Diese Aufgaben dienen zur Wiederholung bereits gelernten Stoffes aus dem vorherigen Semester.

Die Bearbeitung der Aufgaben ist freiwillig.

1. [0 Punkte] Vektorrechnung

 $\mathbf{e}_1 = (1,0,0), \ \mathbf{e}_2 = (0,1,0), \ \mathbf{e}_3 = (0,0,1)$ seien jeweils Einheitsvektoren in x, y, z-Richtung.

- (a) Geben seien die Vektoren $\mathbf{a} = 2\mathbf{e}_1 + 4\mathbf{e}_2 + 2\mathbf{e}_3$ und $\mathbf{b} = 3\mathbf{e}_1 2\mathbf{e}_2 7\mathbf{e}_3$.
 - i. Zerlegen Sie den Vektor $\mathbf{a} = \mathbf{a}_{\parallel} + \mathbf{a}_{\perp}$ in einen Vektor \mathbf{a}_{\parallel} parallel und einen Vektor \mathbf{a}_{\perp} senkrecht zum Vektor \mathbf{b} . Überprüfen Sie ob $\mathbf{a}_{\parallel} \cdot \mathbf{a}_{\perp} = 0$ gilt.
 - ii. Berechnen Sie die Beträge von \mathbf{a} , \mathbf{b} und $\mathbf{a} + \mathbf{b}$. Zeigen Sie die Gültigkeit der Dreiecksungleichung: $|\mathbf{a} + \mathbf{b}| \le a + b$.
 - iii. Berechnen Sie die Fläche des von **a** und **b** aufgespannten Parallelogramms und bestimmen Sie einen Einheitsvektor, der auf dieser Ebene senkrecht steht.
- (b) Beweisen Sie: $(\mathbf{a} \times \mathbf{b})^2 = a^2 b^2 (\mathbf{a} \cdot \mathbf{b})^2$

2. [0 Punkte] Die Kreisbewegung: kartesische Koordinaten versus Polarkoordinaten.

Das Beispiel der Kreisbewegung ist besonders wichtig, da es häufig in der Physik und Astronomie auftritt. Ein Teilchen bewege sich mit konstanter Winkelgeschwindigkeit ω auf einer Kreisbahn mit dem Radius R in der x-y-Ebene.

(a) Allgemein lautet der Ortsvektor eines Teilchens zum Zeitpunkt t in zweidimensionalen kartesischen Koordinaten $\mathbf{r}(t) = x(t) \, \mathbf{e}_1 + y(t) \, \mathbf{e}_2$ mit den Basisvektoren $\mathbf{e}_1 = (1,0)$ und $\mathbf{e}_2 = (0,1)$. Im Speziellen gilt für die Kreisbewegung:

$$\mathbf{r}(t) = R\cos(\omega t)\mathbf{e}_1 + R\sin(\omega t)\mathbf{e}_2.$$

- i. Berechnen Sie die Geschwindigkeit $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \dot{\mathbf{r}}$ und den Betrag der Geschwindigkeit $|\mathbf{v}|$. Was folgern Sie aus dem Ergebnis von $\mathbf{r} \cdot \mathbf{v}$?
- ii. Berechnen Sie die Beschleunigung $\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}}$ und deren Betrag $|\mathbf{a}|$.
- (b) Je nach Symmetrie des Problems können auch andere Koordinatensysteme benutzt werden. Hier bietet sich das Polarkoordinatensystem an. Deren Transformationsgleichung lautet

$$\mathbf{r} = r\cos(\varphi)\,\mathbf{e}_1 + r\sin(\varphi)\,\mathbf{e}_2\,,$$

wobei $r \geq 0$ den Abstand des Punktes zum Ursprung und $0 \leq \varphi < 2\pi$ den Winkel zwischen der x-Achse und dem Ortsvektor **r** bezeichnet. Die Basisvektoren des Polarkoordinatensystems sind:

$$\mathbf{e}_r = \frac{\frac{\partial \mathbf{r}}{\partial r}}{\left|\frac{\partial \mathbf{r}}{\partial r}\right|} = (\cos \varphi, \sin \varphi) \quad \text{und} \quad \mathbf{e}_{\varphi} = \frac{\frac{\partial \mathbf{r}}{\partial \varphi}}{\left|\frac{\partial \mathbf{r}}{\partial \varphi}\right|} = \dots$$

Der Ortsvektor eines Teilchens zum Zeitpunkt t in Polarkoordinaten lautet $\mathbf{r}(t) = r(t)\mathbf{e}_r(t)$.

- i. Berechnen Sie den Basisvektor \mathbf{e}_{φ} . Sind \mathbf{e}_{r} und \mathbf{e}_{φ} orthogonal zueinander?
- ii. Berechnen Sie die Geschwindigkeit $\mathbf{v}(t)$ und die Beschleunigung $\mathbf{a}(t)$ in Polarkoordinaten unter Verwendung der Kettenregel.

Hinweis: Beachten Sie, dass wegen r(t) und $\varphi(t)$ die Basisvektoren $\mathbf{e}_r(t)$ und $\mathbf{e}_{\varphi}(t)$ nun auch zeitabhängig sind. Zum Beispiel gilt $\frac{\mathbf{d}\mathbf{e}_{\varphi}}{\mathbf{d}t} = -\dot{\varphi}\,\mathbf{e}_r$.

iii. Betrachten Sie nun eine Kreisbewegung, d.h. setzen Sie einen konstanten Radius r=R und eine konstante Winkelgeschwindigkeit $\dot{\varphi}=\omega$ an. Vergleichen Sie mit dem Ergebnis aus (a).

3. [0 Punkte] Zylinderkoordinaten

- (a) Zeigen Sie, dass die Basisvektoren das Zylinderkoordinatensystem orthonormal zueinander sind.
 - i. Erweitern Sie die oben eingeführten Polarkoordinaten um eine Höhenkoordinate z und schreiben Sie den Ortsvektor \mathbf{r} als Funktion der Koordinaten (r, φ, z) .
 - ii. Berechnen Sie die Tangenteneinheitsvektoren:

$$\mathbf{e}_r = \frac{\frac{\partial \mathbf{r}}{\partial r}}{\left|\frac{\partial \mathbf{r}}{\partial r}\right|}$$
 und $\mathbf{e}_{\varphi} = \frac{\frac{\partial \mathbf{r}}{\partial \varphi}}{\left|\frac{\partial \mathbf{r}}{\partial \varphi}\right|}$ und $\mathbf{e}_z = \frac{\frac{\partial \mathbf{r}}{\partial z}}{\left|\frac{\partial \mathbf{r}}{\partial z}\right|}$

iii. Zeigen Sie, dass diese Vektoren eine Orthonormalbasis bilden, d.h.

$$\mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu} = \delta_{\mu\nu},$$

wobei

$$\delta_{\mu\nu} = \begin{cases} 0 & \text{für } \mu \neq \nu \\ 1 & \text{für } \mu = \nu \end{cases}$$

und Kronecker-Symbol heißt.

- iv. Mit Hilfe des Spatprodukts $\mathbf{e}_r \cdot (\mathbf{e}_{\varphi} \times \mathbf{e}_z)$ kann man feststellen ob die Basisvektoren \mathbf{e}_r , \mathbf{e}_{φ} , \mathbf{e}_z ein Rechtssystem oder ein Linkssystem bilden.
- (b) Stellen Sie den Vektor $\mathbf{A}=z\mathbf{e}_1+2x\mathbf{e}_2+y\mathbf{e}_3$ in Zylinderkoordinaten dar. Hinweis: Der Ansatz für die Lösung ist: $\mathbf{A}=A_r\mathbf{e}_r+A_\varphi\mathbf{e}_\varphi+A_z\mathbf{e}_z$. Es müssen die Einheitsvektoren des kartesischen Systems durch die des Zylindersystems ersetzt werden und die Komponenten z, 2x und y durch Zylinderkoordinaten ausgedrückt werden.

4. [0 Punkte] Kugelkoordinaten

Die kartesischen Koordinaten lassen sich wie folgt durch die Kugelkoordinaten ausdrücken:

$$\mathbf{r} = r \sin(\theta) \cos(\varphi) \mathbf{e}_1 + r \sin(\theta) \sin(\varphi) \mathbf{e}_2 + r \cos(\theta) \mathbf{e}_3$$

mit dem Radius $r \geq 0$, dem Polarwinkel $0 \leq \vartheta < \pi$ und dem Azimutwinkel $0 \leq \varphi < 2\pi$.

- (a) Konstruieren Sie das lokale Dreibein \mathbf{e}_r , \mathbf{e}_{ϑ} und \mathbf{e}_{φ} in Analogie zur Aufgabe 3 (a) ii. Zeigen Sie explizit, dass $\mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu} = \delta_{\mu\nu}$ und berechnen Sie $\mathbf{e}_r \cdot (\mathbf{e}_{\vartheta} \times \mathbf{e}_{\varphi})$.
- (b) In Kugelkoordinaten lautet die Bahnkurve eines Massenpunkts $\mathbf{r}(t) = r(t)\mathbf{e}_r(t)$. Zeigen Sie, dass der entsprechende Geschwindigkeitsvektor die Form

$$\mathbf{v} = \dot{\mathbf{r}} = \dot{r}\mathbf{e}_r + r\dot{\vartheta}\mathbf{e}_{\vartheta} + r\dot{\varphi}\sin{(\vartheta)}\mathbf{e}_{\varphi}$$

hat.

- (c) Ein Satellit fliege auf einer spiralförmigen Bahn von einem Punkt über dem Nordpol zu einem Punkt über dem Südpol. In Kugelkoordinaten ist die Bahn beschrieben durch r(t) = R, $\vartheta(t) = \pi t$ und $\varphi(t) = \omega t$ mit $t \in [0, 1]$.
 - i. Machen Sie eine qualitative Skizze der Bahn für $\omega=2\pi$ und $\omega=3\pi$.
 - ii. Wie lautet die Kurvengeschwindigkeit v in Kugelkoordinaten?