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Stochastic chemical kinetics

I Consider a well-stirred system with N chemically active
species {S1, . . . ,SN} each with a population Xi (number of
molecules) in volume V .

I Species can interact via M types of unidirectional chemical
reactions {R1, . . . ,RM} (reversible reactions can be modeled
as two opposite and parallel running processes), for example:

∅ → products

Sj → products

Sj + Sk → products (j 6= k)

2Sj → products

Si + Sj + Sk → products (i 6= j 6= k 6= i)

Sj + 2Sk → products (j 6= k)

3Sj → products,

where products are again combinations of {S1, . . . ,SN}.



Stochastic chemical kinetics

I The reaction velocity of each reaction type {R1, . . . ,RM} is
characterized by a constant parameter {c1, . . . , cM}.

I Fundamental hypothesis of stochastic chemical kinetics:

cµδt ≡ the average probability that a particular combi-
nation of reactant molecules will react accord-
ing to Rµ in V in the next infinitesimal time
interval δt.

(1)

I Valid for well stirred systems dominated by elastic collisions
such that positions of molecules are always uniformly
randomized in V and their velocities are Maxwell-Boltzmann
distributed.

I Remark: It is assumed that the occurrence of multiple
reactions is of order o(δt) and thus vanishes for δt → 0.



Chemical master equation

I The aim is, under the above assumptions, to construct an
algorithm for the time evolution of {Xi}(t) given the initial
conditions {Xi}(0) and reaction parameters {cµ}.

I Chemical master equation for the probability, P({Xi}; t), that
{Xi} molecules of species {Si} are present in V at time t is:

∂

∂t
P({Xi}; t) = −

∑
{X∗

i }

w({Xi} → {X ∗i })P({Xi}; t)

+
∑
{X∗

i }

w({X ∗i } → {Xi})P({X ∗i }; t) (2)

I Eq.(2) completely determines P({Xi}; t).

I Particle number moments 〈X k
i 〉 =

∑
{Xi} X

k
i · P({Xi}; t), like

〈Xi 〉 and 〈X 2
i 〉, could be obtained.

I However, Eq.(2) is not easily solvable neither analytically nor
numerically.



Stochastic simulation algorithm

Instead of computing probability density function P({Xi}; t) for
{Xi}(t) simulate trajectories of {Xi}(t) (compare random walk).

I Define new probability:

P(τ, µ) dτ ≡ the probability at time t that the next re-
action in the system will occur in the in-
finitesimal time interval [t + τ, t + τ + dτ)
and will be an Rµ reaction.

(3)

I Further, define

hµ ≡ the number of distinct molecular reactant
combinations for Rµ reaction at time t

(4)



Stochastic simulation algorithm

Reaction type Rµ and distinct reactant combinations hµ.

Rµ hµ

∅ 1

Sj Xj

Sj + Sk (j 6= k) XjXk

2Sj
1
2Xj(Xj − 1)

Si + Sj + Sk (i 6= j 6= k 6= i) XiXjXk

Sj + 2Sk (j 6= k) 1
2XjXk(Xk − 1)

3Sj
1
6Xj(Xj − 1)(Xj − 2)

hµcµδt = probability of a reaction of type Rµ occurring
in the next time interval δt

(5)

P(τ, µ)dτ = P0(τ) · hµcµdτ , where P0(τ) is the probability at time
t that no reaction will occur in [t, t + τ) and hµcµdτ is the
probability that Rµ will occur subsequent in [t + τ, t + τ + dτ).



Reaction probability density function P(τ, µ)

Estimate of P0(τ):

I Divide [t, t + τ) into K equal subintervals of length ε = τ
K .

I The probability that none of the reactions {R1, . . . ,RM}
occurred in [t, t + ε) is∏M

ν=1[1− hνcνε+ o(ε)] ≈ 1−
∑M

ν=1 hνcνε+ o(ε). (6)

I Same expressions result for the remaining K − 1 subintervals

P0(τ) =
[
1−

∑M
ν=1 hνcνε+ o(ε)

]K
(7)

=
[
1−

∑M
ν=1 hνcν

τ
K + o(K−1)

]K
(8)

=

[
1−

(∑M
ν=1 hνcντ + o(K−1)

K−1

) 1

K

]K
(9)



Reaction probability density function

I In the limit K →∞ we obtain:

P0(τ) = exp
[
−
∑M

ν=1 hνcντ
]

(10)

I Finally, the reaction probability density function reads as

P(τ, µ) = P0(τ)hµcµ = hµcµ exp

[
−

M∑
ν=1

hνcντ

]
(11)

with normalization∫∞
0 dτ

∑M
µ=1 P(τ, µ)

=
∑M

µ=1 hµcµ
∫∞
0 dτ exp

[
−
∑M

ν=1 hνcντ
]

= 1 (12)

I Eq.(11) is the mathematical basis for the stochastic simulation
approach, since it contains all the information needed to treat
stochastic chemical kinetics via Monte-Carlo method.



Overview of Gillespie’s stochastic simulation algorithm

I Step 0 (Initialization): set initial molecular populations
{Xi}(0) and reaction parameters {cµ}, calculate {hµ}.

I Step 1 (Monte Carlo): generate a random reaction time and
type (τ, µ) according to P(τ, µ).

I Step 2 (Update): advance t → t + τ , update the populations
{Xi}(t) of species {Si} involved in the reaction Rµ, update
{hµ} accordingly.

I Step 3 (Terminate): If t > tmax or no reaction type is
possible, i.e., {h1, . . . , hM} = {0, . . . , 0}, then terminate, else
go to Step 1.



Gillespie’s direct method
How to generate (τ, µ) from P(τ, µ)?

Apply chain rule, i.e., write joint probability distribution

P(τ, µ) = P1(τ) · P2(µ|τ) (13)

as product of

P1(τ)dτ ≡ probability that the next reaction (irrespective of
type) will occur in [t + τ, t + τ + dτ)

and

P2(µ|τ) ≡ conditional probability that the next reaction will be
an Rµ reaction given that it occurs at time t + τ

Using Eq.(11) we get

P1(τ) =
∑M

µ=1 P(τ, µ) = a0 exp (−a0τ) (14)

P2(µ|τ) = P(τ, µ)/P1(τ) = aµ/a0, (15)

with abbreviations aµ ≡ hµcµ and a0 ≡
∑

µ hµcµ ≡
∑

µ aµ.



Implementing the Monte Carlo Step

I Step 1a (pick the reaction time): generate a uniformly
distributed random number r1 ∈ [0, 1] and set

τ =
1

a0
ln

(
1

r1

)
, (16)

see inverse transform sampling.

I Step 1b (pick the reaction type): generate a uniformly
distributed random number r2 ∈ [0, 1] and set µ to be the
integer for which

µ−1∑
ν=1

aν < r2a0 <

µ∑
ν=1

aν , (17)

see rejection sampling.



First-reaction method
A reminder: aµδt is the probability that a reaction Rµ occurs in δt.

lim
K→∞

(
1− aµ

τ

K

)K
aµδt = probability that no reaction Rµ takes place

in [0, τ ] but occurs later in [τ, τ + δt]

and thus

Pµ(τ)dτ = e−aµτaµdτ = probability at time t that a reaction Rµ takes
place [t + τ, t + τ + dτ ] provided that the
population involved in Rµ does not change
in [t, t + τ ]

Implementing the Monte Carlo Step:
I Generate M uniform random numbers {r1, ..., rM} ∈ [0, 1].

I Compute tentative reaction times τν = 1
aν

ln
(

1
rν

)
for

ν ∈ {1, ...,M}.
I Choose as the actual next reaction the one which occurs first:

τ = the smallest of the {τν} (18)

µ = the index of the smallest {τν} (19)



First-reaction method
Proof that this method generates P(τ, µ) from Eq.(11).

Reaction probability corresponding to procedure described above:

P̃(τ, µ)dτ = Pr(τ < τµ < τ + dτ) · Pr(τν > τ, ∀ν 6= µ) (20)

Since
Pr(τ < τµ < τ + dτ) = exp (−aµτ)aµdτ (21)

and

Pr(τν > τ, ∀ν 6= µ) = Pr {(1/aν) ln (1/rν) > τ, ∀ν 6= µ}
= Pr {rν < exp (−aντ), ∀ν 6= µ}
=

∏
ν 6=µ Pr{rν < exp (−aντ)}

=
∏

ν 6=µ exp(−aντ) (22)

we obtain

P̃(τ, µ)dτ = e−aµτaµdτ
∏

ν 6=µ e
−aντ

= aµe
−a0τdτ = P(τ, µ)dτ (23)



Example
System of four chemical species W , X , Y and Z subject to six
coupled chemical reactions:

X
c1−⇀↽−
c2

Y (24)

2X
c3−⇀↽−
c4

Z (25)

W + X
c5−⇀↽−
c6

2X (26)

In the deterministic approach the following system of coupled
nonlinear ODES must be solved:

dW
dt = −c5WX + 1

2c6X
2 (27)

dX
dt = −c1X + c2Y − c3X

2 + 2c4Z + c5WX − 1
2c6X

2 (28)
dY
dt = c1X − c2Y (29)
dZ
dt = 1

2c3X
2 − c4Z (30)



Example
Chemical reaction system

X
c1−⇀↽−
c2

Y (31)

2X
c3−⇀↽−
c4

Z (32)

W + X
c5−⇀↽−
c6

2X (33)

and the corresponding master equation

dP(W ,X ,Y ,Z ; t)

dt
=

c1{(X + 1)P(W ,X + 1,Y − 1,Z ; t)− XP(W ,X ,Y ,Z ; t)}
+ c2{(Y + 1)P(W ,X − 1,Y + 1,Z ; t)− YP(W ,X ,Y ,Z ; t)}

+ c3{12(X + 2)(X + 1)P(W ,X + 2,Y ,Z − 1; t)

− 1
2X (X − 1)P(W ,X ,Y ,Z ; t)}

+ c4{(Z + 1)P(W ,X − 2,Y ,Z + 1; t)− ZP(W ,X ,Y ,Z ; t)}
+ ...



Next-subvolume method

I So far simulation methods apply to well stirred systems, i.e.,
diffusion is so fast that all concentrations are homogenous in
space.

I If system size is to large to be homogenized by diffusion on
the timescale of the chemical reactions the system becomes
spatially heterogeneous and a method with spatial resolution
is needed.

I Elf et al. proposed an extension of Gillespie’s direct method to
simulate spatially resolved reaction-diffusion kinetics on
mesoscopic level.

I The total system is divided into N subvolumes (SVs), chosen
so small that the concentrations of reactants in a SV are
near-homogeneous in space.

I The molecules in a SV can either undergo chemical reactions
or diffuse to a neighboring SV.



Sketch of the next-subvolume method

I Calculate first the next event time (reaction or diffusion) in
each SV and identify the SV with the smallest next event
time, very similar to the first-reaction method.

I Apply Gillespie’s direct method to the SV with the smallest
next event time in order to decide if the next event is a
chemical reaction or a diffusion jump and which species are
involved in this event.

I The time for the next event in each SV is ordered in an event
queue, which makes the computation time linear in logN,
rather then in N.



Next-subvolume method

Figure 1: An example of indexing
n3 cells. From Elf et al.

Figure 2: In the event queue, the elements are
ordered such that, in each branch of the binary
tree, a SV with an earlier event time t is higher
up. The Q array keeps a reference to the SVs
position in the event queue. From Elf et al.



Application of the next-subvolume method
I Simulation of the spatial oscillation patterns that are displayed

by the Min system of Escherichia coli.
I In wild-type E. coli, the Min proteins oscillate back and forth

between the cell poles to help the bacterium find its middle
before cell division.

Figure 3: Min system reaction scheme
and rate constants. From Fange et al.

Figure 4: Membrane-bound MinD is shown in

blue, and MinE in complex with MinD on the

membrane is shown in red, see movie

https://doi.org/10.1371/journal.pcbi.0020080
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