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» Stochastic simulation of coupled chemical reactions



Stochastic chemical kinetics

» Consider a well-stirred system with N chemically active
species {51, ..., Sy} each with a population X; (number of
molecules) in volume V.

» Species can interact via M types of unidirectional chemical
reactions {R1, ..., Rpm} (reversible reactions can be modeled
as two opposite and parallel running processes), for example:

() — products
S; — products

Sj+ Sk — products (j # k)
25; — products
Si+Sj+5Sc — products (i #j#k#i)
Sj+2Sk — products (j # k)
3S; — products,

where products are again combinations of {S1,..., Sy}



Stochastic chemical kinetics

» The reaction velocity of each reaction type {Ri,..., Ry} is
characterized by a constant parameter {ci, ..., cm}.

» Fundamental hypothesis of stochastic chemical kinetics:

c,0t = the average probability that a particular combi- (1)
nation of reactant molecules will react accord-
ing to R, in V in the next infinitesimal time
interval dt.

» Valid for well stirred systems dominated by elastic collisions
such that positions of molecules are always uniformly
randomized in V' and their velocities are Maxwell-Boltzmann
distributed.

» Remark: It is assumed that the occurrence of multiple
reactions is of order o(dt) and thus vanishes for 6t — 0.



Chemical master equation

>

The aim is, under the above assumptions, to construct an
algorithm for the time evolution of {X;}(t) given the initial
conditions {X;}(0) and reaction parameters {c,}.

Chemical master equation for the probability, P({X;}; t), that
{Xi} molecules of species {S;} are present in V at time t is:

Ipxyie = - > w{Xiy = (X NPEX) )
X7}
+ Y w({X = (XHPEXY0)(2)
X}
Eq.(2) completely determines P({X;}; t).
Particle number moments (X*) = Z{X}Xk P({Xi}; t), like
(X;) and (X?), could be obtalned

However, Eq.(2) is not easily solvable neither analytically nor
numerically.



Stochastic simulation algorithm

Instead of computing probability density function P({X;}; t) for
{Xi}(t) simulate trajectories of {X;}(t) (compare random walk).

» Define new probability:

P(7, 1) dT = the probability at time t that the next re- (3)
action in the system will occur in the in-
finitesimal time interval [t + 7, t+ 7+ dT)
and will be an R,, reaction.

» Further, define

h,, = the number of distinct molecular reactant  (4)
combinations for R, reaction at time t



Stochastic simulation algorithm

Reaction type R, and distinct reactant combinations hj,.

R

1 1
0 1
5 X
Si+S (U #k) XjXi
25 2X(X; — 1)
Si+ S+ S5 (i #j#k#i) | XiXiXk
Si+25 (j#k) 3 X Xk (Xi — 1)
35 §X (X — 1)(X - 2)

h,,c, 0t = probability of a reaction of type R, occurring
in the next time interval dt

(5)

P(7,p)dT = Po(T) - h,c,dT, where Py(7) is the probability at time
t that no reaction will occur in [t,t 4 7) and hy,c,dT is the

probability that R, will occur subsequent in [t + 7, t + 7 + dT).



Reaction probability density function P(7, i)

Estimate of Py(7):
» Divide [t,t + 7) into K equal subintervals of length ¢ = &.

T

» The probability that none of the reactions {Ry,..., Ru}
occurred in [t, t+¢€) is

MM 1= hoceto(e)] *1—SM hycetoe) (6)

» Same expressions result for the remaining K — 1 subintervals

Po(7)

:1 — Zyzl h,c e + o(e)] : (7)

}_zﬁdm@%+4K4ﬂK (8)

- B 1 K
1- (Z,’,\/Ll hyc, ™+ O(;ffll)) K:| (9)



Reaction probability density function

» In the limit K — oo we obtain:
Po(7) = exp [~ LI hucur| (10)

» Finally, the reaction probability density function reads as

M
P(r, 1) = Po(T)huc, = hycuexp [— Z hl,Cl,T] (11)
v=1
with normalization
fooo dT Z;,\L/Izl P(Ta ,U,)
=M e 37 drexp [— M hym} =1 (12)

» Eq.(11) is the mathematical basis for the stochastic simulation
approach, since it contains all the information needed to treat
stochastic chemical kinetics via Monte-Carlo method.



Overview of Gillespie's stochastic simulation algorithm

» Step 0 (Initialization): set initial molecular populations
{Xi}(0) and reaction parameters {c,}, calculate {h,}.

» Step 1 (Monte Carlo): generate a random reaction time and
type (7, 1) according to P(7, u).

» Step 2 (Update): advance t — t + 7, update the populations
{Xi}(t) of species {S;} involved in the reaction R, update
{h,} accordingly.

» Step 3 (Terminate): If t > tax OF no reaction type is
possible, i.e., {h1,..., hy} = {0,...,0}, then terminate, else
go to Step 1.



Gillespie's direct method
How to generate (7, ) from P(7, u1)?

Apply chain rule, i.e., write joint probability distribution
P(7, 1) = Pi(7) - P2(ulT) (13)
as product of

P1(7)dT = probability that the next reaction (irrespective of
type) will occur in [t + 7, t + 7 + dT)

and
P>(1|T) = conditional probability that the next reaction will be
an R, reaction given that it occurs at time t + 7
Using Eq.(11) we get
Pi(t) = Zﬁil P(7, 1) = aoexp (—ao7) (14)
Po(ulr) = P(r,1)/Pi(7) = au/a0, (15)

with abbreviations a, = h,c, and a0 =3 huc, =3, ap.



Implementing the Monte Carlo Step

» Step la (pick the reaction time): generate a uniformly
distributed random number r; € [0,1] and set

- aloln <r11> (16)

see inverse transform sampling.

» Step 1b (pick the reaction type): generate a uniformly
distributed random number r; € [0,1] and set x to be the
integer for which

p—1 I
Z a, < hag < Z ay, (17)
v=1 v=1

see rejection sampling.



First-reaction method
A reminder: a, 0t is the probability that a reaction R,, occurs in dt.

KIi_r)noo (1 — au%)K a0t = Probability that no reacti_on R,, takes place
in [0, 7] but occurs later in [7, T + 0t]
and thus
P.(T)dT = e ?7a,dT = probability at time t that a reaction R, takes
place [t + 7, t + T + d7] provided that the
population involved in R, does not change
in [t,t+ 7]
Implementing the Monte Carlo Step:
» Generate M uniform random numbers {r,...,rm} € [0, 1].
» Compute tentative reaction times 7, = % In %) for
vedl, ..M}
» Choose as the actual next reaction the one which occurs first:
= the smallest of the {7,} (18)
= the index of the smallest {7, } (19)



First-reaction method
Proof that this method generates P(7, 1) from Eq.(11).

Reaction probability corresponding to procedure described above:

P(r,p)dr =Pr(r <71, <1 +d7) - Pr(r, > 7, Vv # 1) (20)

Since
Pr(r <7, <7+dr)=exp(—a,7)a,dr (21)
and

Pr(t, > 7, Yv # )

Pr{(1/a,)In(1/r) > T, Yv # u}
Pr{rn <exp(—a,7), Vv # u}

= [l Prin <exp(-a7)}

= [L.exp(—aT) (22)

we obtain

P(r,p)dT = e *7a,d7 ], ., e 7"
= ayge ®"dr = P(1,p)dr  (23)



Example

System of four chemical species W, X, Y and Z subject to six
coupled chemical reactions:

X = vy (24)
(&)

2X = 7 (25)
C4

W+X = 2X (26)
6

In the deterministic approach the following system of coupled
nonlinear ODES must be solved:

aw
dt
dX
dt
dy
dt
dz
dt

—as WX + 26 X? (27)
—aX+ oY — X +2aZ + s WX — ScgX? (28)
aX —-—oY 29)
T X? —aZ (30)

—~~



Example
Chemical reaction system

X = v (31)
(&)
X = 7 (32)
Ca
W4+X = 2X (33)

and the corresponding master equation
dP(W,X,Y,Z;t)
dt
a{X+1)PW,X+1,Y-1,Z;t)— XP(W,X,Y,Z; t)}
+o{(Y+1)P(W,X-1,Y+1,Z;t)— YP(W,X,Y,Z;t)}
+ C3{%(X +2) X+ D)P(W, X +2,Y,Z—-1;t)
—IX(X -1)P(W,X,Y,Z;t)}
+a{(Z+1)P(W,X -2,Y,Z+1;t)—ZP(W,X,Y,Z;t)}
+ ..




Next-subvolume method

» So far simulation methods apply to well stirred systems, i.e.,
diffusion is so fast that all concentrations are homogenous in
space.

> If system size is to large to be homogenized by diffusion on
the timescale of the chemical reactions the system becomes
spatially heterogeneous and a method with spatial resolution
is needed.

» EIf et al. proposed an extension of Gillespie's direct method to
simulate spatially resolved reaction-diffusion kinetics on
mesoscopic level.

» The total system is divided into N subvolumes (SVs), chosen
so small that the concentrations of reactants in a SV are
near-homogeneous in space.

» The molecules in a SV can either undergo chemical reactions
or diffuse to a neighboring SV.



Sketch of the next-subvolume method

» Calculate first the next event time (reaction or diffusion) in
each SV and identify the SV with the smallest next event
time, very similar to the first-reaction method.

> Apply Gillespie's direct method to the SV with the smallest
next event time in order to decide if the next event is a
chemical reaction or a diffusion jump and which species are
involved in this event.

» The time for the next event in each SV is ordered in an event
queue, which makes the computation time linear in log N,
rather then in N.



Next-subvolume method

Q1
Event Queue =10.2s
SV 4
: 3
=10.3s
SV:8
Q:6 Q7
t=10.5s =11.3s
Ssv:s Ssv:2

Figure 2: In the event queue, the elements are
. . . ordered such that, in each branch of the binary
Flagure 1: An example of indexing {yee 5 SV with an earlier event time t is higher
n® cells. From EIf et al. up. The Q array keeps a reference to the SVs
position in the event queue. From EIf et al.



Application of the next-subvolume method

» Simulation of the spatial oscillation patterns that are displayed
by the Min system of Escherichia coli.

> In wild-type E. coli, the Min proteins oscillate back and forth
between the cell poles to help the bacterium find its middle
before cell division.

A 5

By
T

s (1) MinD” —“—MinD,,,,, k,=0.0125pm’'s”
(2) MinDA™ +MinD,,, ——>2MinD,, k=9-10°M’s"
(3) MinE +MinD,,, —*—MinDE Ky =5.56-10'M"'s" )
(4) MinDE—%—>MinD%" +MinE K,=0.7s" Flgu re 4:  Membrane-bound MinD is shown in

(5) MinDA —""_,MinDA™ KA = 65T

blue, and MinE in complex with MinD on the
membrane is shown in red, see movie

Figure 3: Min system reaction scheme
g 4 https://doi.org/10.1371/journal.pcbi.0020080

and rate constants. From Fange et al.
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