NOT tend to “fill up” homogeneously
the k-dimensional space, but will lie on

. k
maximal v m - k! parallel

(k — 1)-dimensional hyperplanes.

= find a, ¢ and m, which maximize the

number Of hyperplanes' Figure 1: Histogram and spectral test of
LCG: ipt1 = (24298i, 4+ 99991) mod 199017.
Maximal number of hyperplanes

/199017 - 3! ~ 106.

Shuffling procedure

Apply shuffling procedure in order to increase the period p and to
break up sequential correlations.

Generate an array i[0], ..., i[N — 1] filled with random numbers, i.e.,
ilk] = rand() € {0,1,...,m—1}.

Initially: y = rand() € {0,1,...,m—1} (5)
k = VZ\)IJ €{0,...,N -1} (6)
output = i[K] (7)
y = i[K] (8)
ilk] = rand() 9)
GOTO — (6) (10)
N

—> period p=m

Schrage's algorithm

Calculation of i, = (a - in—1) mod m without overflow.

Calculate m=a-q+r,ie, g=|2| and r = m mod a.

(a-ip)modm = (a-i,— |in/q]-m) mod m (11)
= la-in—L|in/q](@a-g+r)modm (12)
[a(in = Lin/q] @) — r lin/q]] mod m (13)
= [a(in mod q) — r |in/q]] mod m (14)
= a(i, mod q) < ag < mand r |i,/q] <i,,g<i,,<mifr<q

= [a(ip mod q) — r |in/q]] € [-m+1,m—1]

. (a-iy) mod m = 4 2 Unmod @) = rlin/q] if it is > 0
a(ipmod q) —rlin/q] + m else

One needs signed integer (for example: maximal m = 23! —1
instead of m = 232 — 1) but avoids overflow.

Shift-Register-RNG

Works with Bit-Shift operations. L! shifts by t bits to the left and
R?® shifts by s bits to the right.

.jn—l = 1D Rsin—l (15)

In = Jo-1D Lt.jn—l (16)

where & is the bitwise exclusive or (XOR). The truth table of XOR
is

| A® B

= = OOl
R O R O W@
o~ o ®

Shift-Register-RNG: Example

in—l

R3i,_1

J.nfl

L4jn—1

In

D

S

® | D |D| D

& | e|D| D

S

S

— | — | — | —

Xorshift PRNG

Xorshift is state-of-the-art PRNG, it is simple and fast. Period
p=2"-1

uint32_t x32 = 314159265;
uint32_t xorshift32()
{

x32 "= x32 << 13;

x32 "= x32 >> 17;

x32 "= x32 << 5;

return x32;

More PRNG

> Lagged Fibonacci generator

» Mersenne twister

Non-uniform random numbers: Inverse transform sampling

So far PRNG generate uniform random numbers in [0, 1].

How to generate random numbers from a given distribution p(x)?
One possibility is the inverse transform sampling.

Cumulative distribution function,

X

Fx(x) =Pr(X <x) = / dt p(t), (17)

—00

is the probability that the random variable X takes on a value less
than or equal to x.

Claim: If U is a uniform random variable on [0, 1] then Fy'(U)
follows the distribution Fx.

Inverse transform sampling:

Proof: Consider random variable Y = F;l(U).

Fy(y) = Pr(Y <y)=Pr(Fx*(U)<y)
= Pr(U < Fx(y)) = Fu(Fx(y))
= Fx(y),

using Fy(x) = Pr(U < x) = x for all x € [0, 1].
= Y and X have the same distribution.
Examples:
» Exponential distribution: p(x) = Ae =¥
= F(x)=1—e™
= generate U € [0,1] and calculate X = _l"(i_u)

» Lorentz distribution: p(x) = %ﬁrxz

= F(x) = 3 + Larctan(¥)

= generateU € [0, 1] and calculate X =T - tan(7(U —

Nl

o © 00
— — —

Rejection sampling

Inverse transform sampling works only if Fx(x) is invertible. An
alternative is rejection sampling. Works if the distribution p(x)
fulfills: p(x) = 0 for x ¢ [xo, x1] and p(x) < Pmax7x.

rand () is uniform in [0, 1]
Pseudo code:

p(x)
true=1; D...

while (true==1) «
{x=x0+(x1-x0) *rand O ; x
y=pmax*rand () ;

if (y<=p(x)) {true=0;} X
}

return(x) ;

) Xi

Figu re 2: Only samples in the region under the

graph are accepted.

x is distributed according to p(x)

Rejection sampling

It works, because pgen (the distribution corresponding to rand()),
Paccept (probability of acceptance a random number at x) and p(x)
obey

P(X)
= and Xx) = 21
X1 — Xo Paccept() Pmax ()

and, therefore, generated distribution is

Pgen(x)

IS(X) = pgen(x) : paccept(x) = P(X)

B pmaX(Xl - XO) (22)

equal to p(x) up to a normalization constant.
The method is not very efficient due to a large number of rejected
random numbers. The average number of calls of rand () can be

estimated as
2 pmax(Xl - XO)

S p(x)dx

Neays = (23)

Gaussian distribution

1 (x —m)?
PU(X) = Wexp [_M] (24)
Central limit theorem: wuy, uo, ..., uy are N independent and

identically distributed random numbers with mean m and variance

0% = P(x = ZlNzl u;) Noge P3(x) with mean m = Nm and

variance 62 = No?2,

Example: choose N = 12 uniform random numbers vu; € [0, 1] =
M=12-05=6and 5> =2 =1= x= 312 u; — 6 is normally
distributed.

Disadvantage: 12 random number must be generated and x have a

limited range of [—6, 6].

Note: A Gaussian random number x’ with m and ¢ can be
generated form a Gaussian random number x with m = 0 and
02 =1 via
/
X' =m+ox (25)

Gaussian distribution

Box—Muller method: generate two random numbers vy, us € [0, 1],
then the two random variables

x1 = rcos(p)=1+/—2log(u1)cos(2mun) (26)

xo = rsin(p) =+/—2log(uy)sin(2muy) (27)

will both have the normal distribution (m = 0 and % = 1), and
will be independent.

Using inversion sampling to transform u; and wp into polar
coordinates r and ¢ leads to

1 1.0

7e_§r d(rz) 1]. 1,2

—dp=-—e"2"rdrdp = ie_%()<12+)<22)dx1dx2
2T 2T 27
(28)

Discrete probability distribution

Finite number of states with probabilities p1, p2, ..., py and
N
>i—1Pi=1.

Production of random number via naive modification of rejection
sampling.

rand() is uniform in [0, 1]. -
Pseudo code: P

pmax = max(p[1],...,p[N]);
true=1; m
while (true==1)
{i=1+(int) N*rand();
y=pmax*rand () ; (
if (y<=pl[i]) {true = 0;}

} 1234567 891011+n

return(i) 5 Figure 3: Discrete probability

distribution.

Tower sampling

Naive rejection sampling is not efficient. Better is tower sampling,
calculate cumulative sum of p1, p,...,py as qj = > 4_; pi
(“Tower”).

Pseudo code:

input p[1],...,p[N]

q[0]1=0; 6
for (i=1,i<N+1,i++)

{qlil=qli-11+p[il;} ’
x=rand () ; RPIPs 2
find j with q[j-1]<x<q[j] - z
return(j); T Oﬁ

Figure 4: The “Tower”.

Tower sampling: bisection method

Tower sampling needs only one random number, however, the
search for index j, which fulfills the condition q[j-1]1<x<q[j], can
be expensive (no free lunch theorem). An efficient search can be
performed with bisection method (terminates after log,(/N) steps).

input x,q[0],ql1],...,q[N]
nmin=0;
nmax=N+1;
true=1;
while(true==1)
{n=(int) (nmin+nmax)/2;

if(q[n]<x) {nmin=n;}
else if(q[n-1]1>x) {nmax=n;}
else {true=0;}
}

return(n) ;

Simplest stochastic process: random walk

Consider a random walk on a line, which starts at 0 and at each
step moves +0x or —dx with equal probability.

20

Figure 5: Independent realisations fo a random walk. Vertical axis: position x.
Horizontal axis: time t

Random walk

P(x, t) is the probability to find the walker at position x at time t
steps and the transition probability is

3 ifxX =x+
W(X,%X):{S , 1T X X & 0x (29)

, else

Master equation

P(x,t+3t) = P(x,t)= > w(x = x")P(x, t)

Xl

+Z x' — x)P(X', t) (30)

= P(x,t) — P(x,t)+ 5 [P(X —dx,t) + P(x + dx, t)]

Random walk

>

The position of a walker x(t = ndt) after n steps is a
stochastic variable.

x(t =ndt) =371 S;iis a sum of n independent steps
Si € {—dx,+0x} with probability Pr(S; = +0x) = 3.
It is (S;) =0 and (5?) = 4x°.

This leads to binomial distribution

P(x = kéx, t = ndt) = 21n([n _"k]/2>, (31)

where (n — k)/2 is the number of steps to the left.
Eq.(31) converges to a normal distribution for large n

lim P(x,t) = ——— ex (—XZ)
n—oo M VarDe P\ 2Dt

using the central limit theorem and taking the limit dx,dt — 0
such that 6x?/dt = 2D, where D is called diffusion coefficient.

(32)

Random walk

Random walk is a diffusion process (Brownian motion): (x?) = 2Dt

The master equation

P(x,t+dt) — P(x,t)

ot
_0X® P(x +6x,t) = 2P(x, t) + P(x — 0x, t) (33)
26t dx2
becomes in the limit 0t,0x — 0
2
OP(x,t) _ D8 P(x,t) (34)

ot Ox2

the well known diffusion equation and Eq.(32) is its fundamental
solution.

Literature

» Pierre L'Ecuyer: “Random Number Generation” In Handbook
of Computational Statistics (pp. 35-71)

» William H. Press, Saul Teukolsky, William T. Vetterling und
Brian P. Flannery: Numerical Recipes in C. The Art of
Scientific Computing

» Edward A. Codling et al.: Random walk models in biology, J.
R. Soc. Interface (2008) 5, 813-834

