Abgabe: bis zum 30.Nov.2009, 10:00 Uhr im Postfach von Prof. Rieger

1 Quantisierung von Feldern: das Yukawa-Potential

Gegeben sei ein System von Fermionen, erzeugt durch das Feld $\psi^{\dagger}(\mathbf{r})$, welches durch das Yukawa-Potential

$$V(\mathbf{r}) \equiv V(r) = A \frac{e^{-\lambda r}}{4\pi r} \tag{7.1}$$

wechselwirkt, mit $r = |\mathbf{r}|$.

- 1) Schreiben Sie den Hamiltonoperator in Ortsdarstellung in zweiter Quantisierung.
- 2) Schreiben Sie den Hamiltonoperator in Impulsdarstellung in zweiter Quantisierung, mit

$$c_{\mathbf{k}}^{\dagger} = \int d^3 \mathbf{r} \psi^{\dagger}(\mathbf{r}) e^{i\mathbf{k} \cdot \mathbf{r}}.$$
 (7.2)

Hinweis: Es ist nützlich, folgende Fourierdarstellung des Potentials zuerst zu zeigen und dann zu nutzen:

$$V(r) = \int \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \frac{A}{q^2 + \lambda^2}.$$
 (7.3)

2 Spinoperatoren in zweiter Quantisierung

2.1 Fermionische Systeme

Zeigen Sie, dass der Spinoperator \overrightarrow{S} in folgender Weise als Funktion fermionischer Erzeuger c_{σ}^{\dagger} und Vernichter c_{σ} ($\sigma=\uparrow,\downarrow$) mit $\{c_{\sigma},c_{\sigma'}^{\dagger}\}=\delta_{\sigma,\sigma'}$ geschrieben werden kann:

$$\begin{split} S^x &= & \frac{1}{2} \left(c_\uparrow^\dagger c_\downarrow + c_\downarrow^\dagger c_\uparrow \right) \\ S^y &= -\frac{i}{2} \left(c_\uparrow^\dagger c_\downarrow - c_\downarrow^\dagger c_\uparrow \right) \\ S^z &= & \frac{1}{2} \left(c_\uparrow^\dagger c_\downarrow - c_\downarrow^\dagger c_\uparrow \right). \end{split}$$

Hinweis: Prüfen Sie die Kommutatorrelationen $[S^x, S^y] = iS^z$, $[S^y, S^z] = iS^x$ und $[S^z, S^x] = iS^y$.

2.2 Bosonische Systeme

Seien a, b zwei bosonische Operatoren.

1) Zeigen Sie, dass der Spinoperator \overrightarrow{S} sich schreiben lässt als:

$$S^{+} = a^{\dagger}b$$
 , $S^{-} = (S^{+})^{\dagger}$, $S^{z} = \frac{1}{2}(a^{\dagger}a - b^{\dagger}b)$ (7.4)

 $mit S^{\pm} = \frac{1}{2} \left(S^x \pm i S^y \right)$

Hinweis : Prüfen Sie die Kommutatorrelationen $[S^z,S^\pm]=\pm S^\pm,\,[S^+,S^-]=2S^z.$

2) Zeigen Sie unter Ausnutzung der bosonischen Kommutatorregeln, dass

$$|S,m\rangle = \frac{(a^{\dagger})^{S+m}}{\sqrt{(S+m)!}} \frac{(b^{\dagger})^{S-m}}{\sqrt{(S-m)!}} |0\rangle \tag{7.5}$$

Eigenvektoren der Operatoren S^z und \overrightarrow{S}^2 sind.

Hinweis: $|S, m\rangle \equiv |n_a, n_b\rangle$ mit $n_a = S + m$, $n_b = S - m$.

2.3 Ferromagnet

Das Heisenbergmodell eines Ferromagneten wird durch folgenden Hamiltonoperator definiert:

$$H = -\frac{1}{2} \sum_{l,l'} J(|l - l'|) S_l \cdot S_{l'}, \tag{7.6}$$

wobei l und l' nächste Nachbarn in einem Gitter sind. Durch die Holstein-Primakoff-Transformation

$$S_i^+ = \sqrt{2S}\varphi(\hat{n}_i)a_i$$

$$S_i^- = \sqrt{2S}a_i^+\varphi(\hat{n}_i)$$

$$S_i^z = S - \hat{n}_i,$$
(7.7)

mit $S_i^{\pm} = S_i^x \pm i S_i^y$, $\varphi(\hat{n_i}) = \sqrt{1 - \frac{\hat{n_i}}{2S}}$, $\hat{n_i} = a_i^+ a_i$ und $\left[a_i, a_j^+\right] = \delta_{ij}$ sowie $\left[a_i, a_j\right] = 0$ wird der Hamilton-operator auf Bose-Operatoren a_i transformiert.

- 1) Zeigen Sie, dass die Vertauschungsrelationen für die Spinoperatoren erfüllt sind.
- 2) Stellen Sie den Hamiltonoperator bis in 2.
ter Ordnung (harmonische Näherung) durch die Bose-Operatore
n a_i dar, indem Sie die Wurzeln in den obigen Transformationen als Abkürzungen für die Reihenentwicklung auffassen
- 3) Diagonalisieren Sie H (durch eine Fouriertransformation) und bestimmen Sie die Dispersionsrelation der Spinwellen (=Magnonen).