
Computational physics

Heiko Rieger and Adam Wysocki

Theoretical Physics
Saarland University

SS2017

Contents

I Random numbers

Random number

What are random numbers?
It is a sequence of numbers that cannot be reasonably predicted
better than by a random chance, i.e., lack of pattern or
predictability in events.

Kolmogorov randomness: a string of bits is random if and only if it
is shorter than any computer program (without input) that can
produce that string, i.e., a random string is ”incompressible”.

Random number generator (RNG)

I Physical methods (non-deterministic):
I Dice, coin flipping and roulette wheels.
I Thermal noise from a resistor.
I Atmospheric noise, detected by a radio receiver.
I A nuclear decay radiation source, detected by a Geiger counter.

I Computational methods (deterministic):
I Maybe some irrational numbers, like π,

√
2, ... , are good

RNG. For example, π passed tests for statistical randomness,
including tests for normality.

I Recursive arithmetic RNG, will be presented in the following

Pseudorandom number generator (PRNG)

I PRNG is an deterministic algorithm for generating a sequence
of numbers whose properties approximate the properties of
sequences of random numbers.

I PRNG-generated sequence is not truly random, because it is
completely determined by the initial seed.

I The same seed leads to the same sequence and only different
seeds lead to different sequences.

I Mostly PRNG generate integer values rand ∈ {0, 1, ...,m − 1}
and division by m leads to rand ∈ [0, 1].

Pseudorandom number generator (PRNG)
I Simplest method is an iterated function

f : {0, ...,m − 1}l → {0, ...,m − 1} (1)

with arithmetic operations (+,−,×, /).
It generates successive numbers

in = f (in−1, in−2, ..., in−l) (2)

using an initial seed i0, ..., il−1.
I The function f should be highly nonlinear and chaotic in order

to generate good random numbers.
I For PRNG of the type Eq.(2) there is n0 and p such that

in+p = in for all n ≥ n0, the smallest p denotes the period of
the PRNG.

I If a PRNG’s internal state contains n bits its period p can be
no longer than ml = 2nl . The aim is to construct a PRNG
with p = ml in order to produce the maximum possible
number of random numbers.

Linear congruential generator (LCG)

The method represents one of the oldest and best-known PRNG.

in+1 = (ain + c) mod m (3)

with modulo operation

x mod m := x −
⌊ x
m

⌋
·m (4)

where b. . . c is the floor functions.

I modulus m, 0 < m

I multiplier a, 0 < a < m

I increment c , 0 ≤ c < m

Linear congruential generator

Hull-Dobell Theorem: the period is p = m for all seed values if and
only if:

I m and c are relatively prime (if the only positive integer that
divides m and c is 1)

I a− 1 is divisible by all prime factors of m

I a− 1 is divisible by 4 if m is divisible by 4.

Choice of a, c , m:

I a, c , m even number ⇒ p < m
2

I Do not use a = 1, because in = (i0 + nc) mod m is not very
random!

I m = 2n: the ith least significant digit repeats with at most
period 2i ⇒ alternately odd and even results

I Park and Miller propose: m = 231 − 1 = 2147483647,
a = 16807, c = 0

Linear congruential generator (LCG)
Linear congruential generator is not free of sequential correlation.

Marsaglia’s Theorem:
Let be un = in

m ∈ [0, 1] a number
generated by in+1 = (ain + c) mod m
and {un}n≥0 a sequence of numbers.
Then points
(u0, . . . , uk−1), (u1, . . . , uk), . . . will
NOT tend to “fill up” homogeneously
the k-dimensional space, but will lie on
maximal k

√
m · k! parallel

(k − 1)-dimensional hyperplanes.

⇒ find a, c and m, which maximize the
number of hyperplanes. Figure 1: Histogram and spectral test of

LCG: in+1 = (24298in + 99991) mod 199017.

Maximal number of hyperplanes
3√

199017 · 3! ≈ 106.

Shuffling procedure

Apply shuffling procedure in order to increase the period p and to
break up sequential correlations.

Generate an array i [0], ..., i [N − 1] filled with random numbers, i.e.,
i [k] = rand() ∈ {0, 1, ...,m − 1}.

Initially: y = rand() ∈ {0, 1, ...,m − 1} (5)

k =

⌊
yN

m

⌋
∈ {0, ...,N − 1} (6)

output = i [k] (7)

y = i [k] (8)

i [k] = rand() (9)

GOTO → (6) (10)

=⇒ period p = mN

Schrage’s algorithm

Calculation of in = (a · in−1) mod m without overflow.

Calculate m = a · q + r , i.e., q =
⌊
m
a

⌋
and r = m mod a.

(a · in) mod m = (a · in − bin/qc ·m) mod m (11)

= [a · in − bin/qc (a · q + r)] mod m (12)

= [a (in − bin/qc q)− r bin/qc] mod m (13)

= [a (in mod q)− r bin/qc] mod m (14)

⇒ a (in mod q) < aq < m and r bin/qc < in
r
q < in < m if r < q

⇒ [a (in mod q)− r bin/qc] ∈ [−m + 1,m − 1]

⇒ (a · in) mod m =

{
a (in mod q)− r bin/qc if it is ≥ 0

a (in mod q)− r bin/qc+ m else

One needs signed integer (for example: maximal m = 231 − 1
instead of m = 232 − 1) but avoids overflow.

Shift-Register-RNG

Works with Bit-Shift operations. Lt shifts by t bits to the left and
Rs shifts by s bits to the right.

jn−1 = in−1 ⊕ Rs in−1 (15)

in = jn−1 ⊕ Lt jn−1 (16)

where ⊕ is the bitwise exclusive or (XOR). The truth table of XOR
is

A B A⊕ B

0 0 0
0 1 1
1 0 1
1 1 0

Shift-Register-RNG: Example

1 0 1 1 1 0 0 1 in−1

s −→ −→
0 0 0 1 0 1 1 1 R3in−1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
1 0 1 0 1 1 1 0 jn−1

←− ←− ←− ←− t

1 1 1 0 0 0 0 0 L4jn−1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
0 1 0 0 1 1 1 0 in

Xorshift PRNG

Xorshift is state-of-the-art PRNG, it is simple and fast. Period
p = 2m − 1.

uint32_t x32 = 314159265;

uint32_t xorshift32()

{

x32 ^= x32 << 13;

x32 ^= x32 >> 17;

x32 ^= x32 << 5;

return x32;

}

More PRNG

I Lagged Fibonacci generator

I Mersenne twister

Non-uniform random numbers: Inverse transform sampling

So far PRNG generate uniform random numbers in [0, 1].

How to generate random numbers from a given distribution p(x)?
One possibility is the inverse transform sampling.

Cumulative distribution function,

FX (x) = Pr(X ≤ x) =

∫ x

−∞
dt p(t), (17)

is the probability that the random variable X takes on a value less
than or equal to x .

Claim: If U is a uniform random variable on [0, 1] then F−1
X (U)

follows the distribution FX .

Inverse transform sampling:

Proof: Consider random variable Y = F−1
X (U).

FY (y) = Pr(Y ≤ y) = Pr(F−1
X (U) ≤ y) (18)

= Pr(U ≤ FX (y)) = FU(FX (y)) (19)

= FX (y), (20)

using FU(x) = Pr(U ≤ x) = x for all x ∈ [0, 1].
⇒ Y and X have the same distribution.

Examples:

I Exponential distribution: p(x) = λe−λx

⇒ F (x) = 1− e−λx

⇒ generate U ∈ [0, 1] and calculate X = −ln(1−U)
λ

I Lorentz distribution: p(x) = 1
π

Γ
Γ2+x2

⇒ F (x) = 1
2 + 1

π arctan(xΓ)
⇒ generateU ∈ [0, 1] and calculate X = Γ · tan(π(U − 1

2))

Rejection sampling

Inverse transform sampling works only if FX (x) is invertible. An
alternative is rejection sampling. Works if the distribution p(x)
fulfills: p(x) = 0 for x /∈ [x0, x1] and p(x) ≤ pmax∀x .

rand() is uniform in [0, 1]
Pseudo code:

true=1;

while (true==1)

{x=x0+(x1-x0)*rand();

y=pmax*rand();

if (y<=p(x)) {true=0;}

}

return(x);

x is distributed according to p(x)

max
p

p(x)

x
0

x1

Figure 2: Only samples in the region under the

graph are accepted.

Rejection sampling

It works, because pgen (the distribution corresponding to rand()),
paccept (probability of acceptance a random number at x) and p(x)
obey

pgen(x) =
1

x1 − x0
and paccept(x) =

p(x)

pmax
(21)

and, therefore, generated distribution is

p̃(x) = pgen(x) · paccept(x) =
p(x)

pmax(x1 − x0)
(22)

equal to p(x) up to a normalization constant.
The method is not very efficient due to a large number of rejected
random numbers. The average number of calls of rand() can be
estimated as

Ncalls =
2 · pmax(x1 − x0)∫ x1

x0
p(x)dx

(23)

Gaussian distribution

Pσ(x) =
1√

2πσ2
exp

[
−(x −m)

2σ2

2
]

(24)

Central limit theorem: u1, u2, ..., uN are N independent and
identically distributed random numbers with mean m and variance

σ2. ⇒ P(x =
∑N

i=1 ui)
N→∞−→ Pσ̃(x) with mean m̃ = Nm and

variance σ̃2 = Nσ2.
Example: choose N = 12 uniform random numbers ui ∈ [0, 1] ⇒
m̃ = 12 · 0.5 = 6 and σ̃2 = 12

12 = 1 ⇒ x =
∑12

i=1 ui − 6 is normally
distributed.
Disadvantage: 12 random number must be generated and x have a
limited range of [−6, 6].

Note: A Gaussian random number x ′ with m and σ2 can be
generated form a Gaussian random number x with m = 0 and
σ2 = 1 via

x ′ = m + σx (25)

Gaussian distribution

Box–Muller method: generate two random numbers u1, u2 ∈ [0, 1],
then the two random variables

x1 = r cos(ϕ) =
√
−2 log(u1) cos(2πu2) (26)

x2 = r sin(ϕ) =
√
−2 log(u1) sin(2πu2) (27)

will both have the normal distribution (m = 0 and σ2 = 1), and
will be independent.
Using inversion sampling to transform u1 and u2 into polar
coordinates r and ϕ leads to

1

2
e−

1
2
r2
d(r2)

1

2π
dϕ =

1

2π
e−

1
2
r2
rdrdϕ =

1

2π
e−

1
2

(x2
1 +x2

2)dx1dx2

(28)

Discrete probability distribution

Finite number of states with probabilities p1, p2, ..., pN and∑N
i=1 pi = 1.

Production of random number via naive modification of rejection
sampling.

rand() is uniform in [0, 1].
Pseudo code:

pmax = max(p[1],...,p[N]);

true=1;

while (true==1)

{i=1+(int) N*rand();

y=pmax*rand();

if (y<=p[i]) {true = 0;}

}

return(i);

1 2 3 4 5 6 7 8 91011 ...

p

n

Figure 3: Discrete probability

distribution.

Tower sampling

Naive rejection sampling is not efficient. Better is tower sampling,
calculate cumulative sum of p1, p2, ..., pN as qj =

∑j
i=1 pi

(“Tower”).

Pseudo code:

input p[1],...,p[N]

q[0]=0;

for (i=1,i<N+1,i++)

{q[i]=q[i-1]+p[i];}

x=rand();

find j with q[j-1]<x<q[j]

return(j); 1

2

3

4

5

6

1

0

..
.

p

p

p

p+p+p

p+p

1

1

1

2

2

2

3

3

Figure 4: The “Tower”.

Tower sampling: bisection method

Tower sampling needs only one random number, however, the
search for index j, which fulfills the condition q[j-1]<x<q[j], can
be expensive (no free lunch theorem). An efficient search can be
performed with bisection method (terminates after log2(N) steps).

input x,q[0],q[1],...,q[N]

nmin=0;

nmax=N+1;

true=1;

while(true==1)

{n=(int) (nmin+nmax)/2;

if(q[n]<x) {nmin=n;}

else if(q[n-1]>x) {nmax=n;}

else {true=0;}

}

return(n);

Simplest stochastic process: random walk
Consider a random walk on a line, which starts at 0 and at each
step moves +δx or −δx with equal probability.

Figure 5: Independent realisations fo a random walk. Vertical axis: position x .
Horizontal axis: time t

Random walk

P(x , t) is the probability to find the walker at position x at time t
steps and the transition probability is

w(x ′ → x) =

{
1
2 , if x ′ = x ± δx
0 , else

(29)

Master equation

P(x , t + δt) = P(x , t)−
∑
x ′

w(x → x ′)P(x , t)

+
∑
x ′

w(x ′ → x)P(x ′, t) (30)

= P(x , t)− P(x , t) +
1

2
[P(x − δx , t) + P(x + δx , t)]

Random walk

I The position of a walker x(t = nδt) after n steps is a
stochastic variable.

I x(t = nδt) =
∑n

i=1 Si is a sum of n independent steps
Si ∈ {−δx ,+δx} with probability Pr(Si = ±δx) = 1

2 .

I It is 〈Si 〉 = 0 and 〈S2
i 〉 = δx2.

I This leads to binomial distribution

P(x = kδx , t = nδt) =
1

2n

(
n

[n − k]/2

)
, (31)

where (n − k)/2 is the number of steps to the left.

I Eq.(31) converges to a normal distribution for large n

lim
n→∞

P(x , t) =
1√

2πDt
exp

(
− x2

2Dt

)
(32)

using the central limit theorem and taking the limit δx , δt → 0
such that δx2/δt = 2D, where D is called diffusion coefficient.

Random walk

Random walk is a diffusion process (Brownian motion): 〈x2〉 = 2Dt

The master equation

P(x , t + δt)− P(x , t)

δt

=
δx2

2δt

P(x + δx , t)− 2P(x , t) + P(x − δx , t)

δx2
(33)

becomes in the limit δt, δx → 0

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2
(34)

the well known diffusion equation and Eq.(32) is its fundamental
solution.

Literature

I Pierre L’Ecuyer: “Random Number Generation” In Handbook
of Computational Statistics (pp. 35-71)

I William H. Press, Saul Teukolsky, William T. Vetterling und
Brian P. Flannery: Numerical Recipes in C. The Art of
Scientific Computing

I Edward A. Codling et al.: Random walk models in biology, J.
R. Soc. Interface (2008) 5, 813–834

